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Repulsive Casimir forces with finite-thickness slabs
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We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness
effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness
magnetic slab with or without substrate. For no substrate, the large distance d dependence of the force is repulsive
and goes as 1/d5; for the Drude metal substrate, a stable equilibrium point appears at an intermediate distance that
can be tuned by the thickness of the slab. We then study the interaction between two identical chiral metamaterial
slabs, with and without substrate. For no substrate, the finite thickness of the slabs D does not significantly
influence the repulsive character of the force at short distances, while the attractive character at large distances
becomes weaker and behaves as 1/d6; for the Drude metal substrate, the finite thickness of the slabs D does not
influence the repulsive force too much at short distances until D = 0.05λ0.
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I. INTRODUCTION

Arising from the quantum fluctuations of the vacuum field,
when two neutral parallel conducting surfaces separated by the
vacuum are very close to each other, they generate an attractive
force between them given by F = − h̄cπ2A

240d4 and called Casimir
force after the founder Casimir.1 The Casimir force becomes
more pronounced if the dimension goes to nanoscale. It will
lead to stiction and adhesion on the surface,2,3 which is a chal-
lenge for flexibly operating the micro-/nanoelectromechanical
system devices. Later, especially recently, people were(are)
pursuing different methods to control the Casimir force so as to
obtain a repulsive force: immersing two objects characterized
by the dielectric permittivities ε1(iξ ) and ε2(iξ ) in a fluid with
ε3(iξ ) [satisfying ε1(iξ ) < ε3(iξ ) < ε2(iξ )],4,5 using a special
geometry,6 an electric (ε > μ) plate together with a magnetic
(μ > ε) plate,7,8 two interacting plates sandwiching a perfect
lens,9 and resorting to strong chirality materials.10,11 Only for
the first two proposals can natural materials be utilized; for
the others, they all need some exotic materials, that is, strong
magnetodielectric response materials,12–14 perfect lens,9 and
strong chiral metamaterials (CMMs).10,11 These materials do
not exist in nature and can only potentially be made artificially.
This type of material is called metamaterial.15 Under current
technologies, the thickness of these metamaterials cannot be
made very large, especially at the optical regime.16,17 The
thickest optical negative index metamaterial so far is only about
half of the operating wavelength.18 What we can obtain is just
a finite-thickness artificial metamaterial slab with or without
a substrate. Therefore, in this paper, we study the behaviors
of the repulsive Casimir forces with finite-thickness effective
medium slabs for two of the aforementioned proposals: with
strong magnetodielectric response materials12–14 and with
strong CMMs.10,11

First, we briefly introduce the extended Lifshitz theory,
which is valid for CMMs as well. Lifshitz19 generalized
the calculation of Casimir force between two semi-infinite
planar and parallel objects, 1 and 2, characterized by

frequency-dependent dielectric functions ε1(ω) and ε2(ω).
Later there was further extension to general bi-anisotropic
media.20–22 The formula for the force or the interaction energy
per unit area can be expressed in terms of the reflection
amplitudes rab

j (j = 1,2),23 at the interface between the
vacuum and the object j , giving the ratio of the reflected
electromagnetic wave of polarization a by the incoming wave
of polarization b. Each a and b stands for either electric (TM
or p) or magnetic (TE or s) waves. The frequency integration
is performed along the imaginary axis by setting ω = iξ . The
interaction energy per unit area is given by

E(d)

A
= h̄

2π

∫ +∞

0
dξ

∫
d2k‖
(2π )2

ln det G, (1)

where G = 1 − R1 · R2e
−2K0d ,

Rj =
∣∣∣∣∣
rss
j r

sp

j

r
ps

j r
pp

j

∣∣∣∣∣ , (2)

and K0 =
√

k2
‖ + ε0μ0ξ

2; ε0 and μ0 are the permittivity and
permeability of free space, and d is the distance between
the two interacting plates. A negative(positive) slope of E(d)
corresponds to a repulsive(attractive) force.

