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We study the massless limit of the Klein-Gordon �K-G� equation in 1+1 dimensions with static complex
potentials in order to provide an alternative, but equivalent, representation of plane electromagnetic �em� wave
propagation in an active medium. In the case of a dispersionless em medium, the analogy dictates that the
potential in the K-G equation is complex and energy dependent. We study also the nonrelativistic Schrödinger
equation with a potential that has the same energy dependence as that of the K-G equation. The behavior of the
solutions of this Schrödinger equation is compared with those found elsewhere in the literature for the propa-
gation of electromagnetic plane waves in a uniform active medium with complex dielectric constant. In
particular, both equations exhibit a discrepancy between the time-dependent and stationary results; our study
attributes this discrepancy to the appearance of time-growing bound eigenstates corresponding to poles in the
transmission and reflection amplitudes located in the upper half of the wave-number plane. The omission of
these bound states in the expansion in stationary states leads to the observed discrepancy. Furthermore, it was
demonstrated that there is a frequency- �energy� -and-size-dependent gain threshold above which this discrep-
ancy appears. This threshold corresponds to the value of the gain at which the first pole crosses the real axis.

DOI: 10.1103/PhysRevB.72.094304 PACS number�s�: 42.55.Mv, 78.90.�t, 73.21.Cd

I. INTRODUCTION

The interest in the amplification effects of classical and
quantum waves in disordered media has been strongly moti-
vated by experimental results on the amplification of light.1

The amplification was shown to strongly enhance the coher-
ent backscattering and, consequently, increase reflection.
These results on the reflection naturally lead one to expect an
enhancement of the transmission in such amplifying systems.
However, for amplifying periodic systems, many workers2

found that the transmission coefficient starts increasing ex-
ponentially with length up to a certain maximum where it
oscillates and then decreases exponentially. Thus, for large
systems, the wave propagation is suppressed as if the system
became absorbing. Actually, it was generally shown by
Beenakker et al.2 that there is a dual symmetry between ab-
sorption and amplification for the propagation of radiation
through a disordered medium with a complex dielectric con-
stant. However, on physical grounds, one usually expects
that with sufficient gain, the wave should be able to over-
come the losses from backscattering and propagate through
the system with increased intensity. The above mentioned
work seems to confirm the paradoxial result that stimulated
emission of radiation suppresses the transmission through the
system. Setting aside the issue of the practical relevance of
gain media in electronic systems, it was recently shown by
Xiaozheng and Soukoulis4 that the numerical solution of the
Schrödinger equation with complex potential also exhibited a
similar paradoxical behavior of the transmission coefficient.
In this case, the positive imaginary part of the potential is
interpreted as a gain since it leads to an increase in the prob-

ability density as time goes on. Thus, optical transmission
through a segment of complex dielectric material3 or the
analogous electronic transmission through a complex scatter-
ing potential4 exhibited a transition from amplification to ab-
sorption at a critical value of the gain �or length� when
treated using the stationary wave equation or the stationary
Schrödinger equation. However, when the time-dependent
wave or Schrödinger equations were solved for an initial
pulse by the finite difference time domain �FDTD� method
no region of absorption was observed,5 even for values of the
gain above threshold. Thus, this numerical simulation shows
that the Schrödinger equation in the presence of gain behaves
similarly to the electromagnetic �em� wave equation, that is
the paradoxical results seem to be generic. It seems that for
systems with gain, the stationary solutions become irrespon-
sive to time-dependent perturbation for gains above a certain
threshold. Soukoulis et al.4,5 correctly pointed out the nature
of the discrepancy between the time-dependent wave equa-
tion and the stationary one. However, there is no satisfactory
explanation of the origin of this apparent paradox.

