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Transmission of a scalar field through a random medium, represented by a system of randomly distributed
dielectric cylinders, is calculated numerically. The system is mapped to the problem of electronic transport in
disordered two-dimensional systems. Universality of the statistical distribution of transmission parameters is
analyzed in the metallic and localized regimes. In the metallic regime, the universality of transmission statistics
in all transparent channels is observed. In the band gaps, we distinguish a disorder inducedsAndersond
localization from tunneling through the system, due to a gap in the density of states. We also show that
absorption causes a rapid decrease of the mean conductance, but, contrary to the case of the localized regime,
the conductance is self-averaged with a Gaussian distribution.
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I. INTRODUCTION

Transport of classical waves in random media is a chal-
lenging problem, attracting increasing interest of theoretical
and experimental physicists because it offers the possibility
of studying Anderson localization.1 Since interactions do not
play any role in classical wave scattering, these systems
might be more convenient for experimentally verifying the
scaling theory of localization2 than quantum electronic sys-
tems, where the influence of the mutual interaction of elec-
trons upon transport has not yet been clarified.3 Two main
issues of localization theory, namely the presence or absence
of the metallic state in the two-dimensionals2Dd systems,
and the validity of the single parameter scalingsSPSd2,4,5

might be more readily resolved experimentally for the clas-
sical wave problem than for the electronic one. Recent ex-
perimental results for the transmission of electromagnetic
waves indeed confirmed that transmission is universal in the
diffusive regime6 and presented strong indications for disor-
dered induced Anderson localization.7–9

In this paper, we analyze numerically the transmission of
scalar classical waves through a two-dimensionals2Dd sys-
tem of randomly distributed dielectric cylinders. Following
Ref. 10, we map the problem into the 2D Anderson model
with random binary potential. Statistical properties of wave
transmission are then analyzed using the transfer matrix
method.11 We calculate the conductanceg as12,13

g = o
ab

Tab. s1d

In Eq. s1d, Tab= utabu2, wheretab is the transmission amplitude
from channela to channelb. a,b=1,2,… ,Nop, whereNop is
the number of open channels. We first determine the band
structure of the original classical wave problem. Then we
analyze the statistical properties of the transmission in bands
and gaps.

In bands, whereg.1, we observed diffusive transport.
Statistical properties of the transmission are in good agree-
ment with theoretical predictions of the random matrix

theory14,15 and the DMPK equation.16,17 The distribution of
the conductance is Gaussian with a universal dimension-
dependent variance.14,18–21 Universal properties were pre-
dicted not only for the conductanceg, but also for the nor-
malized parameters sab=Tab/ kTabl,22,23 and for the
normalized transmission in a given transport channel

sa =
Ta

kTal
, Ta = o

b

Tab. s2d

The universal probability distribution

pssad =E
−i`

+i` dx

2p
expfxsa − Fsxdg,

Fsxd = kglln2sÎ1 + x/kgl + Îx/kgld s3d

has been derived analytically.24,25 From Eq.s3d, the second
cumulant is obtained as

varsa = ksa
2l − ksal2 =

2

3kgl
. s4d

Universality of the statistical properties of parameters,sa,
was confirmed experimentally6 up to rather small values of
the conductanceskgl<2−3d.

In gaps, the mean of the logarithmkln gl decreases lin-
early with the system size. Here, we distinguish between two
different regimes, one with nonzero density of states, and the
other called tunneling regime, characteristic for the fre-
quency region without eigenstates. The first describes Ander-
son localization, characterized by the Gaussian distribution
of kln gl with variance varkln gl~−L /j sj is the localization
lengthd in agreement with localization theory. The second
regime appears in the gaps, where the density of states is
very small. Then, the transmission is determined by tunnel-
ing through the sample. Althoughkln gl~−L, the distribution
of kln gl is not Gaussian but given by the statistics of the
energy spectra.
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The form of the probability distributionpsln gd enables us
also to distinguish between localization and absorption. We
find that absorption also gives a decrease ofkln gl~−L; how-
ever, in contrast to localization, the conductance remains
self-averaged. Our data agree with the theoretical
prediction,26 as well as with the qualitative criterion9 for lo-
calization 2/s3 varsadø1.

The paper is organized as follows: In Sec. II we introduce
the model and system parameters. In Sec. III we present the
mapping of the classical wave problem into the problem of
the transmission of electrons in disordered systems.10 Results
of numerical simulations are presented in Secs. IV and V.
Conclusions are given in Sec. VI.

