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Brief story of LHMBrief story of LHM
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The 4 electromagnetic states of materials.The 4 electromagnetic states of materials.

Left handed material
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Right handed material

Imaginary n 
Evanescent mode

Imaginary n
Evanescent mode

Propagative
 

mode, n: real >0
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ε

V.G. Veselago, Soviet Physics Uspekhi

 

10 (1968)
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Material with ε<0 or μ<0Material with ε<0 or μ<0

a

2r
a

(by J.B. Pendry, Imperial College)

A lattice of metallic split ring resonators has a 
negative permeability in some frequency range.

•A lattice of thin metallic wires is a material 
with a negative permittivity (for   ω < ωp

 

) 
where  ωp

 

is the plasmon
 

frequency.

J.B. Pendry, PRL 76, pp.4773-4776 (1996) J.B. Pendry, IEEE MTT 47, pp.2075-2084 (1999)
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Left handed materialLeft handed material

Association of the 2 preceding metallic lattices

Composite Medium with Simultaneously 
Negative Permeability and Permittivity

D. R. Smith et al., PRL 84, pp. 4184-4187 (2000)
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How to measure the index of refraction of a LHM?How to measure the index of refraction of a LHM?

Experimental verification of a negative index of refraction
R. Shelby, D. R. Smith and

 

S. Schultz, Science, 292, 77 (2001)



8

Index of refraction of a LHM: measurementIndex of refraction of a LHM: measurement

Experimental verification of a negative index of refraction
R. Shelby, D. R. Smith and

 

S. Schultz, Science, 292, 77 (2001)
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vacuum

LHM

α

β

Source

LHM

Applications of left handed materials (LHM)Applications of left handed materials (LHM)

Negative refraction makes a perfect lens
J. B. Pendry, Phys. Rev. Lett., 85, 3966 (2000)

ε=-1, μ=-1

Negative
 

refraction Perfect
 

lens
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Controllable wire arrayControllable wire array
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Controllable structure: the conceptControllable structure: the concept

Lattice of continuous 
metallic wires:

Lattice of discontinuous 
metallic wires:

A. de Lustrac

 

et al., APL 75 (11), pp.1625-1627 (1999)
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First prototype for EADS (1-5GHz)…First prototype for EADS (1-5GHz)…
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…and its first measurement.…and its first measurement.
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In blue:
diode

Wires=
Perfect conductors

Box = vacuum

Dark blue:
Printed board

-20
f (GHz)

d

Plasmon band

Forbidden band

f0

-15

-10

-5

0

diodes ON
diodes OFF13dB

Controllable wiresControllable wires

Incident wave

E

Diodes ON = Continuous wires
Diodes OFF = Cut wires



15

2nd
 

prototype with printed stripes…2nd
 

prototype with printed stripes…
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… and
 

its
 

measurements
 

(around
 

10GHz).… and
 

its
 

measurements
 

(around
 

10GHz).
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Applications: radomes intelligents…Applications: radomes intelligents…
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Pattern diagram of the patch 
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Application: controllable radomeApplication: controllable radome
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Industrial applications:
 Conformable and Controllable structures

 for antennas
 

Industrial applications:
 Conformable and Controllable structures

 for antennas



19

Base Station for mobile communicationBase Station for mobile communication

Wide-band
antenna

0.8-2.1GHz

5 layers of wires with diodes

15°

Schematical
 

design of
the

 
base station antenna
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Characterization of the first prototype at 0.9GHzCharacterization of the first prototype at 0.9GHz
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structure: optimization of the aperture
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structure: optimization of the aperture
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Fabrication of the 2nd
 

prototypeFabrication of the 2nd
 

prototype



23

Project “BIP”: 3G base station.
 Four layers prototype with wide band antenna

 

Project “BIP”: 3G base station.
 Four layers prototype with wide band antenna

Beam
 

control over
 

360°. 
Beam

 
aperture: 30°.

Wide
 

band
 

antenna: 
(0.8 -> 2.1GHz).

Antenna realized by France Télécom
 

R&D Corresponding diagram pattern
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measurements

simulations

4 layers 2nd
 

prototype: one aperture –
 

one beam
 Measurements and simulations at 0.9, 1.75 and 2.0GHz

 

4 layers 2nd
 

prototype: one aperture –
 

one beam
 Measurements and simulations at 0.9, 1.75 and 2.0GHz
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Spherical and Controllable radomeSpherical and Controllable radome
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GoalsGoals

Conformal EBG structure on a spherical radome.

Commutation of the transmitted signal at around 10GHz.

2 configurations:
1. A set of continuous and discontinuous metallic wires
2. A set of two discontinuous metallic wires with different 

discontinuities’ periods.

Electronically active radome in aeronautic field with active switches 
like PIN diodes and/or photoresistances.