It is the purpose of this work to try to clarify the origin of
the discrepancy between the time-dependent and stationary
wave equations �in all our work, this designates both em and
Schrödinger wave equations� in the case of systems with
gain. Since the above mentioned problem seems to be com-
mon to both wave and Schrödinger evolution equations with
gain, we try to keep this parallelism in our analysis setting
aside the issue of practical relevance for electronic systems.
In optical systems, one can phenomenologically understand
the increase of light intensity due to an increase in photons
by means of coherent amplification, as by stimulated emis-
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sion of radiation in an active lasing medium. However, in
electronic systems, and due to particle number conservation,
one cannot imagine such a violation of current conservation.
To establish the connection between the electromagnetic and
inertial systems, we start with the relativistic massless Klein-
Gordon �K-G� equation, which should reproduce the wave
equation. From there we deduce the corresponding equiva-
lent potential components that reproduce the wave equation
with a given complex dielectric function. The potential turns
out to be energy dependent. For consistency, we assert that
we should study the Schrödinger equation with this energy-
dependent potential in order to coherently compare it with
the corresponding wave equation. Actually, the effect of in-
ertia in the relativistic K-G equation is by itself a serious
issue that distinguishes the behavior of massive particles like
electrons in the Schrödinger equation from the wave equa-
tion, which holds for the massless photons. Our approach
follows first the usual path of calculating the transmission or
reflection amplitude as a function of wave number k. Then
comes the novelty of studying the pole structure of the trans-
mission in the complex wave-number �or energy or fre-
quency� plane and tuning the value of the gain �the complex
potential� till we see one of the wave-number eigenvalues in
the lower half of the complex wave-number plane approach-
ing the real axis and crossing it to the upper half. We propose
that this crossover at the critical value of the gain marks the
appearance of the discrepancy between the stationary and
time-dependent behavior. This is so because poles in the up-
per half of the complex k plane correspond to time-growing
bound eigenstates �i.e., eigenstates decaying exponentially as
�x�→��, which have to be included in the expansion along
with the eigenstates of the continuous spectrum. It is exactly
the omission of this sum over the discrete eigenstates which
caused the apparent paradox mentioned before.

To sum up, we stress that the main point in our present
paper is the explanation of the apparent discrepancy between
time-domain and frequency-domain solutions in linear equa-
tions with gain, regardless of whether they are em, Klein-
Gordon, or Schrödinger wave equations. The key to the re-
moval of the apparent discrepancy is the existence of time-
growing exact-bound eigenstates corresponding to
eigenvalues in the upper half of the complex k plane in sys-
tems with gain; the latter destroys the Hermitian nature of
the Hamiltonian and, consequently, the obligatory reality of
its eigenvalues.

II. FORMULATION OF THE PROBLEM

The propagation of the electromagnetic waves in a me-
dium free of charges and currents is described by the wave
equation

��2 − �̂�̂
�2

�t2�F�t,r� = 0, �1�

where �̂ is the permeability, �̂ the permittivity of the me-
dium, and F stands for the electromagnetic fields, E or B.
The relative permeability and permittivity � and � are de-
fined by �= �̂ /�0 and �= �̂ /�0, where �0�0=1/c2 and c is
the speed of light in free space. These two parameters are

generally complex, space-dependent, and frequency-
dependent corresponding to an absorbing or active, nonuni-
form, and dispersive medium. The time-independent wave
equation for oscillatory electromagnetic fields of the form
F�t ,r�=F0�r�e−i�t becomes

��2 +
�2

c2 ���,r����,r��F0�r� = 0, �2�

assuming that the permittivity and the permeability are
piecewise constant. It has been found,5 and our calculations
have verified this finding, that there is a discrepancy between
the time-dependent and the frequency-dependent solutions of
the wave equation in an active medium. More explicitly, the
time evolution of a wave packet passing through an active
medium of length L shows that the transmitted packet is
amplified by a factor eaL, where a is a positive quantity; on
the other hand, the frequency-dependent solution for real �
shows amplification only up to a critical value of L, while for
larger values instead of amplification it exhibits attenuation.
In this paper, we provide an explanation of this paradoxical
behavior of the frequency-dependent solution, and we recon-
cile it with the time-dependent solution. Besides the electro-
magnetic �em� wave equation �2�, we study also the relativ-
istic Klein-Gordon �K-G� equation, which, under certain
conditions, is equivalent to Eq. �2�; its nonrelativistic limit
reduces to the Schrödinger equation, thus, establishing the
equivalence of all three equations �under certain correspon-
dences�. All three equations exhibit the above mentioned dis-
crepancy between the time-dependent and the frequency-
dependent solutions in the presence of gain. The resolution
of this discrepancy is the same for the three equations.