II. MODEL

We study a two-dimensional system consisting of a ran-
dom array of dielectric cylinders. To make the numerical
simulations easier, we consider rectangular rods instead of
cylinders. A typical sample is shown in Fig. 1. No contact or
overlap of neighboring rods is allowed. The dielectric per-
mittivity of rods is e2 and of the embedding medium ise1.
Two semi-infinite leads with permittivityelead are attached to
the sample. The concentration of the dielectric rods is given
by the filling factorx of the rod’s material. In this work we
consider square cross section of dielectric 333 rods, mea-
sured in dimensionless units. In the same units, the system
sizeL varies from 32 up to 256.

III. MAPPING TO THE ELECTRONIC SYSTEM

We use the formal equivalence10 of the scalar wave equa-
tion,

¹2u + esrWdv2u = 0, s5d

and the Schrödinger equation for electrons,

¹2C + fE − VsrWdgC = 0 s6d

swe set 2mc2/"2=1 and c2=1d. For a given space depen-
dence,esrWd, and given frequency,v, one can find a potential

VsrWd and energyE such that the solutionsu andC of Eqs.s5d
and s6d are identical. Formal equivalence requires that the
identity

v2esrWd = E − VsrWd s7d

must be fulfilled for allrW.
Formulas7d does not mean that the two models described

by Eqs. s5d and s6d are equivalent, because potentialVsrWd
depends both on the frequency,v, and the energy,E. Equa-
tion s7d only means that for a given scalar wave model de-
fined byesrWd we can find for each frequency,v, an electronic
model with potentialVsrWd and energyE, that the solutions of
both models are the same.

Both the energy and the potential of the electronic model
are fixed by formulas7d. Changing the frequency,v, we
obtain another electronic model, since the potentialVsrWd
changes. This means that for a given spatial distribution of
esrWd, two different frequencies,v, define two different elec-
tronic models.

To be more specific, we consider a model of randomly
distributed rectangular rods discussed in Sec. II. This model
can be mapped into the electronic model with a random bi-
nary potential. For a given sample, the spatial distribution of
the potential is identical with the distribution of the permit-
tivity. The energy,E, as well as two values of the potential,
V1 and V2, are determined by Eq.s7d with the following
relations:

v2elead= E, s8d

v2e1 = E − V1, s9d

v2e2 = E − V2. s10d

From Eqs.s9d and s10d we easily obtain

v2e1 =
d

m − 1
, s11d

where

m =
e2

e1
s12d

and

d = V2 − V1. s13d

The energy,E, is given as

E = V1 +
d

m − 1
, s14d

andV1 is determined by

V1 = v2se1 − eleadd. s15d

Note that forelead=e0=1 svacuum in leadsd, Eqs.s8d–s10d
can be solved only when bothV1, V2.0 assuming thate1,
e2.1.

For simplicity, we consider in this paper the special case,

FIG. 1. Typical sample configuration. The size of the system is
1283128, the filling factorx=0.1. 182 rectangular rods with square
cross section of 333 are randomly distributed throughout the
sample. Scalar wave propagates from left to the right.

P. MARKOŠ AND C. M. SOUKOULIS PHYSICAL REVIEW B71, 054201s2005d

054201-2



e1 = elead= 1. s16d

The method is, of course, applicable to any setselead, e1, e2d,
including elead.e1.

Using Eqs.s15d ands16d, we haveV1;0. Comparison of
Eqs.s11d ands14d givesv2=E. Finally, V2=−d. We also fix
the ratio of two permittivitiesm=e2/e1 to the value ofm
=11.

In numerical simulations, we used the discretized version
of the Schrödinger equation, Eq.s6d,

Cx,y+1 + Cx,y−1 + Cx+1,y + Cx−1,y = s4 − E + VxydCxy.

s17d

Hard wall boundary conditions were used. The transfer ma-
trix method11 was used to calculate numerically all the pa-
rameters,sa, and the conductance. The number of open chan-
nels,NopøL, which enters in Eq.s1d is given by the number
of propagating solutionsskn reald of the dispersion relation

2 coskn = 4 −E − 2 cos
p

L + 1
n, n = 1,2,…,L. s18d

Each frequency,v, defines a corresponding tight-binding
Hamiltonian, for which the transmission is calculated using
standard numerical procedures known for the electronic lo-
calization problems.11 Statistical ensembles ofNstat=104

samples were considered, which assure that sufficient accu-
racy of the transmission parameters of interest were ob-
tained.