For a finite-thickness isotropic achiral slab j with a semi-
infinite isotropic achiral substrate medium j ′, the reflection
elements are the results of the multiscattering by the finite slab
and written as

rab
j = rab

0j + rab
jj ′e−2Kj dj

1 + rab
0j rab

jj ′e−2Kj dj
, (3)

where dj is the thickness of the slab j , Kj =√
k2

‖ + ε0μ0εrjμrj ξ
2, and εrj and μrj are the relative permit-

tivity and permeability of the medium j . In rab
mn, superscripts

a and b are defined the same way as in Eq. (2) and subscripts
m and n denote that the light is incident from the medium m
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to n. 0 means vacuum. rab
mn are given as24

rss
mn = (μrnKm − μrmKn)/(μrnKm + μrmKn), (4a)

rpp
mn = (εrnKm − εrmKn)/(εrnKm + εrmKn), (4b)

rsp
mn = rps

mn = 0. (4c)

For a finite-thickness isotropic chiral slab j with a semi-
infinite isotropic achiral substrate medium j ′, the nondiagonal
terms, rsp and rps , are nonzero. The total reflection matrix can
be written as25

Rj = R0j + Tj0�j Rjj ′�j [I − Rj0�j Rjj ′�j ]−1T0j , (5)

where I is the unit matrix and

�j =
∣∣∣∣ e

−Kj+dj 0

0 e−Kj−dj

∣∣∣∣ , (6)

where Kj± =
√

k2
‖ + n2

j±(iξ )ξ 2/c2 and nj±(iξ ) =√
εrj (iξ )μrj (iξ ) ± κj (iξ ). εrj (iξ ) and μrj (iξ ) are the

relative permittivity and permeability of the chiral slab j ,
respectively, and κj (iξ ) is the chirality coefficient; c is the
velocity of the light in vacuum. Matrices Rmn and Tmn

are the reflection and transmission matrices at the interface
of the medium m and n. The subscripts m and n still
denote that the incident light is from the medium m to n.
The detailed expressions of these matrices’ elements can
be found in Ref. 26.

II. REPULSIVE CASIMIR FORCES WITH
MAGNETIC SLABS

There are claims, for example, in Ref. 27, that when
metamaterials are made of ordinary materials with a negligible
intrinsic magnetic response, repulsion is impossible at large
distances, but this does not deny the possibility that a param-
agnetic slab and a dielectric slab repel each other. Yannopapas
and his collaborator recently resorted to the magnetic response
of paramagnetic composites and theoretically obtained a
repulsive Casimir force in the micrometer scale.14 Therefore,
by employing a proper magnetic response, it is still possible
to get a repulsive force. Here we characterize the electric and
magnetic response as

ε(iξ ) = 1 + �εω
2
ε

ξ 2 + ω2
ε + γεξ

, (7a)

μ(iξ ) = 1 + �μω2
μ

ξ 2 + ω2
μ + γμξ

, (7b)

where �ε and �μ denote the strengths of the electric permi-
tivity and magnetic permeability, ωε and ωμ are the electric
and magnetic resonance frequencies, and γε and γμ are the
collision frequencies. However, note that a ξ dependence of μ

as in Eq. (7b) is questionable, since in the existing calculations
one obtains that the constant �μ is actually replaced by �μξ 2,
and the 1 by 1 − �μω2

μ; the latter because μ(+∞) → 1.
The magnetic response shown in (7b) is assumed to come
from the parallel alignment of very small ferromagnetic
nanoparticles in an applied magnetic field; therefore, the
magnetic resonance frequency is expected to be lower than the
electric one. We choose the parameters ωε = 10ω0, ωμ = ω0,
and γε = γμ = 0.05ω0, where ω0 is the normalized frequency.

To get a repulsive force, the inequality �μ > �ε should be
satisfied. Here, we choose �μ = 2 and �ε = 1 as an example.
In the following, we calculate the Casimir force between
a semi-infinite Drude metal plate, characterized by ε(iξ ) =
1 + ω2

pl/(ξ 2 + ξγpl), with ωpl = 100ω0 and γpl = 0.05ω0,
and a magnetic slab of finite thickness d2 ≡ D. Two cases
are studied in this paper: (i) with no substrate, as shown in
the inset in Fig. 1(b); and (ii) with a semi-infinite Drude metal
substate as shown by the inset in Fig. 1(d).