The time-dependent and the frequency-dependent free
K-G equations are given below,

��2 −
1

c2

�2

�t2���t,r� = �mc

�
�2

��t,r� , �3�

��2 +
E2

�2c2��0�r� = �mc

�
�2

�0�r� , �4�

where ��t ,r�=�0�r�e−iEt/�, E is the relativistic energy, and m
is the mass of the particle. In the massless limit, these equa-
tions look very similar to those above. We confine our dis-
cussion to the case where ��=1 and to problems in one
dimension corresponding to the propagation of plane waves
where Eq. �2� is written as

� d2

dx2 +
�2

c2 ���,x��F0�x� = 0. �2��

Now the effects of the property of the medium, which is
contained in the complex function �, could be incorporated
in the one-dimensional version of Eq. �4� by an equivalent
effect which is introduced in the form of a complex potential
interaction as follows:6,7
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� d2

dx2 +
1

�2c2 	E − V�x�
2��0�x� = �mc

�
�2

�0�x� , �5�

where V is the time component of a vector potential whose
space component is taken to vanish.

Now, for a given medium specified by ��� ,x� and bound-
ary conditions, we choose the complex potential V�x� in Eq.
�5� with m=0 that will give the same electromagnetic wave
equation, Eq. �2��. The potential obtained by this equivalence
requirement will be our guide in writing the nonrelativistic
Schrödinger equation that gives the quantum mechanical
analogue of the wave propagation equation.

Let us consider now the system shown in Fig. 1 where
medium I is free space and the waves are incident from left.
The constant parameters ��� ,�� ,V� ,V� are real. Equation
�2�� in medium II gives

� d2

dx2 +
�2

c2 ��� − i����FII�x� = 0. �6�

Notice that as a result of the general relations of Re��� being
an even function of Re���, while Im��� being an odd func-
tion of Re���, we have for a dispersionless medium with
gain allowing propagation that Re��� is positive for all fre-
quencies, Im��� is negative for positive Re���, and positive
for negative Re���; for a lossy medium it is the other way
around. Now, Eq. �5� with m=0 and E=��, gives

� d2

dx2 +
�2

c2 �1 − 2
1

��
V +

1

�2�2V2���II�x� = 0. �7�

Comparing these two equations, we obtain

�� = 1 − 2
1

��
V� +

1

�2�2 �V�2 − V�2� , �8a�

�� = 2
1

��
V� − 2

1

�2�2V�V�. �8b�

Now, if the medium is assumed to be nondispersive �i.e., the
permittivity is independent of the frequency ��, then we con-
clude that the constant potential V should be proportional to

�. In other words, the vector potential in the K-G equation is
energy dependent. It should be proportional to E. Conse-
quently, we write it as V�Ev, where v is a dimensionless
parameter. Thus, we can now write our previous Eqs. �8� as

�� = 1 − 2v� + v�2 − v�2, �9a�

�� = 2v��1 − v�� . �9b�

Therefore, v� and v� are determined in terms of the param-
eters �� and �� as follows:

�1 − v��2 =
1

2
��� + ���2 + ��2� , �10a�

v� =
��/2

1 − v�
, �10b�

where for a propagating medium with gain Re�1−v� is posi-
tive and Im�1−v� has the same sign as Re�k�. We use the
ansatz that V=E	v���� ,���+ iv���� ,���
 as a guide for our
nonrelativistic problem. That is, in our investigation of the
wave-packet propagation through the quantum mechanically
equivalent system, we take the potential in the Schrödinger
equation as V=E�v�+ iv��, where E is the nonrelativistic en-
ergy and �v� ,v� are real potential parameters. In Sec. IV, we
will also show that this ansatz is supported numerically.

III. POLES OF THE REFLECTION COEFFICIENT

In Sec. II, an equivalence was obtained between two rep-
resentations of the wave equation. One comes from the elec-
tromagnetic wave equation and the other comes from the
massless limit of the K-G equation with vector potential that
embodies the dielectric property of the medium. A necessary
condition for the equivalence is that the potential in the K-G
equation should be energy dependent. For a dispersionless
electromagnetic medium, it had to be proportional to the en-
ergy. On the other hand, the permittivity could assume com-
plex values and so could the potential. The nonrelativistic
mechanical representation of the system is described by the
Schrödinger equation with the same energy-dependent poten-
tial. In this section, we study the solution of this Schrödinger
equation and calculate the resonance energies and possibly
the discrete eigenenergies by locating the poles of the re-
flected or transmitted amplitude.

