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Intensity distribution of scalar waves propagating in random media
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Transmission of a scalar field through a random medium, represented by a system of randomly distributed
dielectric cylinders, is calculated numerically. The system is mapped to the problem of electronic transport in
disordered two-dimensional systems. Universality of the statistical distribution of transmission parameters is
analyzed in the metallic and localized regimes. In the metallic regime, the universality of transmission statistics
in all transparent channels is observed. In the band gaps, we distinguish a disorder ifndedson
localization from tunneling through the system, due to a gap in the density of states. We also show that
absorption causes a rapid decrease of the mean conductance, but, contrary to the case of the localized regime,
the conductance is self-averaged with a Gaussian distribution.

DOI: 10.1103/PhysRevB.71.054201 PACS nunt®er72.10-d, 41.20.Jb, 73.23:b

l. INTRODUCTION theory**15 and the DMPK equatiotf*” The distribution of

Transport of classical waves in random media is a Chalthe conductance is Gaussian with a universal dimension-
P Eependent variancé:*®-21 Universal properties were pre-

lenging problem, attracting increasing interest of theoretica icted not only for the conductangg but also for the nor-

and exp_erlmental phySICIS’FS b.ecaLljse |t_ offers Fhe poss'b'“t}’nalized parameters s,,=T,,/(T.0, 2223 and for the
of studying Anderson localizatiohSince interactions do not . o .
gormallzed transmission in a given transport channel

play any role in classical wave scattering, these system
might be more convenient for experimentally verifying the Ta
scaling theory of localizatidhthan quantum electronic sys- Sa= ES Ta=2 Tab. (2
tems, where the influence of the mutual interaction of elec- a b
trons upon transport has not yet been clarifiévo main  The universal probability distribution
issues of localization theory, namely the presence or absence
of the metallic state in the two-dimension@D) systems,
and the validity of the single parameter scalif§P3245 P(Sa) = | zex;{xsaﬂb(x)],
might be more readily resolved experimentally for the clas- o
sical wave problem than for the electronic one. Recent ex- RN —
perimental results for the transmission of electromagnetic D(x) =(@IN*(V1 +x/(g) + Vx/(g)) (3
waves indeed confirmed that transmission is universal in th
diffusive regimé& and presented strong indications for disor-
dered induced Anderson localization.

In this paper, we analyze numerically the transmission of 2
scalar classical waves through a two-dimensid@#al) sys- vars, =(s3) = (s,)*= @ (4)
tem of randomly distributed dielectric cylinders. Following
Ref. 10, we map the problem into the 2D Anderson modelUniversality of the statistical properties of parametess,
with random binary potential. Statistical properties of wavewas confirmed experimentaflyip to rather small values of
transmission are then analyzed using the transfer matrithe conductanc&g)=2-3).

+joo

fias been derived analyticaf$?® From Eq.(3), the second
cumulant is obtained as

method! We calculate the conductangeas?13 In gaps, the mean of the logarith{in g) decreases lin-
early with the system size. Here, we distinguish between two
g= Eb Tap- (1) different regimes, one with nonzero density of states, and the
a

other called tunneling regime, characteristic for the fre-

In Eq. (1), Tap=|ta]2, wheret,y, is the transmission amplitude quency rggio_n without eige_nstates. The first dgscrib_es_AnQer-
from channeh to channeb. a,b=1,2,...,Ny, whereN,,is ~ SON localization, characterized by the Gaussian distribution
the number of open channels. We first determine the ban@f (In @ with variance vafin g)=~L/& (¢ is the localization
structure of the original classical wave problem. Then welength in agreement with localization theory. The second
analyze the statistical properties of the transmission in band€gime appears in the gaps, where the density of states is
and gaps. very small. Then, the transmission is determined by tunnel-

In bands, whergg>1, we observed diffusive transport. ing through the sample. Althoughn g) = -L, the distribution
Statistical properties of the transmission are in good agreesf (In g) is not Gaussian but given by the statistics of the
ment with theoretical predictions of the random matrix energy spectra.
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e = = ¥ . - . " Ea V(r) and energ)E such that the solutionsand¥ of Egs.(5)
e " : =" .1 ., and (6) are identical. Formal equivalence requires that the
e = .=.'.' L -:. . identity

.
I T o S W?e(f) = E-V({) (7)
a m B u a - | e l. a s
“a B 4" " . must be fulfilled for allf.
.' -I 3 ", mg " '.l - Formula(7) does not mean that the two models described

" oam " - "n '. n by Egs.(5) and (6) are equivalent, because potentilr)

" ns =, I...' = u depends both on the frequeney, and the energye. Equa-
= " - : "y '. tion (7) only means that for a given scalar wave model de-

e an . s " " uypg fined by e(r) we can find for each frequenay, an electronic

al | L] u model with potentiaM(r) and energ)E, that the solutions of

both models are the same.

