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Air Bubbles in Water: A Strongly Multiple Scattering Medium for Acoustic Waves
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Using a newly developed multiple scattering scheme, we calculate band structure and transmission
properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects
are responsible for the creation of wide gaps in the transmission even in the presence of strong positional
and size disorder.

PACS numbers: 62.60.+v, 43.20.+g, 43.35.+d, 43.40.+s
In this paper we present results obtained by employing
a novel method [1] which fully incorporates the multiple
scattering effects, and is applicable to acoustic wave propa-
gation in media consisting of nonoverlapping spherical
scatterers embedded in a fluid. The method, based on
the well known (to solid state physicists) Korringa-Kohn-
Rostoker (KKR) approach [2,3], is capable of calculating
(a) the sound transmission through a finite cluster of regu-
larly or irregularly placed scatterers (up to a few hundred
of them), and (b) the band structures (i.e., the v vs k re-
lation) for an infinite periodic lattice of scatterers.

Acoustic and elastic waves in complex media have at-
tracted recently a wider interest [4–16] because of (a) the
so-called phononic band gap crystals (i.e., periodic struc-
tures exhibiting gaps in their acoustic spectra) and (b) the
opportunity they offer to study under diverse and controlled
conditions the major problem of wave localization arising
as a result of multiple scattering. The latter is expected to
be important in bubbly liquids, because the single bubble
is a strong sound scatterer exhibiting a huge s-wave reso-
nance, the so-called Minnaert resonance, at a frequency
vo such that vors�ci �

p
3ri�ro; rs is the bubble ra-

dius, ci , ri and co , ro are the sound velocity and the den-
sity of the gas inside and the liquid outside the bubble,
respectively [17].

Besides the resonance, the isotropic scattering creates
an almost uniform and large background in the scattering
cross section, s (s�pr2

s � 4 for 0.05 & vrs�co & 1),
interrupted by some very sharp higher frequency reso-
nances (the first two at vrs�co � 0.48 and vrs�co �
0.77). As has been pointed out [10,13] such a frequency
dependence of the single scatterer cross section provides
ideal conditions for the appearance of wide spectral (den-
sity of states or propagation) gaps in a multiple scattering
environment, because in the frequency region between
resonances neither the host material allows propagation,
nor coherent hopping to neighboring scatterers utilizing
the resonances can take place. Notice that the mean free
path, l, at the resonance, as obtained from the approximate
formula l � 1�ns (where n is the average concentration
of the bubbles), equals to the average nearest neighbor dis-
tance already at an air volume fraction, f, of the order of
0031-9007�00�84(26)�6050(4)$15.00
0.0002. This means that multiple scattering effects are im-
portant even for f as low as 0.0002. Thus, acoustic waves
in bubbly liquids (especially water), in addition to being
very important per se [17], provide an almost ideal case
for examining in detail the localization question. Up to
now the extensive studies of bubbly water (or other bubbly
liquids) have been analyzed in the framework of single
scattering [17]. Only recently Ruffa [18], employing a
finite element analysis, has calculated among other quan-
tities the low frequency dependence (for v , vo) of
sound velocity along the [100] direction of an infinite pe-
riodic simple cubic arrangement of bubbles in water; also
Kushwaha et al. [19], employing the plane wave method
[20], and assuming again an infinite medium with periodic
placement of the bubbles (in fcc, bcc, and sc lattices), cal-
culated the v vs k relation for the first thirty lowest bands.