The problem under study is depicted in Fig. 1 where a
wave packet is incident from the left with partial amplitude
normalized to unity. Medium I is free space and medium II is
a uniform dielectric material whose properties are repre-
sented by the uniform potential V in the following one-
dimensional time-independent Schrödinger equation:

� d2

dx2 +
2m

�2 �E − V����x� = 0, �11�

where m is the inertial mass associated with the wave packet
and E is the nonrelativistic energy. The potential is energy
dependent and is written as V=Ev, where v is a dimension-
less parameter which is generally complex. Note that in the

FIG. 1. Wave packet propagation through an amplifying system
of length L and complex potential V=V�+ iV� �or dielectric constant
�=��− i�� for an em wave�. T and R stand for the transmission and
reflection amplitudes for a unit incident wave. A and B are the
amplitudes of the forward and backward wave in the system and �
is the permeability of the medium.
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K-G picture, we used E=�� as equivalence between the
relativistic energy in the massless K-G equation and the fre-
quency in the electromagnetic wave equation. However, this
correspondence no longer holds in the case of the
Schrödinger equation; indeed, by comparing Eq. �11� �after
setting V=Ev� with Eq. �6�, we see that �2m /�2�E corre-
spond to �2 /c2 and 1−v to �. Hence the wave number k in
region I of Fig. 1 is given by �2mE /�2 for the case of Eq.
�11�, while k=� /c for the case of Eq. �6�.

By introducing k, both Eqs. �6� and �11� take the form

� d2

dx2 + k2�1 − v����x� = 0. �12�

Its solution for the configuration shown in Fig. 1 is

��x� = � eikx + Re−ikx x � 0

Aeik�1−vx + Be−ik�1−vx 0 � x � L

Teikx x 	 L
� . �13�

To find the full time-dependent solution, one must multiply
�13� by exp�−iEt /�� �for the Schrödinger case� or by exp�
−i�t� �for the em case�. Notice that for real k, E
0, while �
can be either positive or negative depending on the sign of k.

If the incident wave packet ��x→−�� is constructed as
usual from the partial amplitudes eikx using the Fourier ex-
pansion 1/2��−�

+�f�k�eikxdk for a given choice of momentum
distribution f�k�, the results are not the same as the solution
of the time-dependent Schrödinger equation. Anyway,
matching the wave function and its gradient at the left
boundary �x=0� and right boundary �x=L� we find an ex-
pression for the reflection amplitude R. It could be written as

R = v
e2i��1−v − 1

−
2e2i��1−v − +

2
, �14a�

where ±=�1−v±1 and the dimensionless momentum pa-
rameter � is defined as �=kL. If one considers the wave
equation Eq. �6� and solves along the same lines for the
reflection coefficient, the result will be the expected one
from the correspondence mentioned before

R = �� − 1�
e2i��� − 1

�+
2 − �−

2e2i���
, �14b�

where �±=��±1 and the dimensionless parameter � is de-
fined by �=kL=L /c�. The similarity between the
Schrödinger equation and wave equation results �14� is very
apparent under the substitution 1−v→�. Thus, the parallel-
ism between the wave equation and the corresponding
Schrödinger equation is well established in our formalism.
Consequently all results that will follow apply equally well
to both systems under the prescribed transformation between
potential and dielectric constants.

Our interest is focused on the conditions under which the
reflection becomes infinite. This occurs when the denomina-
tor of Eqs. �14a� and �14b� become zero, i.e.,

�+/−�2 = e2i��1−v. �15�

The zeros of R, other than v=0, are also interesting but will
not be pursued here. When R becomes infinite so does
T. Then, Eq. �12� admits a solution ��x� of the form
exp�−ikx� for x�0,A exp�ik�1−vx�+B exp�−ik�1−vx� for
0�x�L, and T exp�ikx� for x	0; if Eq. �15� is satisfied,
this solution without the presence of an incident wave satis-
fies the continuity conditions at x=0 and x=L; furthermore,
if Im k	0, ��x�→0 as �x�→�, which means that it is a true
bound eigenstate with eigenvalue k2. We shall see that both
Eq. �15� and Im k	0 can be realized if there is gain, while it
is impossible for a lossy system. Therefore, we take the mo-
mentum parameter � to be complex and write it as �=��
+ i��. Additionally, we write �1−v=��+ i�� and, hence,

