

Metamaterial Roadmap

Metamorphose vision for the future advancements

April 2008 Sergei Tretyakov, Ekmel Özbay, Christophe Crayene, and many other Metamorphose partners

Definition

Metamaterial is an arrangement of artificial structural elements, designed to achieve advantageous and unusual electromagnetic properties.

More precisely, properties that cannot be achieved at the atomic or molecular level are achieved through the electromagnetic interaction between the "particles" formed at levels much higher than the atomic level and whose dimensions are small compared to the wavelength of operation.

Metamaterials Research

Search in SCI for "metamaterials" Other common names, LHM, BW etc. not included

A Comparison of Metamaterials Research

VIEW RECORDS	Field: Country/Territory	Record Count	% of 671	Bar Chart
	USA	262	39.0462 %	
	PEOPLES R CHINA	109	16.2444 %	
	ENGLAND	52	7.7496 %	
	SPAIN	49	7.3025 %	
	GERMANY	42	6.2593 %	
	CANADA	35	5.2161 %	
	TURKEY	30	4.4709 %	
	RUSSIA	27	4.0238 %	
	GREECE	26	3.8748 %	
	ITALY	22	3.2787 %	• • • • •
	AUSTRALIA	21	3.1297 %	1 - C
	FRANCE	21	3.1297 %	• • • • •
	JAPAN	20	2.9806 %	1 - C
	SINGAPORE	14	2.0864 %	1.00
	FINLAND	13	1.9374 %	1.00

Search in SCI for "metamaterials" Other common names, LHM, BW etc. not included

METAMORPHOSE

- A European network of excellence (NoE) dedicated to metamaterials
- Coordinator: Prof. Sergei Tretyakov (TKK, Finland)
- Strategic Manager: Dr. Vladimir Podlozny (TKK, Finland)
- Lifetime: June 2004 May 2008
- www.metamorphose-eu.org

Participants

1	Helsinki University of Technology	HUT	Finland
2	Universite Catholique de Louvain	UCL	Belgium
3	Universidad del País Vasco / Euskal Herriko Unibertsitatea	UPV	Spain
4	Swiss Federal Institute of Technology, Lausanne	EPFL	Switzerland
5	University of Southampton	UoS	UK
6	Bilkent University	Bilkent	Turkey
7	Universidad Publica de Navarra	UPNA	Spain
8	University of Glasgow	U. Glasgow	UK
9	Siegen University	Siegen	Germany
10	St. Petersburg Electrotechnical University	ETU	Russia
11	FORTH, Institute of Electronic Structure and Laser	FORTH	Greece
12	Warsaw University	WU	Poland
13	University Roma Tre	Roma Tre	Italy
14	Loughborough University	Lough	UK
15	University of Siena	UNISI	Italy
16	Thales Research & Technology	TRT	France
17	Universitat Politechnica de Catalunya	UPC	Spain
18	Queen's University of Belfast	QUB	UK
19	Université Paris-Sud	UPS/LEGEP	France
20	Universidad Autonoma de Barcelona	UAB	Spain
21	Institute of Electronic Materials Technology	ITME	Poland

Life after METAMORPHOSE?

- Lifetime of Metamorphose: June 2004 May 2008
- New structure: Metamorphose VI
- One of the first virtual institutes envisioned by the EU Commission to follow-up NoE
- www.metamorphose-vi.org
- The Virtual Institute for Artificial Electromagnetic Materials and Metamaterials ("Metamorphose VI") is a non-for-profit international association whose purposes are the research, the study and the promotion of artificial electromagnetic materials and metamaterials
- A research roadmap is one of the VI instruments

What is a roadmap?

WIKIPEDIA

A roadmap may refer to:

A map of roads (where they might lead nobody knows), and possibly other features, to aid in navigation

A plan, e.g.

Road map for peace, to resolve the Israeli-Palestinian conflict

Technology roadmap, a management forecasting tool

Goals

- Get a clear idea of opportunities and challenges offered by metamaterials
- Obtain a structured view of possible research
 orientations
- Organise research at European level
 - o to avoid overlaps
 - o to achieve good coverage
 - o to be fast picking up the fruits of joint efforts

Classification

$$D = \varepsilon E + (\chi - j\kappa)H$$
$$B = (\chi + j\kappa)E + \mu H$$

		3	μ	n	η
PEC	perfect electric conductor	large	small	undefined	very small
РМС	perfect magnetic conductor	small	large	undefined	very large
ZIM	zero-index material	small	small	very small	undefined
IIM	infinite-index material	large	large	very large	undefined
ZEM	zero-electric material	very small	undefined	small	large
ZMM	zero-magnetic material	undefined	very small	small	small
IEM	infinite-electric material	very large	undefined	large	small
IMM	infinite-magnetic material	undefined	very large	large	large

Three wavelength regimes with different challenges:

- 1. Microwaves: based on well-established research in the field of antennas and microwave circuits.
- 2. TeraHertz: new field because of strong instrumental limitations at this stage.
- 3. Optics: also based on strong background, but bigger challenges, related to availability of low-loss nano-structured metamaterials and nano-fabrication techniques.