FIG. 1. Typical sample configuration. The size of the system is
128x 128, the filling factox=0.1. 182 rectangular rods with square
cross section of &3 are randomly distributed throughout the
sample. Scalar wave propagates from left to the right.

are fixed by formula(7). Changing the frequency, we
obtain another electronic model, since the potentiél)

Both the energy and the potential of the electronic model

changes. This means that for a given spatial distribution of

e &(r), two different frequenciesy, define two different elec-
The form of the probability distributiop(In g) enables us tronic models.

also to distinguish between localization and absorption. We
find that absorption also gives a decreasdrog) «—L; how-

To be more specific, we consider a model of randomly
distributed rectangular rods discussed in Sec. Il. This model

ever, in contrast to localization, the conductance remainﬁan be mapped into the electronic model with a random bi-
self-averaged. Our data agree with the theoreticalary hotential. For a given sample, the spatial distribution of

prediction?® as well as with the qualitative criteridrior I0-  yhe otential is identical with the distribution of the permit-
calization 2(3 vars,) <1.

The paper is organized as follows: In Sec. Il we introduce\,1 and V,, are determined by Eq7) with the following

tivity. The energyE, as well as two values of the potential,

the model and system parameters. In Sec. Il we present thg|ations:
mapping of the classical wave problem into the problem of

the transmission of electrons in disordered syst&hResults 0% €10pq=E, (8
of numerical simulations are presented in Secs. IV and V.
Conclusions are given in Sec. VI. w2, =E-V;, (9)
Il. MODEL w’e,=E—-V,. (10
We study a two-dimensional system consisting of a ran- From Egs.(9) and(10) we easily obtain
dom array of dielectric cylinders. To make the numerical
simulations easier, we consider rectangular rods instead of wles = 4 (11)
cylinders. A typical sample is shown in Fig. 1. No contact or ! n-1
overlap of neighboring rods is allowed. The dielectric per-
mittivity of rods is e, and of the embedding medium &. ~ Where
Two semi-infinite leads with permittivity,.,qare attached to c
the sample. The concentration of the dielectric rods is given n= -2 (12
by the filling factorx of the rod’s material. In this work we €1
consider square cross section of dielectrie 3 rods, mea- 5pg
sured in dimensionless units. In the same units, the system
sizelL varies from 32 up to 256. 6=V,-V;. (13
The energyE, is given as
I1l. MAPPING TO THE ELECTRONIC SYSTEM
S
We use the formal equivalenfeof the scalar wave equa- E=V;+ 1 (14)
tion, K
V2 + e(f)wu=0 (5) andV; is determined by
. . -, 2 _
and the Schrodinger equation for electrons, V1= (€~ €ead - (15
V2 +[E-V())]¥ =0 (6) Note that fore. = €o=1 (vacuum in leads Eqgs.(8)—(10)

(we set 2nc?/#2=1 andc?=1). For a given space depen- e,>1.
dence,e(r), and given frequencyy, one can find a potential
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can be solved only when bot;, V,>0 assuming thag;,

For simplicity, we consider in this paper the special case,
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FIG. 2. Mean conductancég) (top) and(Ing) (bottom as a
function of the frequency fou=e€,/€;=11 andx=0.2. Frequency
bands and gaps are clearly visible. In bands arowfrd0.14 and
0.31, we find transport statistics typical for the metallic regime. Twothe Anderson model, the value éfdetermines the random
different transport regimes were observed in gaps: In the first gagpotential. Data presented in Figs. 2 and 3 do not directly
»?~0.08, the density of states is very small and transport is due te¢orrespond to the electronic density of states in the disor-
tunneling through the sample. In the second gap=0.21, we  dered electronic system. Different values®gorrespond to

FIG. 3. The same as in Fig. 2, but fa=0.1.