+

−
=

�� + 1 + i��

�� − 1 + i��
� �ei�, �16�

where for a propagating medium with gain, �� is positive and
�� has opposite sign than that of Re�k�. We obtain the fol-
lowing solution for �15�:

�� = −
��

��
�� −

1

��
ln � , �17a�

�� =

� + n� −
��

��
ln �

��	1 + ���/���2

, �17b�

where n=0, ±1, ±2, . . . which comes from 2n� difference in
the phase of the two complex numbers on both sides of Eq.
�15�; however, n is restricted by the condition �����0.
Therefore, the momentum poles of the reflection amplitude is
indexed by the integer n as kn=kn�+ ikn�, where kn=�n /L.
These poles correspond to true discrete eigenfrequencies or
eigenenergies only if Im kn
0. When this condition is satis-
fied, the corresponding eigenstates are true bound states
since then ��n�x���exp�−kn��x�� as �x�→�. For the em case,
Im kn
0 implies Im �n
0, which in turn means that these
eigenstates grow exponentially with time. It is this growing
with time for these discrete eigenstates which provides the
amplification of the wave packet beyond the critical value of
L at which the transmission starts decreasing and thus re-
solves the discrepancy between the time and frequency ap-
proaches in systems with gain. Neither the growing with
time of the eigenstates nor the nonreality of the eigenfre-
quencies are unexpected, since the Hamiltonian is not Her-
mitian �because Im ��0�; we remind the reader that it is the
Hermitian character which imposes the reality of the eigen-
frequencies and the stationarity of the corresponding eigen-
states. We also point out that besides the poles with Im kn

0, there are poles with Im kn�0; these poles do not corre-
spond to eigenstates, since the associated solutions of Eq. �6�
�with no incident wave� blow up as �x�→�. However, these
Im kn�0 poles may show up as sharp peaks in R and T
�resonances� for �=Re �n=c Re kn if �Im kn� is very small.

The Schrödinger case requires some extra care. First, the
discrete, complex eigenenergies En are not simply propor-
tional to kn as in the em case, but are given by
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En =
�2

2m
kn

2 =
�2

2mL2�n
2 =

�2

2mL2 ��n�
2 − �n�

2 + 2i�n��n�� .

Since the poles in the � plane are located symmetrically with
respect to the Im � axis, En are located in pairs symmetri-
cally to the Re En axis. Those with �n�	0 correspond to true
bound eigenstates 	�n�x�→0 for �x�→�
; the subset with
�n�	0 would give Im En	0, and, hence, growing with time
eigenstates, while the subset with �n��0 would give Im En
�0 and, consequently, decaying with time eigenstates. Fi-
nally, the ones with �n��0 could produce, under some cir-
cumstances, sharp peaks in R and T vs E �resonances�.

A second point, concerning the Schrödinger case is a re-
quirement of self-consistency. For a pole En to be realized
the choice of the potential V�Ev must be such as to produce
one En satisfying the self-consistency requirement En=E; if
E, v�, v�, L are chosen randomly, the relation En=E will not
be satisfied no matter what n is. If we change only L, again
this self-consistency relation is not expected to be satisfied,
although for a certain length L, En may be very close to E
	producing a resonance behavior in T�E� or R�E�
.

Before we close this section, it will be beneficial to di-
gress on potential physical examples of such energy-
dependent potentials for nonrelativistic particles. As pointed
out by Formanek et al.,8 that wave equations with energy-
dependent potentials have been known for a long time.9 They
appeared along with the Klein-Gordon equation for a particle
in an external electromagnetic field. In nonrelativistic quan-
tum mechanics, they arise from momentum-dependent inter-
actions, as shown by Green.10 The Pauli-Schrödinger equa-
tion represents another example.11,12 The one-dimensional
Schrödinger equation with a potential EV�x� proportional to
energy was studied in Ref. 13. This equation is equivalent to
the wave equation with variable speed. When V�x��1 is
bounded from below, and satisfies two integrability condi-
tions, the scattering matrix is obtained and its asymptotics
for small and large energies are established. However,
Hamiltonians with energy-dependent potentials sometimes
contain unphysical bound states.14 An important issue in
nuclear physics is the removal of these unphysical states and
this was considered first by Fiedeldey et al.15