Different goals in different frequency ranges

1. Develop new processes and materials with engineered microor nano-scopic structure for improvement of microwave and millimetre-wave devices and creation of new devices with new capabilities, mainly for information technologies. The issues of tunability, including electrical control, and integration in larger systems are at the forefront.

Different goals in different frequency ranges

2. Create new artificial materials, devices and applications for TeraHertz frequencies, based on special phenomena, like lefthanded materials. The cost of fabrication and testing still being very high in this frequency range, the research roadmap in the field of TeraHertz technologies will partly rely on conceptual experiments at microwave frequencies.

Different goals in different frequency ranges

3. At **optical frequencies**, the first objective is to prove the **feasibility** of lensing metamaterials with the help of artificial materials like plasmonic devices, split-ring resonators and new types of materials and engineered (structural) thin sheets. Second, materials with extreme dielectric or magnetic properties are also looked for. A big challenge for material scientists is to find low-loss plasmonic materials.

Roadmap formation process

Matematerials are still at a relatively fundamental level:

Some applications are almost commercial (collimators, microwave antennas, phase shifters), while others are still purely at conceptual level (invisibility).

Work at some intermediate level: functionality

« Properties for which metamaterials could be used »

Functionality		Phenomenology	Application (system)	Fabrication & measurement	Analysis techniques
Imaging and	Collimation	Low-epsilon materials, low-mu materials, spatial dispersion	MRI imaging, health applications,	Mechanical assembly	ASM, Method of Moments
sensing	lensing lensing Matching + Re index close to DNG, SNG or material, plasm	Matching + Refraction index close to -1, using DNG, SNG or chiral material, plasmonic surfaces, strong spatial dispersion	Imaging, detection, focusing of power, health applications	Photo- lithography, FTIR (Infrared and visible domain), 3D microwave imaging, micro and nano- machining	Special treatment of resonant structures in Finite Element Method Eigenmode analysis
	Sensing	Resonance frequency shift	Biosensors	nanolithography	

Function	ality	Phenomenology	Application (system)	Fabrication & measurement	Analysis techniques
Sources a radiators	ınd	Composite magnetic materials, (artificial) low-epsilon materials, reduction of mutual coupling, reduction of overal size with the help of DNG materials	Mobile terminals, compact antennas, large scan angles and highly efficient systems, UMTS, WIMAX, WIFI	Various deposition techniques, optical lithography	Finite Element Methods
Miniaturi and optim		Backward and forward waves, high-Q resonance	Front-end module of wireless communications	Thin film and screen-printing technique, multilayer ceramic technology, PCB and other planar microelectronic technologies	Method of Moments, Electroma gnetic software

Functionality		Phenomenolo gy	Application (system)	Fabrication & measurement	Analysis techniques
Multi- functionnal reconfigu- rable systems	Reconfigurab- ility /tunability	Dielectric response of ferro-electric material or varactors, tunable constitutive elements, ferroelectric varactors, non- linear metamaterials, photonic FSS's. Integration of MEMS switches HBV	Reconfigurable components/fron t-ends, electromagnetic windows, EM compatibility, tunable filters, parametric amplifiers, frequency multiplexers, mixers, Tunable delay lines, phase shifters, tunable filters	Photo and e-beam lithography, Thin film and screen- printing technique, multilayer ceramic technology, PCB, RF-MEMS, Micro-milling, magnetron and laser sputtering, lithography e-beam lithography, nano- imprint Nano soft lithography, self assembly of nanostructures	Electromagne tic software, and electrical solvers. Time-domain solvers for non-linear materials, Sonnet, Momentum, Harmonic balance simulations for large signal (non- linear)

Expected achievements in 5 coming years:

Microwaves

Expected achievements in 5 coming years:

TeraHertz

Expected achievements in 5 coming years:

Optical

Conclusions and further prospects

- Research topics (re)organized along 3 axes: functionalities, methods and frequencies
- Long-term expectations projected per frequency
- Contributions and cooperations determined
- Cooperation results will be reviewed every year
 reaping fruits of efforts

avoid overlap

get coverage

Yearly cycle within the Virtual Institute

New tunable metamaterial transmission lines based on CSRRs and varactors (UAB)

Metasurfaces for enhanced radiation properties (UPNa, LOUGH, TKK)

Forth – UNISI - Bilkent Efficient beaming at optical frequencies.

Metamorphose, NoE on Metamaterials http://www.metamorphose-eu.org/

Broadband transpolarising surfaces (UPC,UCL)

12

Figure 2: Trans-surface (left) and reflected Ex (Ecop) and Ey (Ecross) measured results.

P.J. Ferrer (UPC19), Carlos López-Martínez, X. Fàbregas, J.M. González-Arbesú (UPC19), J. Romeu (UPC19), A. Aguasca, and C. Craeye (UCL03), "Transpolarizing Surfaces for Polarimetric SAR Systems Calibration", *IEEE Geoscience and Remote Sensing (IGARSS07)* conference.

P.J. Ferrer (UPC19), J.M. González-Arbesú (UPC19), J. Romeu (UPC19), and C. Craeye (UCL03), "Design and Fabrication of a Cross-Polarising AMC Surface", *EuCAP07*.