A. No substrate

Figures 1(a) and 1(b) show the Casimir interaction energy
per unit area E/A versus k0d between a semi-infinite Drude
metal plate and a finite-thickness magnetic slab with no
substrate. Different curves correspond to different values of
the thickness D of the slab. k0 = 2π/λ0 and λ0 = 2πc/ω0.
These figures show that the Casimir energies exhibit a similar
behavior for slabs of different thicknesses (from D = +∞
to D = 0.01λ0). Indeed, all Casimir energy curves exhibit a
repulsive character for large distances and an attractive one for
small distances. Thus, there is only one energy peak (indicating
an unstable equilibrium point), appearing approximately at
k0d � 0.7 for all thickness D; the strength of this peak is
diminishing as the thickness becomes smaller (especially for
D < 0.1λ0). Figure 1(b) shows that, at large distances, the
d dependence of the Casimir energy changes from 1/d3 (for
infinite thickness, D = +∞) to 1/d4 (for D = 0.01λ0); the
1/d3 dependence is typical for semi-infinite slabs. Similar
d dependence was also found between ordinary media.28 At
small distances, all the Casimir energy curves for different
values of thickness (from D = +∞ to D = 0.1λ0) in Fig. 1(a)
overlap very well. As shown in Fig. 1(b), note that for
D = 10λ0, the energy curve overlaps with the D = +∞ below
k0d = 10. If the thickness D becomes smaller, D = 0.1λ0, the
different energy curves overlap below k0d = 0.1.

B. Drude metal substrate

Figures 1(c) and 1(d) show the Casimir interaction energy
per unit area E/A versus k0d between a semi-infinite Drude
metal plate and a finite magnetic slab with a semi-infinite
Drude metal substrate. Different curves correspond to different
values of the thickness D of the slab. These figures show that
the behaviors of the Casimir interaction energies are different
for different thicknesses of the slabs. If the finite magnetic slab
is very thin (e.g., D � 0.1λ0 in our case), the Casimir force is
attractive for any distance. A very interesting behavior appears
for large (but finite) thicknesses (D � λ0 in our case): At very
large distances d the interaction is attractive (the interaction
energy is negative and decreasing with decreasing d). Figure
1(d) shows that at large distances the d dependence of Casimir
energy is 1/d3 and does not change with the thickness of
the slab. At some distance ds (k0ds � 10 for D = λ0 and
k0ds � 102 for D = 10λ0) the interaction energy reaches a
local minimum (indicating a stable equilibrium distance), and
then the curve increases as d decreases, it crosses the axis at
some point d0 (d0 < ds), and it reaches a maximum at d = du

(at du we have an unstable equilibrium distance); du seems
to be about the same for all thicknesses D � λ0. For d < du
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FIG. 1. (Color online) Casimir interaction energy per unit area E(d)/A (in units of hck3
0) versus k0d between a semi-infinite Drude metal

plate and a finite magnetic slab (a,b) without substrate and (c,d) with Drude metal substrate. (b,d) Insets: schematics depicting the arrangements
of the slabs or substrates. Curves correspond to different values of the thickness D of the slab. (a,c) Linear-log plot; (b,d) log-log plot.
(c) Insets: magnifications of the regions around k0d � 10 and k0d � 102.

the energy curve decreases with decreasing d (indicating an
attractive Casimir force) and crosses the axis at a distance d ′

0,
which seems to be common for all D � λ0. The points d0 and
d ′

0 are shown as sharp dips in the log-log plot [Fig. 1(d)]. It
seems that d0 and ds tend to infinity as D → +∞.

The appearance of an equilibrium point at the distance d =
ds is of great importance: first, because it can be tuned by
the thickness D; second, because its magnitude can be larger
than the wavelength and/or the size of the unit cell of the
magnetic metamaterial, and consequently, it is in the range
of validity of the effective medium approximation (EFA) on
which Eqs. (1)–(7b) are based (d � λ0,D), for example, for
λ0 = 700 nm and D = 7 μm, ds � 1 μm.