Another example of an extra energy dependence �besides
the k dependence� in the matrix elements of the Hamiltonian
appears in the augmented plane wave method. There, this
complicated energy dependence is due to the choice of the
basis rather than the original Hamiltonian as in our case.
However, from a mathematical point of view, the two cases
share common features.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In all our numerical results with the Schrödinger equation,
we use the units for which �=2m=1 and corresponds to an
energy unit E=0.658 eV, unit of length L0=2.406 Å, and a
time unit corresponding to T=10−15 s. In Fig. 2, we show the
numerical results for the poles of the transmission coefficient
in the complex � plane as obtained from the stationary elec-
tromagnetic wave equation for a system of length L and �
=4−0.2i which is valid for Re�k� positive. This figure com-

pares quite well with Fig. 3, which corresponds to the sta-
tionary Schrödinger equation with a linearly energy-
dependent potential. Even though we have presented, in Sec.
III, a lucid argument that supports our assertion of linear
energy dependence of the potential in the Schrödinger equa-
tion, we have also checked numerically for a few other en-
ergy dependences that only the linear energy dependence of
the potential makes the pole structure of the electromagnetic
wave equation similar to the Schrödinger equation. This nu-
merical result strengthens our previous assertion that the
Schrödinger equation problem will map onto the wave equa-
tion problem only if the potential is linearly dependent on the
energy. In Fig. 4, we plot the transmission vs the imaginary
part of the potential to detect the critical value of gain at
which the transmission is maximum for a given system
length of 200 in our units and incident energy of 1.209. From
this figure, we see that the resonance occurs at v��0.023. In
Fig. 5, we show the pole that has a real part equal �or close�
to the incident energy of the wave packet, in our case E
=1.209 �in our energy units�, and study the behavior of this
pole as we increase the imaginary part of the potential in the
complex E plane as shown in Fig. 5. It is clear from Fig. 5
that, in accordance with our expectations, this important en-
ergy pole does cross the real axis at the critical value of the
imaginary potential estimated to be v��0.023 above which
the energy pole moves into the upper half of the complex E
plane and consequently causes amplification with time. To
support this interpretation, we perform the numerical compu-
tation of the transmission coefficient from the time-
dependent Schrödinger equation for values of the imaginary
potential below, above, and at the critical value as shown in
Fig. 6. The time-dependent Schrödinger equation is being
derived from the stationary equation with a linearly depen-
dent potential by substituting E by its operator form i� � /�t
which gives

FIG. 2. The resonance poles �diamonds� and the discrete bound
eigenstate poles �filled dots� of the transmittance obtained from the
time-independent classical wave equation in the complex � plane
with L=10 and �=4−0.2i.
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�−
�2

2m

�2

�x2 + i�v
�

�t
���x,t� = i�

���x,t�
�t

. �18�

The initial wave form used in generating Fig. 6 was a Gauss-
ian wave packet of the form

��x,0� = exp − � �x − x0�2

4�2 �eik0x, �19�

centered at x0 with an average momentum of k0 in our units,
the normalization constant in �19� does not affect our nu-
merical computations. In all cases, we used �=40.0 units of
length. The transmission coefficient was calculated by

�T�t��2 = �
L

�

���x,t��2dx , �20�

where L is the system length. It is very clear from Fig. 6 that
at values of the gain below the critical value, the transmis-
sion reaches a stationary state at large times, while at values
of the gain above the critical value, the transmission increase

steadily but step-like with time leading to an amplified out-
put.

V. CONCLUDING REMARKS

We believe that our present work sheds light on the real
origin of the discrepancy between time-domain and
frequency-domain solutions of quantum and classical sys-
tems described by linear equations with gain, regardless of
whether they are em, Klein-Gordon, or Schrödinger equa-
tions. The key idea to the removal of this apparent discrep-
ancy is the existence of time-growing true-bound eigenstates
in the upper half of the complex energy and frequency planes
due to the non-Hermitian nature of the Hamiltonian with
gain. While studying the origin of this problem, we suc-
ceeded in coming up with a mathematical mapping between
the Schrödinger equation problem for a massive particle sub-
ject to a non-Hermitian potential and the electromagnetic

FIG. 3. The resonance poles �diamonds� and the discrete bound
eigenstate poles �filled circles� of the transmittance obtained from
the time-independent Schrödinger equation in the complex k �a� and
E �b� planes for L=10 and for a potential of the form V= �−1
+0.05i�E.

