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A model to simulate the phenomenon of random lasing is presented. It couples Maxwell’s equations
with the rate equations of electronic population in a disordered system. Finite difference time domain
methods are used to obtain the field pattern and the spectra of localized lasing modes inside the system.
A critical pumping rate P¢ exists for the appearance of the lasing peaks. The number of lasing modes
increases with the pumping rate and the length of the system. There is a lasing mode repulsion. This
property leads to a saturation of the number of modes for a given size system and a relation between the

localization length ¢ and average mode length L,

PACS numbers: 42.55.—f, 05.40.—a, 42.25.Bs, 72.15.Rn

The interplay of localization and amplification is an old
and interesting topic in physics research [1]. With promis-
ing properties, mirrorless random laser systems are widely
studied [2-7] both experimentally and theoreticaly.
Recently, new observations [2] of laserlike emission were
reported and showed new interesting properties of ampli-
fying media with strong randomness. First, sharp lasing
peaks appear when the gain or the length of the system
is over a well-defined threshold value. Although a drastic
spectral narrowing has been previously observed [3],
discrete lasing modes were missing. Second, more peaks
appear when the gain or the system size further increases
over the threshold. Third, the spectra of the lasing system
is direction dependent, not isotropic. To fully explain such
an unusual behavior of stimulated emission in random
systems with gain, we are in need of new theoretical ideas.

Based on the time-dependent diffusion equation, earlier
work of Letokhov [1] predicted the possibility of lasing in
arandom system and Zyuzin [5] discussed the fluctuation
properties near the lasing threshold. Recently, John and
Pang [6] studied the random lasing system by combining
the electron number equations of energy levels with the
diffusion equation. By using the diffusion approach, it is
not possible to explain the lasing peaks observed in the re-
cent experiments [2] in both semiconductor powders and
in organic dyes-doped gel films. Another approach which
is based on the time-independent wave equations for the
random gain media can go beyond the diffusive descrip-
tion [7—11], but is useful only in determining the lasing
threshold [12]. To fully understand the random lasing sys-
tem, we have to deal with time-dependent wave equations
in random systems by coupling Maxwell’ s equations with
the rate equations of electron population within a semiclas-
sical [13,14] theory.

In this paper, we introduce a model by combining these
semiclassical laser theories with Maxwell’s equations. By
incorporating a well-established FDTD (finite-difference
time-domain) [15] method we calculate the wave propa-
gation in random media with gain. Because this model
couples electronic number equations at different levels
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with field equations, the amplification is nonlinear and
saturated, so stable state solutions can be obtained after a
long relaxation time. The advantages of this FDTD model
are obvious, since one can follow the evolution of the elec-
tric field and electron numbersinside the system. From the
field distribution inside the system, one can clearly distin-
guish the localized modes from the extended ones. One
can also examine the time dependence of the electric field
inside and just outside the system. Then after Fourier trans-
formation, the emission spectra and the modes inside the
system can be obtained.

Our system is essentialy a one-dimensiona simplifi-
cation of the real experiments [2,3]. It consists of many
dielectric layers of real dielectric constant of fixed thick-
ness, sandwiched between two surfaces, with the spacing
between the dielectric layers filled with gain media (such
as the solution of dye molecules). The distance between
the neighboring dielectric layers is assumed to be a ran-
dom variable. The overall length of the systemis L.

Our results can be summarized as follows: (i) As
expected for periodic and short (L < £, € isthelocaliza
tion length) random system, an extended mode dominates
the field and the spectra. (ii) For either strong disorder or
thelong (L > ¢) system, we obtain alow threshold value
for lasing. By increasing the length or the gain more peaks
appear in the spectra. By examining the field distribution
inside the system, one can clearly see that these lasing
peaks are coming from localized modes. (iii) When the
gain or the pumping intensity increases even further, the
number of lasing modes do not increase further, but satu-
rate to a constant value, which is proportional to the length
of system for a given randomness. And (iv) the emission
spectra are not the same for different output directions
which show that the emission is not isotropic. These
findings are in agreement with recent experiments [2] and
also make new predictions. We want to point out that our
model is 1D unlike the experiments which are done in 3D
samples. However, the experimental results are strongly
dependent on the shape of the excitation area [2]. Sharp
lasing peaks are observed when the excitation area is
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stripelike, which is close to our 1D model. In the 1D case
we expect the number of lasing modes to be less than the
3D case but much sharper. Thisis due to the fact that the
modes are more localized and there are fewer propagating
paths in 1D.