IV. CONDUCTANCE

Figures 2 and 3 show thev dependence of the mean con-
ductance for the present model. Equivalently, the numerical
results of Figs. 2 and 3 might be interpreted as the
d-dependence of the conductance of the 2D electronic sys-
tem. In the last case, however, one must keep in mind that in

the Anderson model, the value ofd determines the random
potential. Data presented in Figs. 2 and 3 do not directly
correspond to the electronic density of states in the disor-
dered electronic system. Different values ofd correspond to
different models. Note also that the energy,E, Eq. s14d is
also a function ofd.

For completeness, we show in Fig. 4 the density of states,
rsEd, of the electronic system for four values ofd.

A. Diffusive regime „Šg‹.1…

Three frequency bands are visible in Figs. 2 and 3, where
we expect the metallic behavior. Mean conductancekgl.1
slightly increases with the system size and the value of varg
is very close to the universal conductance fluctuation.18,20,21

The distribution of the conductance is Gaussianssee, for ex-
ample, Fig. 11d. Although these properties are finite size ef-
fects sno metallic state exists in 2D in the limitL→`d, the
numerical data enable us to check the theoretical prediction
about the transmission statistics.

In Fig. 5 we show the statistics of the parameters,sa, for
the frequency in the center of the firstsd<1.4d band. The
number of open channels is 23 for the size of the system
1923192. Results confirm that the distribution,Pssad, is uni-
versal and does not depend ona. The second cumulant,
varsa, is close to its theoretical value, 2/3kgl.

The same analysis was completed for the second band
sFig. 6d. Here, the agreement with theory is not as good as in
the previous case, presented in Fig. 5 especially for a smaller
concentration of rods. Although the distribution,Pssad, does
not depend ona, it differs considerably from theoretical pre-
dictions. We interpret this discrepancy as a finite size effect.
Indeed, the mean conductancekgl increases with the system
sizesFig. 3 and inset of Fig. 8d, which indicates that we have
not reached the diffusive regime yet.

Note also that we are studying 2D samples, while the
theory is formulated for quasi-one-dimensional systems.
Therefore we expect that the agreement with theory should
be better if the length of the system increases. This is con-
firmed by numerical results presented in Fig. 7, which shows
the second cumulant32kglvarsa for various 2D and quasi-
one-dimensional systems.

FIG. 2. Mean conductancekgl stopd and kln gl sbottomd as a
function of the frequency form=e2/e1=11 andx=0.2. Frequency
bands and gaps are clearly visible. In bands aroundv2=0.14 and
0.31, we find transport statistics typical for the metallic regime. Two
different transport regimes were observed in gaps: In the first gap,
v2<0.08, the density of states is very small and transport is due to
tunneling through the sample. In the second gap,v2<0.21, we
observed disorder induced Anderson localization.

FIG. 3. The same as in Fig. 2, but forx=0.1.
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Figure 8 shows the variance, varg, of the conductancevs
the mean conductancekgl. We expect that varg should satu-
rate to the universal value of varg→0.1855sRefs. 18 and
20d for g@1.

B. Localization „Šg‹™1…

In the regions between the pass bands, the conductance
decreases exponentially with the system size. It is much
more pronounced for larger concentrations of cylinderssx
=0.2d. Here, two different regimes were observed.

In the upper gapsd<0.21d the observed statistical prop-
erties of the conductance are in agreement with the theoret-
ical expectations for the localized regime: The distribution of
ln g is GaussiansFig. 9d with var lng<−kln gl~2L /j,
which is characteristic for the disorder induced localization.
The parameterj is the localization length.27

In the lower gapsd<0.08d the conductance decreases
rapidly as the size of the system increases. The probability
distribution of lng is not Gaussian, as can be seen in Fig. 10.
Instead, it decreases exponentially for larger values of con-
ductance as

psln gd ~ exp constfkln gl − ln gg. s19d

In contrast to Anderson localization, no samples with con-
ductance close to 1 were found. This indicates that transport

FIG. 4. Density of states of the
electronic system withx=0.2 cal-
culated for four values ofd. The
size of the system is 48348 and
an average over ten ensembles
was calculated. Dashed lines indi-
cate the energy,Esdd. For d=0.8,
the inset shows the position of
eigenenergies for 18 different
samples.