We applied first our multiple scattering method to sound
waves in infinite periodic bubbly water in order to check
our results against those of Refs. [18] and [19]. In Fig. 1(a)
we show the first nine bands for a simple cubic arrange-
ment of bubbles with volume fraction f � 0.1. The lowest
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FIG. 1. (a): Dispersion relation along the MXGR directions
for a sc periodic composite consisting of air bubbles (of radius
rs) in water. v is the frequency and co is the wave velocity
in the water. Air volume fraction f � 10%. (b): Generalized
transmission coefficient through a finite cluster consisting of
147 air bubbles in water in ordered (solid line) or random (dotted
line) arrangement and volume fraction f � 10%. (c): The same
as in panel (b) but with the multiple scattering switched off.
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band is essentially confined between v � 0 and v � vo .
The next three very flat and degenerate looking bands
[19] at vrs�co � 0.48 arise from the p-type sharp scat-
tering resonance (which can be viewed as approximate
single bubble eigenmodes) through a tight-binding proce-
dure [3]. The flatness of these bands is due to the fact
that these approximate eigenmodes are confined mainly
inside the bubble with a minute escape to the surround-
ing liquid. This is reflected in the very small width of
the single bubble resonance indicating extremely weak ra-
diation. The next five [19] bands at vrs�co � 0.77 arise
from the d-type approximate eigenmodes and their flat-
ness is due again to the minute escape of the field outside
each bubble and the subsequent very weak coupling be-
tween neighboring bubbles. Our results in Fig. 1(a) are
in agreement with those of Ref. [19] and they verify the
impressive feature that the bubbly water with f � 0.1 is
essentially impenetrable to sound waves of frequency v

in the range vo & v & 60vo (with the exception of very
narrow passing bands). From the lowest band (of v & vo)
one can easily obtain both the phase velocity, c � v�k,
and the group velocity, cg � dv�dk. It should be pointed
out that the long wavelength sound velocity can be ob-
tained very easily and accurately by employing mean field
theories, more specifically the so-called coherent potential
approximation (CPA) [14,21]. The CPA replaces the ac-
tual random bubbly water by a uniform effective medium
characterized by bulk modulus Be and density re so that
c �

p
Be�re. These effective parameters are obtained by

setting equal to zero the average scattering cross section re-
sulting from the local replacement of the effective medium
by actual configurations of the inhomogeneous system.
The long wavelength limit of Be coincides with the well-
known Wood’s law [14], B21

e � fB21
i 1 �1 2 f�B21

o (Bi

and Bo are the bulk moduli of the bubbles and the fluid,
respectively). The long wavelength limit of re depends on
which local actual configurations we use. We found that
it is imperative to respect the topology and consider an air
bubble surrounded by a shell of water, i.e., to employ the
so-called “coated CPA” [14,21], which led to the follow-
ing expression for the re: re � ro� f�ri 2 ro� 1 2ri 1

ro���2f�ro 2 ri� 1 2ri 1 ro�. Thus, the coated CPA
gave c � 468, 43, and 35 m�s for the Silberman and Hall
values of f � 5.84 3 1024, f � 0.1, and f � 0.2, re-
spectively [18]. This dramatic slowdown of the sound
propagation in bubbly water is due to the fact that the
restoring pressure is mainly determined by the bulk modu-
lus of air, while the inertia is determined mainly by the den-
sity of water, as shown from the above formulas for Be and
re. In Fig. 2 we plot our results for c vs f which are in
agreement with each other and with the experimental and
computational data presented in Ref. [18], thus reinforcing
confidence in our multiple scattering approach. The van-
ishing of the group velocity, dv�dk, for v � vo can be
attributed to the strong resonance at v � vo and the re-
lated long trapping of the wave around each bubble.
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FIG. 2. Long wavelength sound velocity, c, for a system con-
sisting of air bubbles in water as a function of the bubbles vol-
ume fraction. The opaque circles show the phase velocity for
a sc lattice and the open circles for a fcc lattice. The dashed
line shows a corresponding “coated CPA” result for a random
system. The inset graph is an enlargement of the low volume
fraction regime. co is the wave velocity in the water. For com-
parison, the sound speed in air containing suspended drops of
water is shown (squares).

We turn now to novel results made possible by our
method which takes fully into account the multiple scatter-
ing effects in a finite cluster of nonoverlapping spherical
bubbles.