observed disorder induced Anderson localization. different models. Note also that the ener@y, Eq. (14) is
also a function ofé.
€= €ona= 1. (16) For completeness, we show in Fig. 4 the density of states,

p(E), of the electronic system for four values &f
The method is, of course, applicable to any(ggtg, €1, €),

including €jeag™> €1 o _
Using Egs.(15) and(16), we haveV,; =0. Comparison of A. Diffusive regime ({(g)>1)
Egs.(11) and(14) gives w’=E. Finally, V,=-4. We also fix Three frequency bands are visible in Figs. 2 and 3, where
=11 i ) i i ) . slightly increases with the system size and the value ofjvar
In numer_l_cql S|mulat|ons, we used the discretized versiong very close to the universal conductance fluctuatfi?.2.
of the Schrodinger equation, E(f), The distribution of the conductance is Gausdisee, for ex-
V.o 4 W 4+ W+ W =(4-E+V.)W... ample, Fig. 11 Although these properties are finite size ef-
xy+l xy-1 XLy w1y = W Wy fects (no metallic state exists in 2D in the limit— <), the
(17) numerical data enable us to check the theoretical prediction
Hard wall boundary conditions were used. The transfer ma@bout the transmission statistics.
trix method! was used to calculate numerically all the pa-  In Fig. 5 we show the statistics of the parametegs for
rameterss,, and the conductance. The number of open chanthe frequency in the center of the firsf~1.4) band. The
nels,Nyp=<L, which enters in Eq(1) is given by the number number of open channels is 23 for the size of the system
of propagating solutionk, real) of the dispersion relation 192X 192. Results confirm that the distributid?(s,), is uni-
versal and does not depend an The second cumulant,
2 cosk, =4 —E -2 cos 77 n n=12..L. (18 V&S is close to its t.heoretical value, 2.
L+1 The same analysis was completed for the second band
' : e (Fig. 6). Here, the agreement with theory is not as good as in
Each frequency, defines a corresponding tight-binding the previous case, presented in Fig. 5 especially for a smaller

Hamiltonian, for which the transmission is calculated using . A
standard numerical procedures known for the electronic lo_concentratlon of rods. Although the distributidb(s,), does

calization problems! Statistical ensembles ONy,=10" not depend om, it differs considerably from theoretical pre-

samples were considered, which assure that sufficient acc ictions. We interpret this d|screpancy asa f'n'te size effect.
ndeed, the mean conductan@p increases with the system

racy of the transmission parameters of interest were ob- ; X _ A
tained. size(Fig. 3 and inset of Fig. 8 which indicates that we have
not reached the diffusive regime yet.

Note also that we are studying 2D samples, while the
theory is formulated for quasi-one-dimensional systems.

Figures 2 and 3 show the dependence of the mean con- Therefore we expect that the agreement with theory should
ductance for the present model. Equivalently, the numericape better if the length of the system increases. This is con-
results of Figs. 2 and 3 might be interpreted as thefirmed by numerical results presented in Fig. 7, which shows
s-dependence of the conductance of the 2D electronic syshe second cumulani(gjvars, for various 2D and quasi-
tem. In the last case, however, one must keep in mind that ipne-dimensional systems.

IV. CONDUCTANCE
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FIG. 4. Density of states of the
electronic system witkx=0.2 cal-

0 0—5 culated for four values of. The
size of the system is 4848 and
an average over ten ensembles

g was calculated. Dashed lines indi-
: E=0.31 5=3.1 cate the energy:(5). For 6=0.8,
i the inset shows the position of
0.2 I eigenenergies for 18 different
0 (E)! i samples.
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Figure 8 shows the variance, \grof the conductances In the upper gapg5~0.21) the observed statistical prop-

the mean conductancg). We expect that veg should satu- erties of the conductance are in agreement with the theoret-

rate to the universal value of vgr—0.1855(Refs. 18 and ical expectations for the localized regime: The distribution of

20) for g>1. Ing is Gaussian(Fig. 9 with varing=-—(Ing)«2L/¢,
which is characteristic for the disorder induced localization.

