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We study elastic band gaps in nonhomogeneous periodic finite media. The finite-difference time-
domain method is used for the first time in the field of elastic band-gap materials. It is used to interpret
experimental data for two-dimensional systems consisting of cylinders of fluids (Hg, air, and oil) inserted
periodicaly in afinite slab of aluminum host. The method provides good convergence, can be applied
to realistic finite composite slabs, even to composites with a huge contrast in the elastic parameters of
their components, and describes well the experiments.

PACS numbers: 43.20.+g, 43.35.+d, 43.40.+s

The study of propagation of waves in inhomogeneous
mediais a problem of wide interest because of the implica
tionsin technology and the broad view that can be supplied
in understanding a large area of physical problems. Band
structure of electrons in solids [1] has been amply studied
for many years. Many of their properties have been also
mimicked in what is known as photonic band-gap materi-
as [2-5]. Early work [6—8] also explored the propaga
tion of sound and full elastic waves (ELW) by calculating
the band structure of infinite periodic systems with Fourier
transform of the wave equation. Other frequency domain
treatments have been also applied [9]. Experiments on
band gaps [10], surface states, wave guides, and localiza-
tion in defects [11] of elastic media have proved the ample
and versatile possibilities of the elastic systems because
the typical sizes of the inhomogeneities we are referring to
(periodicity in the case of “crystalling” systems) are mil-
limeters. This is very important because it is possible to
generate all kind of complicated structures by just drilling
holes.

Up to now the plane wave (PW) method has been
used for the calculation of elastic band gaps. However,
this approach presents convergence problems for the
full elastic wave equation when liquids are inserted in a
solid host [8]. The reason for the convergence problems
is related to the zero transverse velocity (as well as u
Lamé coefficient) in the liquid. For that reason the
finite Fourier transform of the w does not converge. A
way to solve this problem is to use an imaginary wu,
thereby accounting for fluid viscosity. We have estimated,
however, that the ratios of the imaginary parts of u of
the components in the composites studied are very large
(around 10°%) and therefore the problem may remain,
although it should be given further consideration. Besides,
the PW method calculates the band structure of ELW
propagating in infinitely long periodic systems and its
results can be only indirectly compared with transmission
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measurements in a finite system. In addition, the PW
does not take into account the reflectivity of the waves
a the interface between the periodic medium and the
surrounding homogeneous environment, a phenomenon
that exists for finite samples. A different approach is
then needed. In order to solve these problems we have
developed a code for the temporal integration of incident
wave packets for the full elastic equation. The motivation
for a finite difference time domain (FDTD) method [12]
isclear: It does not present the above mentioned conver-
gence problems (reliability of FDTD schemes depends on
discretization, and our calculations show no convergence
problem for small enough time and space steps satisfying
the necessary stability criteria). It alows us to study
finite systems and to simulate the experiments in the same
way that they are carried out. It provides at any time
the displacement field at every point. The FDTD results
presented here are compared with experiments on two-
dimensiona (2D) systems where Al is used as a host
medium and the inserted fluids are Hg, oil, and air.
This type of sample was previously investigated in
Refs. [10,11]. We proceed first by describing the method
of calculation.

The elastic wave equation in inhomogeneous solids is

given by
0%u’ 1[0 ou' 0 ou' oul
o= — A— )+ —|u + ,
Jt p LOx; ax; ax; ax; ax;
(1)

where u' is the ith component of the displacement vec-
tor u(r), A(r) and u(r) are the Lamé coefficients [13],
and p(r) is the mass density. We study propagation in a
composite medium consisting of identical parallel and in-
finitely long cylinders embedded within a square periodic
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array in ahost material. The system has translational sym-
metry along the axis of the cylinders (z), thus the material
parameters do not depend on the coordinate z. By assum-
ing propagation in the x-y (perpendicular to the cylinders
axes) plane, the wave eguation can split into two indepen-
dent equations [6,7], one for the z component of the field
(u;), and one for the x and y components (i, and u,, re-
spectively). The second one involves both longitudinal and
transverse waves and this is the equation which we study
here:

Puy 9T 0Ty

p = + ; p

?uy 0Ty L 9Ty
ar? ax dy

at? dx ay
2

Toe=(A+2m)duy/ox + Aduy/dy, Tyy=(A+2u)du,/
dy + Adu,/ox, and Ty, = u(du,/dy + ou,/dx). The
longitudinal velocity ¢; and the transverse one ¢, are given
by ¢; = (A + 2u)/p and ¢; = \/u/p.

