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Localized random lasing modes and a path for observing localization
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We demonstrate that a knowledge of the density of states and the eigenstates of a random system without
gain, in conjunction with the frequency profile of the gain, can accurately predict the mode that will lase first.
Its critical pumping rate can also be obtained. It is found that the shape of the wave function of the random
system remains unchanged as gain is introduced. These results were obtained by the time-independent transfer
matrix method and finite-difference time-domain methods in a one-dimensional model. They can also be
analytically understood by generalizing the semiclassical Lamb theory of lasing in random systems. These
findings provide a path for observing the localization of light, such as looking for the mobility edge and
studying the localized states.
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Localization theory and laser theory were both develop
in the 1960s. The propagation of quantum and class
waves in disordered media is well understood@1#, while laser
physics has been well established@2,3# at the same time. It
was always assumed that disorder was detrimental to la
action. However, Letokhov@4# theoretically predicted the
possibility of lasing in a random system, called a ‘‘rando
laser.’’ Only after the experimental observations by Lawan
et al. @5#, were random laser systems studied intensiv
@6–19#. Since then, many experiments have been carried
that showed a drastic spectral narrowing@6# and a narrowing
of the coherent backscattering peak@7#. Recently, additional
experiments@8,9# showed random laser action with sha
lasing peaks. To fully explain such an unusual behavior
stimulated emission in random systems, many theoret
models were constructed. John and Pang@10# studied the
random lasing system by combining the electron num
equations of energy levels with the diffusion equatio
Bergeret al. @11# obtained the spectral and spatial evoluti
of emission from random lasers by using a Monte Ca
simulation. Very recently, Jiang and Soukoulis@12,13#, by
combining a finite-difference time-domain~FDTD! method
with interplay of localization and amplification. They ob
tained@12,13# the field pattern and the spectral peaks of
calized lasing modes inside the system. They were abl
explain@12,13# the multiplepeaks and the nonisotropic pro
erties in the emission spectra, seen experimentally@8,9#. Fi-
nally, the mode repulsion property which gives saturation
the number of lasing modes in a given random laser sys
was predicted. This prediction was checked experiment
by Caoet al. @14#.

One very interesting question that has not been answ
by previous studies is, what is the form of the wave funct
in a random laser system? How does the wave function
random system change as one introduces gain? Does
wave function retain its shape in the presence of gain?
other very interesting point is whether we can predicta pri-
ori which mode will lase first. What will be its emissio
wavelength? If we understand these issues, we will be ab
design random lasers with the desired emission waveleng
In addition, we will be able to use the random laser as a t
to study the localization properties of random systems.
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In this paper, we explore the evolution of the wave fun
tion without and with gain, by the time-independent trans
matrix theory@15–19#, as well as by time-dependent theo
@12,13#. The emission spectra can also be obtained. In a
tion, we can also use the semiclassical theory of lasing@2,3#
to obtain analytical results for the threshold of lasing, as w
as which mode will lase first. This depends on the gain p
file, as well as on the quality factorQ of the modes before
gain is introduced.

Our system is essentially a one-dimensional simplificat
of the real experiments@8,9#. It consists of many dielectric
layers of real dielectric constant«252.56«0 («0 is the di-
electric permeability of free space! of fixed thickness (b0
5100 nm), sandwiched between two surfaces, with
spacing between the dielectric layers assumed to be a
dom variablean5a0(11W), wherea05200 nm andW has
a random value in the range of@20.7,0.7#. We choose a
30-cell random system, as the first system of our numer
study. In Fig. 1~a!, we present the results for the logarithm
the transmission coefficient as a function of frequencyf.
These results were obtained by using the transfer ma
techniques introduced in Ref.@15#. Notice that we have three
typical resonance peaks~denotedP1 , P2, and P3) in the
frequency range of 600 to 660 THz. As one can see from F
1~a!, the linewidths of the three modes are different.P3 has
the smallest linewidth and therefore the largestQ, while P1
has the largest linewidth and therefore the smallestQ. We
have also numerically calculated the wave functions co
sponding to these three peaks and indeed find out that
more localized wave function is the one with the largerQ.
All the results above were obtained for the case without ga

According to the semiclassical theory of laser phys
@2,3#, we generally use a polarization due to gainPgain
5«0x(v)E5«0@x8(v)1 ix9(v)#E to introduce amplifying
medium effects. Bothx8(v) andx9(v) are proportional to
the outside pumping ratePr and can be expressed by th
parameters of the gain material@20#.