27

Design of the structureDesign of the structure

x

y

z

O

a

p

3 configurations :

•Continuous wires (allowed band)
•Discontinuous wires with p1=11mm 
(forbidden band)

•Discontinuous wires with p2=5.5mm
(allowed band)

•Discontinuities  simulated as capacitance C=30fF.
•Diameter 32 cm.
•p1 and p2 are the projections on the horizontal 
plane. Schematic structure 

simulated in Microstripes
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Simulations of the spherical and controllable radomeSimulations of the spherical and controllable radome
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Prototype: Design and Test with a horn antenna.Prototype: Design and Test with a horn antenna.

•Discontinuities’ width 0.1mm
•Wires’ width 1mm printed on a flexible support

Foam (permittivity close to 1)

Horn antenna inside the radome.
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Measurements of the prototype with the antennaMeasurements of the prototype with the antenna
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Measurements of the prototype 
with the weather radar antenna

 

Measurements of the prototype 
with the weather radar antenna

Weather radar antenna
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•The switching level is 15dB.
•The directivity of the antenna is unchanged.
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From the wire lattice to the LHMFrom the wire lattice to the LHM
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Control of the permittivity.Control of the permittivity.

2 boards of metallic wires with PIN diodes: the switch of the transmission and 
the permittivity for the 2 states of the diodes.
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Transmission of metallic stripes.Transmission of metallic stripes.

Comparison of the transmission through 1 and 2 boards of metallic wires with PIN diodes
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Permeability of the Split Ring ResonatorsPermeability of the Split Ring Resonators
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A first passive prototypeA first passive prototype
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Transmission of the LHM: measurement and calculationTransmission of the LHM: measurement and calculation

The
 

first
 

prototype.
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Measurement of the whole controllable LHMMeasurement of the whole controllable LHM
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The whole structure is the association of 2 lattices:

a) Lattice of wires with diodes:
-2 parallel boards:  height 150mm, width 200mm 
and thickness 0.4mm.
-Metallic wires of 1mm width spaced by 4mm. 
-PIN diodes on these wires every 1cm.

b) Lattice of SRR:
-Exterior diameter : 3mm and the interior one: 
1.75mm.
-Discs spaced by 3.1mm (center to center).
-Boards spaced every 4mm.
-Boards' width: 11mm.

The whole metamaterial: the design.The whole metamaterial: the design.

PIN diodes

Metallic 
wires

E
k H

11mm

20cm

1cm

Split ring
resonators

(SRR)

15cm



40

The whole controllable metamaterial: transmissionThe whole controllable metamaterial: transmission
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Switching between both states of the material
-Diodes OFF: reflective material.
-Diodes ON: left handed material.

The whole controllable metamaterial: transmissionThe whole controllable metamaterial: transmission
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Measurement of the negative refractionMeasurement of the negative refraction

LHM
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Active Variable Phase Metamaterial Cavity 
for Directive Antenna 

Active Variable Phase Metamaterial Cavity 
for Directive Antenna
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→ L. Brillouin, “Wave Propagation 
in Periodic Structures: Electric Filters 
and Crystal Lattices”, 
Mc Graw Hill, 1946
→ J. R. Pierce, Bell Labs, 
“Traveling-Wave Tubes”, 
D. Van Nostrand Company, 1950 Vφ

 
.vg < 0

Use of metallic motifs with LC resonances 

top patch

ground plane

capspost

Unit cell

top patch

sub-patches

ground plane

via

→ D. Sievenpiper, “High impedance 
electromagnetic surfaces”, PhD 1999

→ C. Caloz et al., “Transmission line 
approach of left-handed …”, IEEE Trans. 
Antennas 2004

1D and 2D metamaterials: an old but new concept ?1D and 2D metamaterials: an old but new concept ?
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GoalsGoals

Planar Directive Antenna
 

in X band.

Compactness (Thickness << λ/4).

Reconfigurable antenna.



46

Maximum power at boresight
 

1

 
(θ

 
= 0) is obtained when :

Φprs+Φr-
 

4 π
 

h / λo = 2 N π
The resonance thickness is:

ho = (Φprs+Φr) *λo / (4 π) + N* λo / 2

Perfect Reflector (Φr)

Partially Reflective Surface 
(Φprs) 
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Patch antenna
1

 
G.V. Trentini, IRE Transactions on Antennas and Propagation, Vol

 

4, p. 666-671, oct. 1956.