In this work the wave equations (2) are integrated by
means of a FDTD [12,14] scheme which uses discretiza-
tion of the equations in both the space and the time
domains. It sets appropriate boundary conditions, and
explicitly calculates the evolution of u in the time domain.
More specifically, real space is discretized into a rect-
angular grid where al the variables are defined; «, and
u, are spatialy interlaced by half a grid cell; the elastic
wave equations are approximated by center differences
in both space and time. The computational cell contains
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FIG. 1. Longitudinal field component, u,(x,y,?), as a func-
tion of y at four different times for two narrow Gaussian wave
packets centered at a frequency out of any band gap (left-side
plots) and inside a frequency band gap (right-side plots). Sys-
tem parameters. Hgin Al, f = 0.42, a = 2.73 mm. The black
rectangles represent the slab containing the cylinders, which is
shown more clearly in the small figure inset in the upper right
panel. Time is given in time step units (7, = 2.53 X 1077 9).
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a dlab of the composite medium in its central part. The
slab isfinite along the y direction containing N, cylinders
(see the inset in Fig. 1). Mur's first order absorbing
boundary conditions [12,15] are used at the boundaries of
the computational cell along the x axis. At the boundaries
along the y axis, periodic boundary conditions are used.
This is a good approximation of the experimentaly
studied structure which consists of 15 cylinders along the
x axis. Plane wave packets containing a wide range of
frequencies are launched from the negative y direction and
they are normally incident on the surface of the composite.
The displacement vectors u, and u, are collected as a
function of time at a detection point in the other side of
the composite. By using fast Fourier transform and by
normalizing with the incident wave frequency profile,
we can find the transmission coefficient, and thus the
attenuation, as a function of frequency. In order to cover
a wide range of frequencies (from 0.3 up to 1.5 MH2)
four Gaussian pulses are launched, covering different fre-
guency regimes. It is remarkable the perfect overlapping
of different calculations for common frequency regions.
This fact demonstrates the consistency of our approach.

The filling fraction f of the cylinders in a square
lattice is given by f = 7r?/a®> where r is the radius
of the cylinders and a is the lattice constant. The
relevant parameters for the simulations are the grid
spacings dx and dy, the time step dr, the number of
cylinders in the y direction (¥,), and the amount of time
steps which sets the frequency resolution. Most of the
calculations shown here correspond to dx = dy = a/30,
dt =589 X 107%a/c}!, and N, =3. The cylinder
radius is kept constant (1 mm), and a varies in order to
change the filling ratio. Satisfactory convergence tests
have been carried out, calculating the propagation for
different grid spacings and a different number of cylinders.
(For more details on the application of the FDTD in 2D
elastic binary composites, see Ref. [14].)

Regarding the experimental measurements, samples
consisting of aluminum parallelepipeds of 50 X 40 X
15 mm* (Alplan MEC 7079 T 651) were carefully
drilled al aong their thickness according to a square
arrangement. Mercury, baby oil (p = 0.82 g/cm?), and
air were used to fill the cylindrical holes (r = 1 mm) of
the samples. Care was taken when filling the samples
in order to avoid the appearance of air bubbles between
the liquid and the aluminum walls. Standard vacuum
techniques were used. The acoustic attenuation of the
samples (reduction in power transmission) was measured
using the gain-phase module of a HP 4194 A impedance
gain-phase analyzer. Samples were sandwiched between
the transducers, including two delay lines between each
transducer and the block surface in a pitch-catch arrange-
ment. The wave front impinging the blocks is just in the
near-far field transition where the front can be considered
plane. In all cases pure aluminum blocks with the same
geometry were measured in order to separate the true
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attenuation due to the band structure and the intrinsic
losses. With this technique, the structural attenuation as a
function of frequency was directly obtained.

Figure 1 shows a representative FDTD result for the
ELW propagation in a band-gap material. The system
consists of Hg cylinders in an Al host. Left-hand side
curves correspond to the longitudinal component of u as
a function of space at four different times for a narrow
incident wave packet of frequencies out of any band gap.
Right-hand side curves correspond to a pulse inside the
frequency band gap. Following the sequence in time, we
can see how the pulse outside the gap crosses the slab
(situated in the middle of the computational cell—see
black rectangle in the top panels) without big reflections
(although not with zero reflectivity due to impedance mis-
match between homogeneous host and periodic slab). On
the other hand, the pulse inside the gap is amost fully re-
flected when it reaches the dlab.