We have considered first a finite cluster of 7 3 7 3

3 � 147 periodically placed (in sc lattice) air bubbles em-
bedded in an infinite mass of water. A point source emit-
ting a spherical wave was placed very close to the 7 3 7
face of the cluster. The energy flux vector, J, was calcu-
lated behind the cluster in the far field region and along the
line perpendicular to the 7 3 7 faces and passing through
its center (and through the point source). Assuming a time
dependence of the form e2ivt , J is given in terms of the
pressure field, p�r�, by the formula

J � 2
1

2rv
Im�p��=p�� . (1)

Following Ref. [22], we define a generalized transmission
coefficient, T , as the ratio J�J0 of the energy flux with and
without the cluster of air bubbles.

We repeated the above calculation by placing the
147 bubbles in a random but not overlapping way and
within the boundaries of the same imaginary rectangular
box as in the case above. We allowed also the radius of
each bubble to be random ranging from 0.75rs to 1.25rs.
In Fig. 1(b) we show results for T vs v for the ordered
and the random (with common radius) cases. The ordered
results are consistent with the band structure since the
T � 0 frequency regions practically coincide with the
gaps. This shows that three finite size layers of bubbles
approximate acceptably the infinite periodic system. Dis-
ordering the position of the bubbles does not change the
results appreciably showing that a relatively thin wall
of randomly placed bubbles with f � 0.1 is enough to
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inhibit sound propagation except at low frequencies (v &

vo) and possibly at very narrow windows at vrs�co �
0.48, 0.77, etc. In the panel of Fig. 1(c) we recalculated
the transmission T neglecting altogether the multiple scat-
tering effects. The difference from panel 1(b) is dramatic
both in size and in the width around the main resonance.
This proves how important the interference of multiple
scattered waves is.

The most significant and novel results we obtained are
shown in the panel of Fig. 3(b) corresponding to f � 0.01.
We see again in this case a narrow acoustic band extending
a little beyond the frequency of the strong resonance which
gives rise to the maximum transmission. Then a wide gap
follows [Fig. 3(a)] which corresponds to T � 0 transmis-
sion for both the ordered and disordered cases [Fig. 3(b)].
It is impressive that this gap survives almost intact the po-
sitional disorder. When, in addition, we allowed the radius
of each bubble to vary randomly between 0.75 to 1.25 of
rs the gap still survived although it was reduced by about
20% mostly from the upper side [see Fig. 3(b)]. Note that
this gap is due entirely to multiple scattering since it disap-
pears when multiple scattering is switched off [Fig. 3(c)].
Above the gap, a complex wide band appears dominated
by branches with an v�k slope close to co ; this shows
that the propagation for vrs�co * 0.2 takes place mostly
through the water with the air bubbles playing a less impor-
tant role except that of superimposing (with very weak hy-
bridization) very flat bands at the frequencies of the higher
resonances.

In the case of 1% volume fraction there are noticeable
differences in the transmission through the ordered and the
disordered clusters: There is higher transmission in the
disordered case than in the ordered one (i) at the upper part
of the gap due probably to a tail of localized eigenstates,
and (ii) around Bragg points, where the disorder tends to
diminish destructive interference. In the rest of the spec-
trum the disorder decreases the transmission as expected.

In the present treatment we have omitted surface tension,
thermal and viscous absorption, and the nonlinear effects.
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FIG. 3. The same as in Fig. 1, but with air volume fraction
f � 1%, and with both positional (P) and bubble radius (R)
disorder (dotted line) in panels (b) and (c).
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Surface tension becomes important only for very small size
bubbles (rs & 0.1 mm); thermal and viscous absorption
are important for small bubbles but tend to become in-
significant for larger bubbles (rs * 1 cm) [17]. In any case
these effects can be easily incorporated within our multiple
scattering scheme. Nonlinear effects on the other hand
pose severe difficulties, however, they are less important
in a multiple bubble system than in a single bubble [18].

In conclusion, by applying our multiple scattering
scheme we were able to obtain, among other results, the
sound transmission through a cloud of randomly placed
and of random size spherical bubbles in liquids. The
spectral gaps are entirely due to multiple scattering and
surprisingly survive in the presence of disorder. These
results, besides their relevance to the water acoustic com-
munity, have wider interest due to their direct connection
to the fundamental problem of Anderson localization.
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