Fabry-Perot cavity antenna: operating principle…Fabry-Perot cavity antenna: operating principle…

We must minimize 
(Φprs+Φr) to reduce h.
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Ground plane unit cell

Epoxy substrate permittivity : 3.9
Dissipation factor : 0.0197
Thickness : 1.2 mm
Lattice : d = 4 mm

3.8 mm

3.6 mm

1.2 mmPRS unit cell

Perfect 
Reflector (Φr)

Partially 
Reflective 
Surface (Φprs) 

h Patch antenna

All-metamaterial-based Cavity DesignAll-metamaterial-based Cavity Design



48

Incident 
wave

Incident 
wave

Ground plane unit cell PRS unit cell

Normal Incidence Reflection Coefficients PhaseNormal Incidence Reflection Coefficients Phase
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Perfect 
Reflector (Φr)

Partially Reflective 
Surface (Φprs) 

h

Resonance thickness
30
λ

=h
High directivity (22 dB)

εr

 

=3.9
δ=0.0197
h=1.2 mm
a=5 mm
b=4.8
w=2.2 mm

Composite metamaterial
 

based subwavelength
 

cavitiesComposite metamaterial
 

based subwavelength
 

cavities
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h

PRS-AMC

HIS-AMC

Antenna

The Fabry-Perot Cavity antenna: realization.The Fabry-Perot Cavity antenna: realization.
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E PlaneH Plane
Radiation patterns of the Resonant mode at 9.7 GHz for  h=1 mm

Optimized Metamaterial-based Cavity Radiation PatternsOptimized Metamaterial-based Cavity Radiation Patterns



52

h h

PRS

Patch antenna

Metallic ground plane

φ1 φ2 φ3 φn

E

n

φ3

θ

1 2 3 a

φ1 φ2 φn

Phased array

Steerable
 

Metamaterial-based cavity operating principleSteerable
 

Metamaterial-based cavity operating principle
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EAntenna

PRS inductive grid

PRS capacitive 
grid

Substrate

Metallic ground plane

E

E
E

Composite metamaterial
 PRS unit cell

One dimensional composite metamaterial
 

PRS conceptionOne dimensional composite metamaterial
 

PRS conception
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Metamaterial-based subwavelength
 

cavity analysisMetamaterial-based subwavelength
 

cavity analysis
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Metamaterial-based cavity : 
g=600 µm, δg=100 µm  
and h=2 mm
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Metallic gap width variation effectMetallic gap width variation effect
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Beam steering by equivalent capacitance variation 

PRS disposition

E

gg-2δgg-3δg g+2δgg+1δg g+3δgg- δg_ +

E

PRS disposition

Beam steeringBeam steering
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Metamaterial-based cavity : 
g=400 µm, h=1 mm.

δg=50 µm δg=100 µm

h~λ/30

δg=0 µm

Realization and characterizationRealization and characterization
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Active Metamaterial
 

AntennasActive Metamaterial
 

Antennas
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Active Metamaterial-based Cavity AntennaActive Metamaterial-based Cavity Antenna
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Phase and transmission control.Phase and transmission control.
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h~λ/75

Electronic frequency control of the 
cavity resonant mode

Antenna directivity increase 

E plane H plane

First operating mode: resonance frequency control.First operating mode: resonance frequency control.
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The directivity is improved with the presence of metamaterial

Measured diagram patternMeasured diagram pattern

E-plane (φ
 

= 90°) H-plane (φ
 

= 0°)
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These kind of materials can be applied as spatial filters or 
frequential filters

Can be conformable

Many industrial applications in Telecommunications and 
Aeronautics

But: huge size at the low frequencies

Solution: the use of metamaterials

Conclusions for the controllable photonic crystalsConclusions for the controllable photonic crystals
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Conclusions about the
 

radomeConclusions about the
 

radome

Conclusions:

• Simulations and realization of passive prototypes.
• Simulated switching of 27dB at 10GHz. 
• Measured switching of 24dB at 9.3GHz.
• The switching does not alter the directivity of the antenna.

Perspectives:

• Simulations with active elements represented by an equivalent 
electrical circuit. (PIN diodes and/or photoconductors).
• The realization of active prototypes is underway.
• Test of the active structure in a real aeronautical radome

 
(ATR 42).
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Conclusions on metamaterial
 

+ antennaConclusions on metamaterial
 

+ antenna

Conformal active antenna.

Passive adjustable steering beam subwavelength
 cavity antenna.

Antenna directivity enhancement and compactness 
due to the composite metamaterial

 
PRS based cavity

Active antenna:
1st mode: Electronic frequency control of the cavity 
resonance.
2nd mode: Electronic steering beam subwavelength

 antenna.

Conclusions

Perspectives
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PerspectivesPerspectives
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Many thanks for your attention!Many thanks for your attention!
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•Transmission of a planar EBG structure made of metallic wires incorporating variable resistors.
•The red arrows show the evolution of the allowed and forbidden frequency bands when the 

values of the resistors are reduced.

Active EBG structures with variable resistors.Active EBG structures with variable resistors.

3 layers of metallic wires 
with variable resistors.
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Simulation’s processSimulation’s process

Rectangular TE port

Rectangular TE port

Electric wallMagnetic wall

Meshing
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Spherical and controllable radome
 1st

 
prototype and measurements

 

Spherical and controllable radome
 1st

 
prototype and measurements
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