B. Localization ({(g)<<1)

The parametet is the localization lengtf’
In the lower gap(6~0.08 the conductance decreases

In the regions between the pass bands, the conductanggpidly as the size of the system increases. The probability
decreases exponentially with the system size. It is muchjistribution of Ing is not Gaussian, as can be seen in Fig. 10.
more pronounced for larger concentrations of cylinders Instead, it decreases exponentially for larger values of con-

=0.2). Here, two different regimes were observed. ductance as
1 In g) «« exp condkIn g) — Ing]. 19
[ %0 415 <govars. & p(In g) « exp congIn g) ~In g] (19)
a
08 <g>=2.10 121~ . . i
sk o ot —————— s In contrast to Anderson localization, no samples with con-
%‘” “F % ga2 | o8 ductance close to 1 were found. This indicates that transport
04 -—g A 2-10 0.6_—
02 04F
" 0.2
0 0' | 1 | |
j x=0.2 02 s .
08 &R _gp27 | 045F <T> &
—_ A B E [-%
o 06 f o1k
2 o4lo “F ]
02 —? n 0.05 A v—0.1 @
ol® ropy of ox=02f) |,
0 1 2 3 0 5 10 15 20

FIG. 5. Left panels: Probability distribution(s,) for some open
channels compared with the theoretical prediction of [E8).
(dashed ling w?=0.14(the center of the first bapdConcentration
of cylinders isx=0.1 (top) andx=0.2 (bottom. Right panels: The
second cumular%(g)varsa as a function of index (top) and mean

p(s,)

values(T,) (bottom). The size of the system is=192, electron FIG. 6. The same as in Fig. 5, but fa=0.31.Ny,=34. The
energy isE=0.14, and the number of open channdls,=23. Sta-  agreement with theory is not as good as in Fig. 5, especiallx for
tistical ensemble oNg,=10 000 samples was considered. =0.1 because of the small system size.
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0 0.2 0.4 0.6 0.8 1
a/N FIG. 9. The probability distributiorP(In g) for w?=0.21. The

distribution is close to the log normal with vardr=—(In g), typical
for the center of the second band=0.31 andx=0.1. 2D systems behavior of Anderson localization. The number of random configu-

of size L XL with L=125, 192, and 256 were considered. Theseratlons'\lStat Is 10° for L <96 and 16 for L=128. The legend pre-

. . . . . sents the data fofln g) and var Ing.
results are compared with quasi-one-dimensional systems of size ofin o) g

128x L, with L,=128, 256, 320, 448, and 512 with mean conduc- .
tance(g)=7.28, 4.29, 3.53, 2.57, and 2.25, respectively. length ({~8 was estimated from the dependencéin g)).
For instance, in the interval 0.65E<0.11, we found an

is possible only by tunneling through isolated eigenstatesverage of only one eigenstate, when48 so thatls> 48.
Also, the variance, var Ig, is much smaller than that of the Although ls is expected to decrease whenincreases, we
Anderson insulator, were not able to reach Anderson localization, even for the

largest system studietl,=256.

FIG. 7. The second cumulaéi,‘g)varsa as a function of index

varing < -(In g). (20) V. ABSORPTION

Absorption reduces the transmission of the EM waves in a

The last property seems to be in agreement with the previou@Mmilar way as localization. Mean conductance decreases ex-
work of Deychet al2® who argued that single parameter Ponentially with the system Iengf’ﬁ:To distinguish between
scaling does not work in the energy intervals, where the denAnderson localization and absorption effects, we need to un-
sity of states is so small that another characteristic lehgth derstand the statistical properties of the transmission. In Ref.
~sin® p(E) exceeds the localization length. Indeed, we? the simple criterion for localization was derived, based on
found that the density of states is close to zero in the neighthe value of the parameter
borhood (_)fE:0.08 _(Fig. 4), so that the average dista_lnce_ g =2/(3vars,). (21)
between isolated eigenstates is larger than the localization
It was argued that localization appeargif<1.
0.25 To study the effects of absorption, we add a small imagi-

nary part to the permittivity of cylindergnore preciselyV,
oA © <4 v
0.2 0 o
________________ 10%g
& & Aa © 3
0.15 A ¢ 10— i 8=08
o sl <9> a_ A 107
g A A2 331 :
6_
0.1 A a »
draadad A 310 E
*L-9 [ A £ I
0.05 al12g| [ee®® ©® 5=t4 T o O

