PhOREMOST
network of excellence
Promoting Nanophotonics in Europe

PhOREMOST
Emerging Nanophotonics Roadmap

Silvia M. Pietralunga

“Nanophotonics to Realise Molecular-Scale Technologies”
Roadmapping: one main activity in our network

Emerging Nanophotonics roadmap

Integration → Joint Research Projects → Education & Training

Dissemination
Scientific and technical roadmap

- Focus on selected *emerging (mid to long-term)* nanophotonic concepts, technologies and devices
- Identify main challenges and possible roadblocks
- Outcome should help to *steer and focus research* in nanophotonics for the scientific community at large and within PhOREMOST in particular
How does it relate to MONA?

http://www.ist-mona.org/roadmaps

• MONA and PhOREMOST roadmapping activities were developed as a *coordinated effort*

• PhOREMOST’s emerging nanophotonics roadmap is *complementary* to MONA’s “Roadmap for Photonics and Nanotechnologies”
How is it structured?

- We have chosen selected topics, with high potential impact and outstanding scientific and technological challenges in three different areas:
 - Concepts
 - Technologies
 - Devices
Table of Contents: Concepts

- Random lasers
- Non-linear nano-optics
- Metamaterials in the visible
- Plasmonics
- Microcavities
- Optical trapping and sorting
Table of Contents: Technologies

- Infiltration Techniques
- Functionalisation
- Self-assembly
- Hybrid nanotechnologies
Table of Contents: Devices

- Photovoltaics
- Lighting and optical sources
- Sensing
- Light manipulation
- Nano-doped active materials
Example 1: Random lasers

• Motivations

– Obtain lasing in new random materials
 ➢ Cheap and easy large scale fabrication
 ➢ New optical properties
– Understand physics of random lasing
– Develop new applications in lighting, encryption, sensing...
Example 1: Random lasers

• Figures of merit
 – *Lasing efficiency, material stability, temperature sensitivity, …*

• Main challenges
 – *Theoretical model that includes interference:* understanding localized and extended modes in random systems
 – *Mode competition, stability:* how stable is the output, when is it chaotic, and role of mode competition
 – *Electrical pumping*
Example 1: Random lasers

<table>
<thead>
<tr>
<th></th>
<th>2 – 5 years</th>
<th>5 – 10 years</th>
<th>10 years and more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical model</td>
<td>Yellow</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>that includes</td>
<td>Yellow</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>interference</td>
<td>Yellow</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Mode competition</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>stability</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Electrical pumping</td>
<td>Yellow</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

Red (No known solutions at this time), Yellow (Very hard but possible solutions), Green (feasible solutions under investigation), White (known solutions, first commercial products available)
Example 2: Sub-wavelength plasmon optics

• **Motivations**
 – Enhanced light-matter interaction at the nanoscale
 – Plasmon routing at the sub-micrometer scale for short distance interconnects
 – New hybrid materials
Example 2: Sub-wavelength plasmon optics

- **Figures of merit**
 - Molecular sensitivity in Surface Enhanced Raman Scattering (SERS)
 - Light guiding through submicrometer sections
 - SP-enhanced optical forces
 - ...

- **Main challenges**
 - Field confinement below the 20 nm level
 - Field Enhancement factor above 100
 - SP guiding through sections smaller than 100 nm
 - Controlling the dynamics of single molecules
 - Trapping objects as small as 100 nm
Example 2: Sub-wavelength plasmon optics

Timeline

<table>
<thead>
<tr>
<th></th>
<th>2 – 5 years</th>
<th>5 – 10 years</th>
<th>10 years and more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field confinement below the 20 nm level</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>Field Enhancement factor above 100</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>SP guiding through sections smaller than 100 nm</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Controlling the dynamics of single molecules</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Trapping objects as small as 100 nm</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>
Example 3: nanoparticle-doped organics waveguide optical amplifiers

• Motivations
 – Optical gain on short distances for applications in integrated PLC
 – Organic PLC are attractive due to good performances and cost-effectiveness
 – Optical amplification at telecom wavelengths in organics is an issue, due to both absorption and luminescence quenching
Example 3: nanoparticle-doped organics waveguide optical amplifiers

- **Figures of merit**
 - Optical gain coefficient for the material
 - Waveguide propagation loss
 - Net optical gain for the implemented waveguide

- **Main challenges**
 - Increased gain of PMMA-based EDWA at $l = 1.50$ mm. To reach a gain parameter of about 4 db/cm
 - Realization of PMMA-based WDM for optical pumping
 - Realization of Chalcogenide doped single-mode waveguides
 - Realization of Plug and play devices
Example 3: nanoparticle-doped organics waveguide optical amplifiers

<table>
<thead>
<tr>
<th>Timeline:</th>
<th>2 – 5 years</th>
<th>5 – 10 years</th>
<th>10 years and more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased gain of PMMA-based EDWA at $\lambda = 1.50 , \mu m$</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Realization of PMMA-based WDM</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Chalcogenide doped single-mode waveguides</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Plug-and-Play devices</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
</tbody>
</table>
Contacts

PhOREMOST Roadmap Contact
Prof. Goncal Badenes
ICFO, Barcelona
Goncal.Badenes@icfo.es

PhOREMOST Coordinator:
Prof. Clivia Sotomayor Torres,
ICREA Research Professor, ICN
Barcelona and Tyndall National Institute, Cork
clivia.sotomayor@tyndall.ie

Technical Examples:
Random Lasers
Dr Diederik Wiersma
LENS, Florence
wiersma@lens.unifi.it

Sub-wavelength plasmon optics
Dr Romain Quidant
ICFO, Barcelona
Romain.Quidant@icfo.es

PMMA-nanodoped amplifiers
Dr Isabelle Ledoux
ENS-Cachan, Cachan
Isabelle.Ledoux@lpqm.ens-cachan.fr

www.phoremost.org
Public version (print and electronic) scheduled for May 2008

Watch for it at http://www.phoremost.org/