To determine which peak will lase first, we can again u
the time-independent transfer matrix method@see Eq.~4! of
Ref. @15## with a frequency-independentgain, which means
the width of the gain profile is very large. It is well unde
stood that time-independent theory@15–19# for random la-
©2002 The American Physical Society01-1
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sers can be used to obtain the threshold for lasing. At thre
old, the transmission coefficientT goes to infinity. In Fig.
1~b!, we plot log10(T) versusx9 for the three peaksP1 , P2,
and P3. In Fig. 1~b!, P3, which has the largestQ, has the
smallest threshold for lasing. So, in the frequenc
independent gain case, the transfer matrix method indic
that the mode with largestQ will lase first. We have also
used the transfer matrix method with a frequency-depend
gain profile, given as a dotted line in Fig. 1~a!. We choose the
central frequency asf a5va/2p5618.56 THz, which is ex-
actly between P1 and P2, and its width to be D f a
5Dva/2p515 THz. In this case, when we increase t
pumping ratePr , we find thatP2 will lase first and thenP1.
So two important conditions determine which mode will la
first; the first is the quality factor of the mode and the seco
is the gain profile. Experimentally, quite often only part
the random medium has been pumped. Then a third fa
comes in, i.e., the spatial overlap of the mode function a
the gain region.

The next issue we address is the shape of the wave f
tion, as one introduces gain. In Fig. 2~a!, we present the
amplitude of the electric field versus distance forf
5626.6 THz, which corresponds to the peakP2 of Fig. 1~a!.
In Fig. 2~b!, we show the wave function with near-thresho
gain at the exact high-peak frequency ofP2. Both Figs. 2~a!
and 2~b! are obtained by the time-independent transfer m
trix method. Notice that in the presence of gain, the shap
the wave function in Fig. 2~b! is almost the same as tha
without gain in Fig. 2~a!. The only change is its amplitude
which increases uniformly. Actually, by keeping the incide
amplitude the same, when we increase the gain from zer
the threshold value, we find that the amplitude of the wa
function increases from a small to a very large value, but

FIG. 1. ~a! Logarithm of transmission coefficient vs frequen
of a 30-cell random system with three typical peaks. The dotted
shows the frequency dependence of the gain profile.~b! Logarithm
of the transmission coefficient vsx9 for the three peaks shown i
~a! with a frequency-independent gain.x9 is proportional to the
pumping ratePr .
02560
h-

-
es

nt

d

or
d

c-

-
of

t
to
e
s

shape remains almost the same. This is a very interes
result, which is generic since it was also obtained for ot
localized or ‘‘extended’’ states.

To check if indeed this surprising property is also pres
is the full time-dependent theory@12,13# of semiclassical la-
ser theories with Maxwell equations, we repeat our calcu
tion for this case too. While in the time-independent theo
every mode is independent and amplification is not satura
this is not true for a real lasing system. In a real lasi
system, modes will compete with each other. As was d
cussed in Ref.@12#, in a short system, the first lasing mod
will suppress all other modes, so we observe only one las
mode even for a large pumping rate. This is exactly the c
when we use the FDTD method to simulate our 30-cell s
tem with an over-threshold gain whose gain profile is t
same as given in Fig. 1~a!. At first, the electric field is a
random one due to spontaneous emission; then a strong
ing mode evolves from the noisy background and a sh
peak appears in the emission spectrum after Fourier tr
form. The stable field profile of the FDTD calculation
given in Fig. 2~c!, where the wave function is the same as
Figs. 2~a! and 2~b!, but the amplitude is very large. Th
emission spectrum of this case is obtained, and gives a s
peak very close to the resonant peakP2 of Fig. 1~a!. We also
checked the wave functions as well as the lasing threshol
we shifted the gain profile. If the central frequency of t
gain profile is nearP3, the P3 mode will lase first, and the

e

FIG. 2. Amplitude of the electric field of the 30-cell system
x/x0, with x055 nm, for the peakP2 in Fig. 1a.~a! Without gain,
incident fieldEinc51 V/m; ~b! with near-threshold gain (Pr57.2
3106/s), incident fieldEinc51 V/m; ~c! the lasing field with over-
threshold pumping rate (Pr523107/s) . Both ~a! and ~b! are ob-
tained by the transfer matrix method while~c! is obtained by the
FDTD method and laser theory.
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shape of the wave function ofP3 remains unchanged. W
have also checked the above ideas for a larger (L@j, where
j is the localization length! system. In such a strong loca
ized case, the form of the wave function remains unchan
as one introduces gain.

The numerical results that are presented above can
explained by the semiclassical Lamb theory@2# of laser
physics. According to Lamb theory, the Maxwell equation
the random laser system can be written as

2¹2E~x,t !1m0s
]E~x,t !

]t
1m0«~x!

]2E~x,t !

]t2

52m0

]2Pgain~x,t !

]t2
, ~1!

where m0 is the permeability of free space,E(x,t) is the
electric field, and the dielectric constant«(x) is determined
by the random configuration of the system.s is not just the
common conductivity loss, but can be interpreted as the t
mode loss including the surface loss of the system by ra
tion. The polarization due to gainPgain(x,t) @20# is the same
as the one defined above.