Figure 2 presents the transmission coefficients for asys-
tem of Hg cylinders inserted in Al, for four different Hg
filling ratios. Figure 2(d) corresponds to the sample stud-
ied in Fig. 1 and shows two clear gaps. 0.55-0.75 MHz
and 0.87-1.05 MHz, approximately. The filling ratio de-
pendence studied in Fig. 2 shows how the gap width does
not change much for this system. However, as the filling
ratio increases we can notice how the gap gets wider and
how a peak of transmitted amplitude emerges in the mid-
dle, separating two distinct gaps.
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FIG. 2. Transmission coefficient vs frequency for four filling
ratios (/) of Hg cylinders in Al host: (@) f = 0.22, (b) f =
0.28, (c) f = 0.35,and (d) f = 0.42. Indl casesr = 1 mm.

We have carried out extensive calculations for different
materials, different filling ratios, and for both the (100)
and the (110) direction, as well as the corresponding ex-
periments. Next we present some representative theoreti-
cal and experimental results showing the existence and the
size of significant frequency stop bands for the materials
studied and illustrating the validity of the FDTD method
in the investigation of the elastic wave propagation in in-
homogeneous media.

Samples with Hg cylinders are studied aso in Fig. 3.
Attenuation deeps are found experimentally along the
(100) direction for a sample with 42% filling of Hg [see
Fig. 3(a), solid ling] at around (~) 0.75 and 1.0 MHz,
with a 20 dB humplike region (peak) between them.
The FDTD calculation [Fig. 3(a), dashed ling] leads to a
strongly attenuated frequency region at ~0.75—-1.0 MHz,
with the above mentioned peak of transmitted amplitude
centered at ~0.8 MHz. The peak, which is due to a flat
band appearance at thisfilling ratio, is also found for 40%
filling (not shown here), although smaller, reproducing
the trend observed in Fig. 2. The agreement between
theory and experiments is good taking into account the
intrinsic difficulties of the measurements, the FDTD
method error sources, and other factors not considered,
such as friction. Figure 3(b) provides the comparison
between the experimental and the numerical attenuation
for f = 0.4 dong the (110) direction. The experimen-
tal attenuation dip at ~0.55-0.85 MHz is in excellent
agreement with the FDTD result. The experiments and
calculations discussed in connection with this figure prove
the existence of band gaps for the 40% Hg filling sample
at the (100) and (110) directions. Probably it is going for
afull band gap. However, experiments in other directions
are more complicated because of geometry and cutting of
the samples.

In Fig. 4 we show results for samples filled with oil and
air. Figure 4(a) shows the attenuation vs frequency for a
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FIG. 3. Experimental (solid lines) and calculated (dashed
lines) attenuation vs frequency for two samples of Al with
cylinders filled up with Hg. (8 f = 0.42, adong the (100)
direction. (b) f = 0.40, along the (110) direction. The
experimental curve in (b) corrects the previously published
Fig. 1(d) of Ref. [10], that has been reanalyzed and proved not
valid due to sample contamination with air bubbles and oil.
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FIG. 4. Measured (solid lines) and calculated (dashed lines)
attenuation vs frequency for two samples of Al with cylinders
filled up with oil () and air (b). Parameters. f = 0.4, (100)
direction.

sample with a 40% filling of oil, while in Fig. 4(b) the
0il has been replaced by air. The measured attenuation for
the oil dab is somewhat smaller than that of the samples
filled with Hg, while the attenuation for the air sample is
even weaker (although yet significant). Again here, the
essential features of the experimental attenuation versus
frequency curves (solid lines) are reproduced by the FDTD
calculations (dashed lines). For both the Al-oil and the
Al-air case other filling ratios and propagation over the
(110) direction have been also measured and calculated,
with the calculated results aways in good agreement with
the experimental data.

The calculations presented here solve the only physi-
cally meaningful equation for inhomogeneous systems in-
cluding solids, that is, the full elastic wave equation. The
transverse field component plays an essential role in the
propagation that cannot be neglected applying the acous-
tic wave equation for these systems. The application of a
FDTD scheme to integrate the acoustic equation (u = 0)
leads, for the cases studied here, to resultsin full disagree-
ment with the experimental observations [14]. The use of
a FDTD scheme provides areliable tool, necessary to ex-
plain recent experimental data on elastic band gap materi-
als, that displaysthe propagation in time and space of ELW.
Finally, elastic media provide a remarkable test system for
many physical problems which now can also be investi-
gated by the numerical resolution in real space and time of
the full elastic wave equation. This work and the possibil-
ity of carrying out both experiments and cal culations open
up the way to new results in fields like localization due to
disorder, interference, elastic wave guides, etc.
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