The binary layers of the system are made of dielec-
tric materials with dielectric constants of ¢, = g7 and
g2 = 4 X gy, respectively. Thethickness of thefirst layer,
which simulates the gain medium, is a random variable
a, = ap(l + Wy)whereay = 300 nm, W isthe strength
of randomness, and y is a random vaue in the range
[—0.5,0.5]. The thickness of the second layer, which
simulates the scatterers, is a constant » = 180 nm. In
the layers representing the gain medium, there is a four-
level electronic material mixed inside. An external mecha-
nism pumps electrons from ground level (Ny) to third
level (N3) at a certain pumping rate P,, which is propor-
tional to the pumping intensity in experiments. After a
short lifetime 73, €lectrons can nonradiative transfer to
the second level (N,). The second level (N,) and the first
level (N,) are called the upper and the lower lasing lev-
els. Electrons can be transferred from the upper to the
lower level by both spontaneous and stimulated emission.
At last, electrons can nonradiative transfer from the first
level (N;) back to the ground level (Ny). The lifetimes
and energies of upper and lower lasing levels are 731, E;
and 79, E, respectively. The center frequency of radia-
tion is w, = (E» — Ey)/h, which is chosen to be equal
to 27 X 6 - 10'* Hz. Based on real laser dyes [16], the
parameters 73,, 721, and 7o arechosentobe1 X 10713 s
1 X10%s and1 X 107" s. The total electron density
N§ = Ny + N; + N, + N; and the pump rate P, arethe
controlled variables according to the experiments [2].

The time-dependent Maxwell equations are given by
VXE=-0B/ot and V X H = gdE/ot + oP/dt,
where B = uH and P is the electric polarization density
from which the amplification or gain can be obtained.
Following the single electron case, one can show [14]
that the polarization density P(x,t) in the presence of an
electric field obeys the following equation of motion:

d*P(1) + Aw dP(t) 02P(1) =

e « vem AN (DE(t),

(D)

where Aw, = 1/75 + 2/T, is the full width at half
maximum linewidth of the atomic transition. 7, is the
mean time between dephasing events which is taken to
be 2.18 X 107%'s, AN(x,7) = Ni(x,t) — Na(x,t) and
= 1/7-21 isthe real decay rate of the second level, and

- “"C; is the classical rate. It is easy to derive

m 6
[14] from Eq (1) that the amplification line shape is
Lorentzian and homogeneously broadened. Equation (1)
can be thought of as a quantum mechanically correct
equation for the induced polarization density P(x, ) in a

real atomic system.

The equations giving the number of electrons on every
level can be expressed as follows:

dNs(x,t Ni(x,t
L — P,No(x,t) _ M

dt 732
dN>(x,t) _ Ni(x,t) | E(x,t) dP(x,t)  Na(x,1)

dt T3 how, dt 721

2

dNi(x,t) _ Na(x,t)  E(x,t) dP(x,t)  Nilx,1)

dt 1 how, dt T10
dNo(x,t Ni(x,t

ox, 1) _ Nilx,1) P No(x.1).

dt T10
where E(x 1) dp(x ) istheinduced radiation rate or excitation

a)

rate dependi ng on its sign.

To excite the system, we must introduce sources into
the system [17]. To simulate the real laser system, we in-
troduce sources homogeneously distributed in the system
to simulate the spontaneous emission. We make sure that
the distance between the two sources L, is smaller than
the localization length é. Each source generates waves
of a Lorentzian frequency distribution centered around
w,, With its amplitude depending on N,. In real lasers,
the spontaneous emission is the most fundamental noise
[13,14], but generally submerged in other technical noises
which are much larger. In our system, the simulated spon-
taneous emission is the only noise present, and is treated
self-consistently. This is the reason for the small back-
ground in the emission spectra shown below.

There are two leads, both with awidth of 300 nm, at the
right and the left sides of the system, and at the end of the
leads we use the Liao method [15] to impose absorbing-
boundary conditions (ABC). Inthe FDTD calculation, we
discretize both the space and time. The discrete time step
and space steps are chosen to be 1077 sand 107° m, re-
spectively. In the FDTD scheme the boundary conditions
for the field at the interfaces between the two media are
automatically satisfied, since we are numerically solving
Maxwell’ seguations. So for agiven random configuration,
based on the previous time steps we can calcul ate the next
time step (n + 1 step) values. First we obtainthe n + 1
time step of the electric polarization density P by using
Eqg. (1), thenthe n + 1 step of the electric and magnetic
fields are obtained by Maxwell’s equations, and at last the
n + 1 step of the electron numbers at each level are cal-
culated by Eq. (2). The initial state is that all electrons
are on the ground state, so there is no field, no polariza-
tion, and no spontaneous emission. Then the electrons are
pumped and the system begins to evolve according to the
above equations.

We have performed numerical ssimulations for periodic
and random systems. First, for all the systems, a well-
defined lasing threshold exists. As expected, when the
randomness becomes stronger, the threshold intensity
decreases because localization effects make the paths of
waves propagating inside the gain medium much longer.
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For aperiodic or short (L < ¢) random system, gener-
aly only one mode dominates the whole system even if the
gain increases far above the threshold. This is due to the
fact that the first mode can extend in the whole system, and
its strong electric field can force ailmost al the electrons of
the upper level N, to jump down to the N, level quickly
by stimulated emission. This leaves very few upper elec-
trons for stimulated emission of the other modes. In other
words, al the other modes are suppressed by the first las-
ing mode even though their threshold values are only a
little bit smaller than the first one. This phenomenon also
exists in common homogeneously broadening lasers [13].