We assume that the system satisfies the slowly vary
approximation~it is always satisfied if we care about th
stable lasing state!. So E(x,t)5Em(t)fm(x)exp(2ivt) ~our
later discussion shows that the separation of the spatial
time parts of the wave function is reasonable!, whereEm(t)
is the field amplitude,fm(x) is the normalized wave func
tion, andv is the frequency of the field. The surface loss
the mode issm5«0v/Qm , whereQm is the quality factor of
the mode. Thus, we get two equations@2# for the real and the
imaginary terms of Eq.~1!:

¹2fm~x!1m0@«~x!1«0x8~x,v!#v2fm~x!50, ~2!

]Em~ t !

]t
5S 2x9~v!2

1

Qm
D «0vEm~ t !

2«̄
, ~3!

where «̄5*0
L«(x)dx/L is the spatially averaged

dielectric constant inside the system, andx9(v)
5*0

Lfm(x)* x9(x,v)fm(x)dx/L is the spatially averaged
gain. The last integral is done to take into account the ov
lap between the wave function and the spatial region of g

Equation~2! determines the field distribution, quality fac
tor Qm , and vibration frequencyv of the lasing mode. The
term «0x8(x,v) will cause the vibration frequency to shi
away from the original eigenfrequency of the mode, cal
the pulling effect. For a well-defined mode, generallyQm
@1, we need a very small gain to lase. Thenx8(x,v)!1,
the pulling effect is very weak, andv.Vm , whereVm is
the eigenfrequency of the mode. So the wave function of
lasing mode should be similar to the eigenfunction of
mode. Theoretically, we can use the perturbation metho
obtainv and the wave function.
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Equation ~3! is the time-dependent amplitude equatio
First we can use it to determine the threshold condition wh
2x̄9(v)51/Qm . For our system, with homogeneous pum
ing, we have

Pr
c5C0

114~va2Vm!2/Dva
2

Qm
~4!

where C05@(a01b0)/a0#(gcme«0vaDva /g rN0t21e
2) is a

constant. Equation~4! indeed shows that the threshold valu
of lasing is inversely proportional to the quality factorQ.

Second, Eq.~3! gives us the stable amplitude of the fie
when the gain is over threshold. Actually, the gain is sa
rable, x9(v)}DN}1/(11C2uEmu2) @20#, in real systems
and in our FDTD model@12,13#. With an over-threshold
gain, Em(t) will increase and the gain parameterx9(v,Em)
will decrease until2x̄9(v,Em)51/Qm ; then the field is
stable. So Eq.~3! also determines the amplitude of the stab
field for over-threshold pumping cases.

Our numerical and analytical results clearly suggest t
states of the random system with gain can easily lase,
vided theirQ factor is large. These findings provide a pa
for observing localization of light. Since localized stat
have largeQ values, they will lase with a small pumpin
rate. On the other hand, strongly fluctuating extended st
have smallerQ values because of the radiation loss on t
surface of the system and can lase only after a stron
pumping. In a real experiment, even in the presence of
sorption, if the gain profile is close to the mobility edg
there is going to be a discontinuity in the critical pumpin
rate needed for lasing. Localized states will lase first at a
pumping rate, while extended states need a high pump
rate. In Fig. 3, we present the results of for the density
states vs frequencyf for a 1d quasidisordered system. On t
inset two eigenfunctions are given, one localized atf

FIG. 3. Logarithm of the transmission coefficientT, the emis-
sion intensityI e , and the gain profile vs frequencyf for a 80-cell
random systems. In the inset, wave functions of two modes
shown.
1-3
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5468 THz and the other ‘‘extended’’ atf 5485 THz. In
addition the emission intensityI e vs f is also shown with gain
Pr5105 1/s, which demonstrates that the localized mod
will lase first. In a more realistic 3D case, we expectI e vs
frequency to have many peaks for the localized region
no peaks in the extended region for a given pumping r
@21#. It would be very interesting if this discontinuity can b
observed experimentally.

In summary, we have used the time-independent tran
matrix method and the FDTD method to show that all las
modes come from the eigenstates of the random system
knowledge of the eigenstates and the density of states o
random system, in conjunction with the frequency profile
the gain, can accurately predict the mode that will lase fi
as well as its critical pumping rate. Our detailed numeri
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results clearly demonstrate that the shape of the wave fu
tion remains unchanged as gain is introduced into the s
tem. The role of the gain is to just increase uniformly t
amplitude of the wave function without changing its shap
These results can be understood by generalizing the s
classical Lamb theory of lasing in random systems. Th
findings can help us to unravel the conditions for observ
the localization of light, as well as for manufacturing rando
lasers with specific emission wavelengths.
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