III. REPULSIVE CASIMIR FORCES WITH CHIRAL SLABS

Repulsive Casimir force was also found to be realized by
using CMMs if the chirality is strong enough.10,11 Here, we
study the repulsive Casimir force between two finite-thickness
CMM slabs, with and without the Drude metal substrate. The
optical parameters of CMMs are characterized by11

ε(iξ ) = 1 + �εω
2
ε

ξ 2 + ω2
ε + γεξ

, (8a)

μ(iξ ) = 1 + �μ − �μξ 2

ξ 2 + ω2
μ + γμξ

, (8b)

κ(iξ ) = i�κξ

ξ 2 + ω2
κ + γκξ

, (8c)

where �κ denotes the strength of the chirality resonance,
ωκ is the resonance frequency of chiral structure, and γκ is
the collision frequency. Usually, the electric, magnetic, and
chirality resonances are at the same frequency, therefore, we
set ωε = ωμ = ωκ = ω0 and γε = γμ = γκ = 0.05ω0. To get
a repulsive force, �κ should be large enough. Here, �ε = 1,
�μ = 0.001, and �κ = 0.7, that is, large enough for repulsive
forces to appear. The two slabs are identical with the same
parameters and substrate as shown by the insets in Figs. 2(b)
and 2(d). Then we still consider two cases: (i) with no substrate,
as shown by the inset in Fig. 2(b); and (ii) with semi-infinite
Drude metal substate as shown by the inset in Fig. 2(d).

A. No substrate

Figures 2(a) and 2(b) show the Casimir interaction energy
between two finite chiral slabs without substrate. Different
curves correspond to different values of the thickness D of the
slabs. We see that no matter how thin (from +∞ to 0.01λ0) the
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FIG. 2. (Color online) Casimir interaction energy per unit area E(d)/A (in units of hck3
0) versus k0d between two identical finite-thickness

CMM slabs (a,b) without substrate and (c,d) with semi-infinite Drude metal substrate. (b,d) Insets: schematics depicting the arrangements of
the slabs or substrates. Curves correspond to different values of the thickness D of the slab. (a,c) Linear-log plot; (b,d) log-log plot.

slabs are, there is only one energy minimum over the whole
distance range (from k0d = 10−3 to 10); that is, in all cases,
the Casimir forces have the same behavior—repulsive force
at small distances and attractive force at large distances—as
shown in Ref. 10. All the stable equilibrium points are at
about k0d = 0.07, where the force changes from attractive
to repulsive. As the dashed vertical line at k0d = 0.064 42
shows, the minimum is at a slightly larger distance for
small D. Note that the minimum appears at a very small
distance d, which makes the validity of the effective medium
theory (EMT) doubtful.29 Figure 2(b) shows, similarly, that at
large distances the d dependence of the Casimir energy for
finite-thickness slabs is 1/d5, as opposed to the 1/d3 between
two semi-infinite media. This d dependence was also found
theoretically between ordinary slabs.28 At small distances, all
the Casimir energies for different thicknesses of the finite slabs
tend to coincide. However, for such short distances, the EMT
is expected to fail and the microstructure effect will dominate
the Casimir repulsion effect.29

B. Drude metal substrate

Figures 2(c) and 2(d) show the Casimir interaction energy
between two identical finite CMM slabs with the Drude metal
substrate. It shows that the behaviors of the Casimir interaction
energy are almost the same if the thickness of the slab is

larger than 0.05λ0. Thinner slabs can still give us the repulsive
force, but at a smaller distance, for example, for D = 0.01λ0,
a repulsive force appears when k0d < 0.035. In other words,
if we want to demonstrate the Casimir force experimentally, a
0.05λ0-thickness slab is enough to observe all the phenomena,
assuming the validity of the EMT, which is doubtful for such
short distances, and no microstructure effect.29