For long (L > ¢) random systems, richer behavior is
observed. First we find that al the lasing modes are lo-
calized and stable around their localization centers after a
long time. Each mode has its own specific frequency and
corresponds to a peak in the spectrum inside the system.
When the gain increases beyond the threshold, the electric
field pattern (see Fig. 1a) shows that more localized las-
ing modes appear in the system and the spectrum intensity
I, inside the system (see Fig. 1d) gives more sharp peaks
just as observed in the experiments [2]. Notice that N, is
small (Fig. 2b) in the position where the amplitude of the
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FIG. 1. (a) The amplitude of the electric field Ag in units of
V /m vsthe position L in the system, (b) the density of electrons
in the N,(N,) in units of 1/m? levels vs L, (C) Ag in units of
V/m average over length vs (r — 1;)/ty, where 1y = 2.78 X
1077 sand t;, =7 X 107'% s, and (d) the spectra I, in units
of V/m vs the wavelength for a 80 cell system with W = 1.4,
N§ =55 X% 602X 102 m3,and P, =1 X 107 s7.
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eectric field Ag (Fig. 1a) is large, and this is because of
the stimulated emission. In Fig. 1c, the time dependence
of the averaged Ag over al the spatial pointsis shown. I,
is obtained by taking the Fourier transform of the spatial
averaged Ag(r).

The exact position of the lasing peaks depends on the
random configuration. Notice that the lasing peaks are
much narrower than the experimental ones[2]. Thisis due
to the 1D nature of our model. In the present case only
two escaping channels exist, so it's more difficult for the
wave to get out from the system which has a higher quality
factor. When the gain is really big, we find the number of
lasing modes will not increase any more, so a saturated
number N,, of lasing modes exists for the long random
system. In Fig. 2, we plot the spectral intensity vs the
wavelength for different input transitions (or equivalently
pumping rates). Notice these results are in qualitative
agreement with the experimental results shown in Fig. 2
of the paper of Cao et al. [2].

These multilasing peaks and the saturated-mode-number
phenomena are due to the interplay between localization
and amplification. Localization makes the lasing mode
strong around its localization center and exponentially
small away from its center so that it only suppresses the
modes in this area by reducing N,. When a mode lases,
only those modes which are far enough from this mode
can lase afterwards. So more than one mode can appear
for a long system and each mode seems to repel each
other. Because every lasing mode dominates a certain area
and is separated from other modes, only a limited number
of lasing modes can exist for a finite long system even
in the case of large amplification. We therefore expect
that the number of surviving lasing modes N,, should
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FIG. 2. The spectra intensity in arbitrary units vs the wave-
length for the 80 cell system with W = 1.4 for different pump-
ing rates P,. P, inunitsof s! is(a) 10*, (b) 10, and (c) 10'.
To be able to plot al the curves in one figure, we have mul-
tiplied (a), (b), and (c) by 1073, 107°, and 108, respectively,
and shifted them apart.
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FIG. 3. The number of modes N,, vs the length of the system
L/d, where d = {a,) + b = 480 nm is the size of the cell.
Also the average mode length L,,/d vs the localization length
10 X &/d for different disorder strength W for a 320 cell sys-
tem. P, = 1 X 10° and the rest of the parameters are the same
as the ones of Fig. 1.

be proportional to the length of the system L when the
amplification is very large. Since the “mode-repulsion”
property is coming from the localization of the modes,
we expect that the average mode length L,, = L/N,,
should be proportiona to localization length ¢ too. In
Fig. 3, we plot N,, vs the length of the systems L when
we increase the length from 80 cells to 320 cells and keep
al other parameters the same. In Fig. 3, we aso plot
the average mode length L,, vs the localization length ¢
when we change the random strength W for a 320 cell
system. The locdlization lengths are calculated using
the transfer-matrix method by averaging 10000 random
configurations. These results confirm that indeed N,,, « L
and L,, o« &. It will bevery interesting if these predictions
can be checked experimentally.

The emission spectra at the right and left side of the
system are quite different. This can be explained from the
field pattern shown in Fig. 1a. Notice the localized modes
are not similar at both sides of the system. This is the
reason for this difference in the output spectrum.

The nonisotropic output spectra of real 3D experiments
[2] might be explained by assuming that every localized
mode hasitsintrinsic direction, strength, and position, and
the detected output spectra in experiments at different di-
rections are the overlap of contributions from many modes.
So generally they should be different.

In summary, by using a FDTD method we constructed a
random lasing model to study the interplay of localization
and amplification. Unlike the time-independent models,
the present formulation calculates the field evolution be-
yond the threshold amplification. This model allows us
to obtain the field pattern and spectra of localized lasing

modes inside the system. For random systems, we can
explain the multipeaks and the nonisotropic properties in
the emission spectra, seen experimentaly. Our numeri-
cal results predict the mode-repulsion property, the lasing-
mode saturated number, and average mode length. We
also observed the exchange of energy between the local-
ized modes which is much different from common lasers
and this is essentia for further research of mode competi-
tion and evolution in random laser.
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