Metamorphose, NoE on Metamaterials http://www.metamorphose-eu.org/

Self-organized metamaterials from eutectics (<u>ITME</u>, Bilkent, Siegen)

Tunable metamaterial transmission lines based on ferromagnetic nanowires (UCL)

Subwavelength resolution by a negative-index metamaterial superlens

Two subwavelength features separated by distances of $\lambda/8$, $\lambda/5$ and $\lambda/3$ are resolved with the superlens.

is on the order of wavelength.

Aydin et al., APL 90, 254102 (2007)

Tunable Dual-Band Microwave Filter Based on a Combination of Left/Right-Handed Transmission Lines

Multilayer LTCC implementations of spurious-free stepped-impedance resonators and dual-band filters based on a combination of right- and lefthanded transmission line (RH and LH TL) sections was derived. The measured microwave performance of the devices exhibited high resolution and excellent reproducibility. Based on the analysis of the tunability of the devices based on RH and LH TLs sections, the functionality of these miniature devices is further enhanced. The one-band tunable filter was designed using varactor diodes.

The combination of careful design of combined structures with a reliable three-dimensional low-cost fabrication technology opens a wide potential for commercial applications.

Paired Spiral Resonators & Antennas (QUB) **Compact multi-band** dBi antennas 1.44 0.931 0.592 A.254 -11.3-20.4 -29.5 ♦ Phi -38.6 Farfield Tupe Approximation enabled (kR >> 1) Monitor farfield (f=1.41) [1] Component Abs Stacked spirals above ground Output Directivity 🕶 Theta Frequencu 1.41 Rad. effic. 0.003608 Tot. effic. 0.0006215 Dir. Farfield 'farfield (f=1.41) [1]' Directivity Abs(Theta) 10 0 ίN Sub-wavelength resonators: $\lambda/10$ 30 30 [dBi] S11,dB Phi= 90 Phi=270 60 60 -10 -10-20 F = 1.41 GHzF = 10.29 GHz 90 90 F = 6.285 GHz S11 = -11.07dB S11 = -10.56dB -20 \$11 = -12.06dB Frequency = 1.41 120 Main lobe magnitude = 1.6 dBi -30 Main lobe direction = 95.0 deg. Ó 5 10 15 Angular width (3 dB) = 41.9 deg.150 150 Frequency, GHz 180

Tunable metamaterial-based stop-band filters in RF-MEMS technology

Meta-surfaces illuminated by dipole antennas

- Dipole antenna tuned to the pass band of the meta-surface
- Thin profile = 0.137 λ_0 at f_r = 10.48 GHz
- Good matching S₁₁ = -15 dB;
- Enhanced directivity D = 8.2 dBi
- High aperture efficiency: $\eta_{ap} = 1.1$
- High radiation efficiency $\eta_{r:}$

 $\eta_{r \text{ dipole}} = 0.98; \eta_{r \text{ superstrate}} = 0.90$

- Low back radiation
- Mutual coupling reduction in array configuration

Dipole + metasurface

210

180

150

Decorrelation of two close antennas with a Metamaterial AMC Spacer (UPC, Spain)

Introduction

• A bidirectional CLL based metamaterial slab provides a PMC response (phase{S11} $|_{f=f0} = 0^{\circ}$) on both sides.

• Applied to close antennas, decoupling (low S21) and decorrelation (high C11 and low C12) has been achieved for a wide bandwidth. Results compared with Air and PEC spacers.

• Radiation with an AMC spacer is concentrated into a half-space, obtaining quasi-orthogonal patterns

• Application \rightarrow Compact antenna systems (routers, handhelds). Radiation patterns

P.J. Ferrer, J.M. González-Arbesú, and J. Romeu, "Decorrelation of two closely spaced antennas with a Metamaterial AMC Surface", *Microw. Opt. Tech. Lett.*, vol. 50, no. 5, pp. 1414-1417, May 2008.

Electromagnetic cloaking based on transmission-line networks (TKK)

Transmission-line networks designed for the reduction of the total scattering cross section of periodic structures (2D arrays of metal rods here)

Total SCS is shown to be greatly reduced in a large bandwidth

Electric field at 2 GHz:

Impedance-matched microwave lenses (TKK)

Transmission-line networks are designed to have a certain index of refraction while maintaining impedance-matching with free space in a large bandwidth

Simulated electric field phase with the proposed lens and a reference dielectric lens at 2.4 GHz

Simulated reflectance

Call identifier: FP7-NMP-2007-CSA-1 COORDINATING AND SUPPORT ACTION (Coordinating)

Project acronym:

ECONAM

Project full title:

<u>Electromagnetic Characterization of</u> <u>Nanostructured Materials</u>

Work programme topics addressed:

NMP-2007-2.1-3 Characterisation of nanostructured materials

THANK YOU!

Gracias!

GRAZIE!

Dank u!

Kiitos!

TE**Ş**EKKÜR!

Merci!

Dziękuję!

Danke schön!

ευχαριστώ πολύ!

Спасибо!

Tag!