FIG. 4. The transmission coefficient obtained from the time-
independent Schrödinger equation vs v� for E=1.209, L=200, and
v=−1+ iv�. The figure shows an extremely sharp peak at v�c
=0.022 67.

FIG. 5. The resonance pole location in the complex E plane,
L=200, and v=−1+ iv� as v� increases. The pole crosses the real
axis when v�c=0.022 67.
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wave propagation problem in a gain system. The equivalent
Schrödinger equation problem resulted in a linearly energy-
dependent complex potential. All numerical results of differ-
ent physical quantities supported our ansatz about the simi-
larity between the electronic and photonic systems. Setting
this issue aside, we have computed the locations of the poles
of the reflection and transmission amplitudes in the complex
k, frequency, or energy plane. The poles cross the real axis
when the length L �or, equivalently, the gain� reaches its
critical value. This crossing signals the transfer of the ampli-
fication from Re�k� continuous spectrum to the time-growing
bound eigenstates. Even though our present study is very
informative and can be considered as being a satisfactory
explanation of the paradoxial results between time-
dependent and stationary evolution equation, a complete
treatment of wave propagation in gain media can be
achieved, in our view, by constructing the time-dependent
solution from the whole spectrum of the time-independent
solutions. Thus, both the discrete and continuous spectra
should be included in the analysis similar to the approach of
Hammer et al.16 in dealing with the general solution of the
Schrödinger equation. The general solution in this case reads

��x,t� = �
−�

+� d�

2�
f���g�x,��e−i�t + �

n

cngn�x,�n�e−i�nt

= � dz

2�
f�z�g�x,z�e−izt, �21�

where f��� and cn coefficients are determined from the initial

value of ��x ,0�=h�x�. In the last integral, one has to choose
a complex contour that will reflect the physical situation at
hand. Keeping in mind that g�x ,�� and gn�x ,�n�, i.e., the
solutions of the stationary equation, are not orthonormal to
each other because the operator is not Hermitian �due to the
complex nature of ��, extra care and effort are needed in
order to determine analytically or numerically f��� and cn

given h�z�.
The numerical results presented in this work constitute an

important intermediate step toward a complete resolution of
this interesting problem. Notice that the analytical determi-
nation of the poles in the transmission �or reflection� ampli-
tudes, given by Eq. �17�, was greatly facilitated as a result of
assuming a dispersionless permittivity. Actually, the dielec-
tric constant becomes frequency dependent, and this is the
real physical situation, since one is dealing with lasing ma-
terials and their gain response or lasing action is certainly
limited to a finite frequency range; hence, ����=�����
+ i�����. One possible causal form of this dielectric constant
is given by Ref. 17,

���� = �0 +
f0

�2
0 − �2 + i��

, �22�

where f0 is usually small compared to �0, �0 is the laser
resonant frequency, and � represents the width of the re-
sponse and is related to the lifetime of the lasing mode. All
these parameters can be fixed experimentally for a given las-
ing system. We are planning, in the near future, to implement
numerically this dispersive case and trace the path of the
main lasing pole in the complex frequency plane.

We conclude by pointing out that, while the time-
independent em and Schrödinger equations are equivalent
under proper correspondences, the same is not true for their
time-dependent counterparts. The Schrödinger equation is
first order in time, while the em equation is second order in
time. As a result of this, the Schrödinger wave packet in-
creases its width linearly with time as it propagates in free
space, while the em wave packet retains its shape. This im-
portant difference implies that the Schrödinger wave packet,
in contrast to the em case, never leaves the gain area com-
pletely and, hence, is amplified without limit as shown in
Fig. 6.
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FIG. 6. The transmission coefficient obtained from the time-
dependent Schrödinger equation for five different values of v� vs
time with E=1.209, L=200, and V= �−1+ iv��E, where t0=143 time
units.
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