< L=192 ob——L 107°F

v L=256 0 100 L 200 300
L | L 1 ' 1 L | -4 |

2 4 6 8 1075|2215 37 119
<g> Fl<+<192 -48.2 17.9
-5- 0-0 256 -6?.9 229 . .
107 - - -
FIG. 8. The variance of the conductance, gakg®—{(g)?, as a 80 60 ﬁg 20 0
function of the mean conductance for 0.1 andx=0.2, and various
system sizes. Open symbois: 0.1, full symbolsx=0.2. For small FIG. 10. The probability distributiop(In g) for »?=0.08 and

values of(g), the numerical results scale to a universal curve. Forx=0.2. The distribution shows that transport is due to tunneling
large (g) they converge to the universal value of gs0.1855 through a system with an energy gap. Note that the width of the
(Refs. 18 and 20 The inset shows the mean conductakgefor distribution, var Ing<<{In g, is much smaller than that of the dis-
6=1.4(circles and §=3.1 (triangles. For 6=3.1,(g) still increases  order induced insulator. Data for the mean value and variance of
with L, which indicates thalt is not large enough for transport to be In g are given in the legendNg,= 7000 forL <256 and is>10"* for
diffusive. smallerL.
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FIG. 11.2The probability distribution of the conductangdor FIG. 12. The probability distribution of the logarithm of the
x=0.2 andw"=0.14 for the case without absorption and with small oo qyctance in various regimes. L: regime of Anderson localization
absorption in the dielectric cylindets =128). Absorption is due to with Gaussian distribution and vardn=—(In g). LA: localized re-
the small imaginary part of the permittivity, of cylinders. The gime with absorptior{im V,=0.01). Compared with L, we see that

mean conductance decreases, due to absorfiem legend and e part of the distribution with relatively large conductance is miss-
the conductance distribution is Gaussian. The inset showd the ing. T: tunneling regime, in which var ig<—(In g). TA: tunneling

dependence of {g) and(Ing) for the stronger absorptioimVz  \ith absorption (Im V,=0.09. Absorption does not influence

=0.09. The numerical results confirm that the conductance iSp(In g). MA: metallic regime with absorptioim V,=0.069. Here,

self-averaged. conductance is self-averaged. Parameters of systems were chosen

such that(In g) is approximately the same for all systeiisee leg-

in Eq. (10) becomes complex in our simulatigngirst, we  end. Inset shows vas, in all the above regimes. As predicted in

analyze how absorption changes the transmission properti€ef. 9, vars,<1 in the metallic regime with absorption, butssl

of the metallic system. We us#=1.4 andx=0.2 (Fig. 2). As in the localized regime, both with and without absorption. The same

expected, the mean conductance decreases when the syste@ifls for the tunneling regimelata for L, LA, and TA regimes are

size increased|n g)~-L similarly as for localized waves. almost indistinguishgb}g Thus the critc_eriorg’<1 cannot distin-

In contrast to the localized regime, the conductance is selfduish between localization and tunneling.

averaged in this caséln g)=In{(g). The conductance distri-

bution is still Gaussian. As shown in Fig. 11, the width of the

distribution of the normalized conductance depends only parameterss, in the metallic regime. The universality sur-

weakly on the absorption strength. This is in agreement wittvives for rather small values of conductan¢g,=1-3. Our

analytical results of Brouwéf. _ numerical results confirm that the theory, developed for the
Figure 12 compares the statistics of the logarithm of theyyasi-one-dimensional systems, can be successfully applied

conductance of five different transport regimes—localizationg 2p systems too. Our results are also consistent with pre-
and tunneling with and without absorption, and diffusive o5 experiments.

(_metallic) regime.with absorption. The numeri<_:all results CON-  As there is no metallic regime in two-dimensional sys-
firm that absorption d(_)es not change the_ statistical propertle@msi the above-described metallic behavior is just an effect
?r];?se g?ré?:scstigfev'vg\'/\;esn (;EZSttlc})/ 2¥Sgr;3;?te|:iﬁ;crg OiLqeelegEf the finite size of our sample. By increasing the system
T e - > eg ize, conductance would decrease and finally, in the limit of
Anderson localization, the probability to find relatively large L> localization length, the wave becomes localized. The lo-
values ofg is reduced due to absorption, while another part”" . . ' ) ) .
of the distribution, where Ig<<(In g), is almost unaffected calized regime was also.observed Ina gap,.where the den§|ty
by the presence of absorption. As a respln g) is not ]?f states |s_smalle|r Lhanéndt_he.tt))aqu, bfuthsulll non.zk(]ero. Ifn ;h|s
Gaussian anymore. In the tunneling regime, absorption onl requency interval, broad distribution of the logarithm of the

reduces the magnitude of veyas can be seen in the inset of %onductance, typical for the Anderson localization in elec-
Fig. 12 tronic systems, is observed.