IV. DISCUSSION OF THE VALIDITY OF THE EFFECTIVE
MEDIUM APPROXIMATION

Reference 29 presents a test of the EMA for CMMs (as
also used in this present paper) against numerical calculations
that include the microstructures. A numerical proof was
presented29 that the effective homogeneous approximation
breaks down when the separation distance between the two
plates becomes comparable to the size of the unit cell of the
CMM making the two plates. On the contrary, we have shown
here, and in our previous work,10,11 that chirality makes a
repulsive contribution to the Casimir force. Our proof10,11 is
based on the constitutive equations connecting the Maxwell
vectors; these equations are definitely valid in the regime
a 	 t,a 	 d, where a is the unit cell size of the CMM,
t is the thickness of the plates, and d is the separation
between the plates. By making a small enough, we can satisfy
the double inequality a 	 d 	 d0, where d0 is a separation
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distance, such that the Casimir force is appreciable including
the chiral repulsive contribution to it. We have shown in
the present paper that the combination of plates of finite
thickness with appropriate background substantially facilitates
the satisfaction of the double inequality. Thus we argue that,
because the present article and Ref. 29 consider very different
situations, there is no contradiction whatsoever between the
two, as explained in detail below.

Previously it has been shown10,11 that two semi-infinite,
homogeneous, and isotropic chiral media separated by a finite-
thickness vacuum slab will experience a repulsive Casimir
force between one another—or at least a significant reduction
of the attractive Casimir force—at small separations if the
chirality of the embedding media becomes large enough. It
has been speculated that such chiral materials could at least,
in principle, be implemented by CMMs in the homogeneous
effective medium limit (i.e., where the EMA is valid). The ma-
jor contribution to the Casimir force comes from frequencies
and wave vectors of order of magnitude comparable to that of
the inverse separation of the chiral media; it is in this region
at least where the implementation of the CMMs should allow
EMA.

Now, from here chiral Casimir repulsion has been further
investigated in at least two directions.

(i) Assume an existing CMM structure with a given unit cell
size; the extent to which a repulsive contribution to the Casimir
force can be found (in simulations) for a discreet metamaterial
has been investigated . This is the topic of Ref. 29, where only
a minimal repulsive contribution to the Casimir force was
found at a separation much larger than the unit cell size of the
metamaterial: a regime where also the repulsive contribution in
the analytical calculation of homogeneous semi-infinite media
would become negligible. Not surprisingly, for separations
comparable in order of magnitude to the unit cell size of the
metamaterial, it was determined that the discrete interactions
between the constituents of the metamaterials dominate the
force and no chiral repulsion could be observed because
the metamaterials no longer behave as homogeneous media
at the relevant frequencies and wave vectors. Theoretically,
this problem could be easily corrected by just making sure
the structural length scale, that is, the assumed unit cell
size, is small compared to the separation maintaining the
validity of the EMA at the relevant frequencies and wave
vectors. Of course, in reality this could be a problem because
there are current practical limits to the nanofabrication of
the metamaterial structures (e.g., for repulsion at 1-μm
separation the structural length scale of the metamaterial
should be well below 100 nm to ensure homogeneous effective
medium behavior). The effect of finite thickness was not
studied in Ref. 29: the media were just chosen thick enough to
behave as if they where in fact semi-infinite.

(ii) In this paper we follow a very different direction. We
keep the assumptions of homogeneous isotropic chiral media
and investigate the question how a finite thickness of the
semi-infinite chiral media, terminated by air or metal, will
affect the sign and magnitude of the Casimir force as well as
its scaling with the separation between the media. We consider
the homogeneity and isotropy of the chiral materials as given;
hence, the implementation by any to-be-designed CMM as a
technical problem that can be considered independently. We

believe that this investigation provides valuable information
about the physical interplay between Casimir repulsion and
attraction brought about by these boundary conditions and is
relevant, if an effectively homogeneous metamaterial imple-
mentation is fabricated. So, in summary, the present work and
Ref. 29 do not contradict each other but shed light on the
possibility of a repulsive or reduced-magnitude Casimir force
from different angles.

We believe the approach taken and results presented
here are independent of Ref. 29, not a mere extension of
previous work,10,11 and provide new results for finite-thickness
effective medium slabs. The discussion of scaling of the
Casimir force with separation for the different regimes of
thin versus thick finite chiral media slabs, the observation of
stable equilibrium points, and the discussion of the effects
of different terminations/substrates are unique and important
results presented here.