FIG. 5. Left panels: Probability distributionpssad for some open
channels compared with the theoretical prediction of Eq.s3d
sdashed lined. v2=0.14sthe center of the first bandd. Concentration
of cylinders isx=0.1 stopd andx=0.2 sbottomd. Right panels: The
second cumulant32kglvarsa as a function of indexa stopd and mean
values kTal sbottomd. The size of the system isL=192, electron
energy isE=0.14, and the number of open channels,Nop=23. Sta-
tistical ensemble ofNstat=10 000 samples was considered.

FIG. 6. The same as in Fig. 5, but forv2=0.31.Nop=34. The
agreement with theory is not as good as in Fig. 5, especially forx
=0.1 because of the small system size.
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is possible only by tunneling through isolated eigenstates.
Also, the variance, var lng, is much smaller than that of the
Anderson insulator,

var lng ! − kln gl. s20d

The last property seems to be in agreement with the previous
work of Deych et al.28 who argued that single parameter
scaling does not work in the energy intervals, where the den-
sity of states is so small that another characteristic lengthls
,sin−1 rsEd exceeds the localization length. Indeed, we
found that the density of states is close to zero in the neigh-
borhood ofE=0.08 sFig. 4d, so that the average distance
between isolated eigenstates is larger than the localization

length sj<8 was estimated from theL dependencekln gld.
For instance, in the interval 0.05,E,0.11, we found an
average of only one eigenstate, whenL=48 so thatls.48.
Although ls is expected to decrease whenL increases, we
were not able to reach Anderson localization, even for the
largest system studied,L=256.

V. ABSORPTION

Absorption reduces the transmission of the EM waves in a
similar way as localization. Mean conductance decreases ex-
ponentially with the system length.26 To distinguish between
Anderson localization and absorption effects, we need to un-
derstand the statistical properties of the transmission. In Ref.
9 the simple criterion for localization was derived, based on
the value of the parameter

g8 = 2/s3 varsad. s21d

It was argued that localization appears ifg8ø1.
To study the effects of absorption, we add a small imagi-

nary part to the permittivity of cylindersfmore precisely,V2

FIG. 7. The second cumulant3
2kglvarsa as a function of indexa

for the center of the second bandv2=0.31 andx=0.1. 2D systems
of size L3L with L=125, 192, and 256 were considered. These
results are compared with quasi-one-dimensional systems of size
1283Lz with Lz=128, 256, 320, 448, and 512 with mean conduc-
tancekgl=7.28, 4.29, 3.53, 2.57, and 2.25, respectively.

FIG. 8. The variance of the conductance, varg=kg2l−kgl2, as a
function of the mean conductance forx=0.1 andx=0.2, and various
system sizes. Open symbols:x=0.1, full symbols:x=0.2. For small
values ofkgl, the numerical results scale to a universal curve. For
large kgl they converge to the universal value of varg=0.1855
sRefs. 18 and 20d. The inset shows the mean conductancekgl for
d=1.4 scirclesd andd=3.1 strianglesd. For d=3.1, kgl still increases
with L, which indicates thatL is not large enough for transport to be
diffusive.

FIG. 9. The probability distributionPsln gd for v2=0.21. The
distribution is close to the log normal with var lng<−kln gl, typical
behavior of Anderson localization. The number of random configu-
rationsNstat is 105 for Lø96 and 104 for L=128. The legend pre-
sents the data forkln gl and var lng.

FIG. 10. The probability distributionpsln gd for v2=0.08 and
x=0.2. The distribution shows that transport is due to tunneling
through a system with an energy gap. Note that the width of the
distribution, var lng! kln gl, is much smaller than that of the dis-
order induced insulator. Data for the mean value and variance of
ln g are given in the legend.Nstat=7000 forLø256 and is.104 for
smallerL.