Anderson localization should be distinguished from the
tunneling regime, which we found in the frequency gap,
VI. CONCLUSIONS where the density of states is close to zero. Here, the statis-

We presented a numerical analysis of the transmission dfcs of conductance is determined by the statistical properties
the scalar classical wave through a disordered two®f the isolated frequencies inside the gap. The distribution
dimensional system. By mapping this system to a 2D elecP(In g) differs considerably from Gaussian. These results are
tronic disordered problem we found frequency intervals within agreement with the theoretical analysis of Deyttal 2
high transmission. For these frequencies, we obtained the Finally, we analyzed the effects of absorption. We found,
statistical distribution of the transmission parameters prein agreement with theoretical and experimental works, that
dicted recently by the theory. We confirmed the universalityabsorption does not change the statistical properties of the
of the conductance fluctuations and of the distribution of theransmission. Since the statistical properties of the param-
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eters,s,, are insensitive to the presence of absorption both irgimes are distinguishable from the form of the probability
the localized and in the metallic regimes, typical values ofdistribution of the total transmissian

vars, enable us to decide whether the exponential decrease

of the conductance is due to localization or to absorption. ACKNOWLEDGMENTS

However, statistics 0§, cannot distinguish between Ander-  Thjs work was supported by Ames Laboratdfontract
son localization and tunneling. Fortunately, these two reNo. W-7405-Eng-82and VEGA(Project No. 2/3108/2003

*Email address: peter.markos@savba.sk 15M. C. W. van Rossum and Th. M Nieuwenhuizen, Rev. Mod.

1P. W. Anderson, Phys. Rewl09, 1492(1958. Phys. 71, 313(1999.

2E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ra-16p A Mello, P. Pereyra, and N. Kumar, Ann. Phys.Y.) 181,
makrishnan, Phys. Rev. Letfl2, 673 (1979. 290 (1988.

3E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod.17pl A. Mello and A. D. Stone, Phys. Rev. B4, 3559(1991).

Phys. 73, 251 (2002. 18
) P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Re\33 1039
4A. MacKinnon and B. Kramer, Z. Phys. B: Condens. Mat5s; (1987 Uy 4 ®

1(1983. 19
A - . Y. Imry, Europhys. Lett.1, 249 (1986.
5K. Slevin, P. Markos, and T. Ohtsuki, Phys. Rev. L&6, 3594 2001, Riihlander, P. Markos, and C. M. Soukoulis, Phys. Re6/8
(2009); Phys. Rev. B67, 155106(2003. ]_'72202(200:;) ’ ’ T ’ '

6M. Stoytchev and Z. Z. Genack, Phys. Rev. L&t®, 309(1997). 21 Trens oh E59. 033104(200
;A. Z. Genack and N. Garcia, Phys. Rev. Lef6, 2064 (1991). 22A \r(z\rﬁirlls\(/:‘ ancilsl—.l Rg;&, Pr;ys Rle\ff(EO 3557603(20019
A. A. Chabanov and A. Z. Genack, Phys. Rev. L&¥, 153901 : , : ’ : ) :

(2001). y 23E. Kogan, M. Kaveh, R. Baumgartner, and R. Berkovits, Phys.

9A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature Rev. B 48 9404(1993.

(London 404, 850(2000. 24Th. M Nieuwenhuizen and M. C. W. van Rossum, Phys. Rev.
10C. M. Soukoulis, E. N. Economou, G. S. Grest, and M. H. Cohen, Lett. 74, 2674(1995.

Phys. Rev. Lett.62, 575(1989. 25E. Kogan and M. Kaveh, Phys. Rev. 8, R3813(1995.
11T, Ando, Phys. Rev. B44, 8017(1989; J. B. Pendry, A. MacKin-  25P. W. Brouwer, Phys. Rev. 557, 10 526(1998.

non, and P. J. Roberts, Proc. R. Soc. London, Ser. A Londor?’Strictly speakingp(In g) is not exactly Gaussian in localized re-

Ser. A 437, 67 (1992. gime, see P. Marko$, Phys. Rev. &, 104207(2002 for de-
12R. Landauer, IBM J. Res. De\d, 223(1957. tails.
13E. N. Economou and C. M. Soukoulis, Phys. Rev. L, 618  28L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, A. Yamilov,
(1981). and H. Cao, Phys. Rev. B8, 174203(2003, and references
14C. W. J. Beenakker, Rev. Mod. Phy89, 731 (1997. therein.

054201-7