Finally, the research reported here is in no way “invalidated”
by the results reported in Ref. 29. This previous publication29

only asserts that once the separation between the chiral media
implemented by CMMs becomes comparable to the structural
length scale of the metamaterials, discrete interactions become
dominant and the repulsive Casimir force component expected
form homogeneous chiral media ceases to exist. Theoretically,
the repulsive component to the Casimir force should still exist
at any given separation between the chiral media, if only
the structural length scale is chosen small enough to ensure
validity of the EMA at the relevant frequencies and wave
vectors as explained above.

V. EXPLANATION

Here, we give a physical explanation regarding the Casimir
force behaviors shown above: For large distances, the main
contribution to the Casimir force comes from the frequencies
ξ < c/d.12 Since c/d is small, the main contribution region
comes from low frequencies. For the low-frequency waves, the
finite thickness of the slab is much less than the wavelengths;
therefore, the effective optical parameters of the slab/substrate
approach those of the substrate. If the substrate is vacuum,
the effective optical parameters of the finite slab approach
those of the vacuum; therefore, the Casimir energy of the
finite slab with no substrate decreases more rapidly than the
traditional Casimir force between two semi-infinite media.
Therefore, for the Casimir force between a semi-infinite Drude
metal and a finite slab without substrate, the d dependence
for large d is 1/d5; and for the Casimir force between two
identical finite chiral slabs without substrate, the d dependence
is 1/d6. This behavior of the d dependence is the same as
that in ordinary slabs.28 If the substrate is Drude metal, the
effective optical parameters of the finite slab/substrate for
large distances approach those of Drude metal; therefore,
at very large distances, every force approaches that of the
interaction between two semi-infinite Drude metal media,
that is, it is always an attractive force at large distance. For
short distances, c/d is large. The main contribution region
will come from high frequencies (short wavelengths). The
influence of the substrate on the finite slab will be small.
Therefore, for short distances the slab/substrate system tends to
behave as a semi-infinite slab. The interesting behavior appears
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at intermediate distances for the Drude/magnetic slab/Drude
system [see Figs. 1(c) and 1(d)], where the repulsive character
of the Drude/slab subsystem competes with the attractive
subsystem Drude/Drude. That is why the magnetic slab with
a Drude metal substrate can give us the equilibrium point at
the intermediate distance. We repeat that for short distances,
c/d is large. Hence, the influence of the substrate on the finite
slab will be small. Therefore, the finite slab can be considered
as a semi-infinite object. As a result, every curve goes to the
same value at very small distances. A similar conclusion was
given in Ref. 30. An equilibrium point behavior similar to that
shown in the inset in Fig. 1(c) can also be obtained between two
dielectric slabs, ε1(iξ ) and ε2(iξ ), sandwiching another liquid
ε3(iξ ) and satisfying the condition ε1(iξ ) < ε3(iξ ) < ε2(iξ ).
For the case of two chiral slabs without substrate, the attractive
contribution for large distances (i.e., for low frequencies) is
smaller than that of semi-infinite chiral media due to the
vacuum substrate, while the repulsive forces at short distances,
that is, for high frequencies, almost do not depend on the
thickness D; therefore, it is easier to obtain the repulsive
force when the latter appears at short distances. Thus for
the force between two chiral slabs with Drude metal sub-
strate, because the repulsive contribution comes at very short
distances, that is, for high frequencies, the finite-thickness
slab does not influence the repulsive Casimir force too much
until D = 0.05λ0.

VI. CONCLUSION

In this paper, we used the extended Lifshitz theory to
study the repulsive Casimir force between a semi-infinite
Drude metal and a finite magnetic slab with or without
substrate. For no substrate, we found that at large distances, the
d dependence of the force is 1/d5; for the Drude metal
substrate, an equilibrium point appears at intermediate dis-
tances. The thickness of the slab can tune the position of
this equilibrium point. We also study the repulsive Casimir
force between two identical chiral slabs, with and without
substrate. For no substrate, we found that the finite slabs repel
each other at short distances, while for large distances the
d dependence of the attractive force is 1/d6. For the Drude
metal substrate, we found that the finite thickness of the slab
D does not influence the repulsive force at short distances
too much until D = 0.05λ0. These results are very useful
to the experimentalists who are obliged to work with finite
slabs.
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