INTENSITY DISTRIBUTION OF SCALAR WAVES… PHYSICAL REVIEW B 71, 054201s2005d

054201-5



in Eq. s10d becomes complex in our simulationsg. First, we
analyze how absorption changes the transmission properties
of the metallic system. We used=1.4 andx=0.2 sFig. 2d. As
expected, the mean conductance decreases when the system
size increases,kln gl,−L similarly as for localized waves.
In contrast to the localized regime, the conductance is self-
averaged in this case,kln gl=lnkgl. The conductance distri-
bution is still Gaussian. As shown in Fig. 11, the width of the
distribution of the normalized conductance depends only
weakly on the absorption strength. This is in agreement with
analytical results of Brouwer.26

Figure 12 compares the statistics of the logarithm of the
conductance of five different transport regimes—localization
and tunneling with and without absorption, and diffusive
smetallicd regime with absorption. The numerical results con-
firm that absorption does not change the statistical properties
of the conductance, given mostly by the interference of elec-
trons or classical waves due to disorder. In the regime of
Anderson localization, the probability to find relatively large
values ofg is reduced due to absorption, while another part
of the distribution, where lng! kln gl, is almost unaffected
by the presence of absorption. As a result,psln gd is not
Gaussian anymore. In the tunneling regime, absorption only
reduces the magnitude of varsa as can be seen in the inset of
Fig. 12.

VI. CONCLUSIONS

We presented a numerical analysis of the transmission of
the scalar classical wave through a disordered two-
dimensional system. By mapping this system to a 2D elec-
tronic disordered problem we found frequency intervals with
high transmission. For these frequencies, we obtained the
statistical distribution of the transmission parameters pre-
dicted recently by the theory. We confirmed the universality
of the conductance fluctuations and of the distribution of the

parameterssa in the metallic regime. The universality sur-
vives for rather small values of conductance,kgl=1−3. Our
numerical results confirm that the theory, developed for the
quasi-one-dimensional systems, can be successfully applied
to 2D systems too. Our results are also consistent with pre-
vious experiments.6

As there is no metallic regime in two-dimensional sys-
tems, the above-described metallic behavior is just an effect
of the finite size of our sample. By increasing the system
size, conductance would decrease and finally, in the limit of
L@ localization length, the wave becomes localized. The lo-
calized regime was also observed in a gap, where the density
of states is smaller than in the bands, but still nonzero. In this
frequency interval, broad distribution of the logarithm of the
conductance, typical for the Anderson localization in elec-
tronic systems, is observed.

Anderson localization should be distinguished from the
tunneling regime, which we found in the frequency gap,
where the density of states is close to zero. Here, the statis-
tics of conductance is determined by the statistical properties
of the isolated frequencies inside the gap. The distribution
psln gd differs considerably from Gaussian. These results are
in agreement with the theoretical analysis of Deychet al.28

Finally, we analyzed the effects of absorption. We found,
in agreement with theoretical and experimental works, that
absorption does not change the statistical properties of the
transmission. Since the statistical properties of the param-

FIG. 11. The probability distribution of the conductanceg for
x=0.2 andv2=0.14 for the case without absorption and with small
absorption in the dielectric cylinderssL=128d. Absorption is due to
the small imaginary part of the permittivitye2 of cylinders. The
mean conductance decreases, due to absorptionssee legendd, and
the conductance distribution is Gaussian. The inset shows theL
dependence of lnkgl and kln gl for the stronger absorptionsIm V2

=0.05d. The numerical results confirm that the conductance is
self-averaged.

FIG. 12. The probability distribution of the logarithm of the
conductance in various regimes. L: regime of Anderson localization
with Gaussian distribution and var lng<−kln gl. LA: localized re-
gime with absorptionsIm V2=0.01d. Compared with L, we see that
the part of the distribution with relatively large conductance is miss-
ing. T: tunneling regime, in which var lng!−kln gl. TA: tunneling
with absorption sIm V2=0.05d. Absorption does not influence
psln gd. MA: metallic regime with absorptionsIm V2=0.065d. Here,
conductance is self-averaged. Parameters of systems were chosen
such thatkln gl is approximately the same for all systemsssee leg-
endd. Inset shows varsa in all the above regimes. As predicted in
Ref. 9, varsa,1 in the metallic regime with absorption, but is@1
in the localized regime, both with and without absorption. The same
holds for the tunneling regimesdata for L, LA, and TA regimes are
almost indistinguishabled. Thus the criteriong8,1 cannot distin-
guish between localization and tunneling.

P. MARKOŠ AND C. M. SOUKOULIS PHYSICAL REVIEW B71, 054201s2005d

054201-6



eters,sa, are insensitive to the presence of absorption both in
the localized and in the metallic regimes, typical values of
varsa enable us to decide whether the exponential decrease
of the conductance is due to localization or to absorption.
However, statistics ofsa cannot distinguish between Ander-
son localization and tunneling. Fortunately, these two re-

gimes are distinguishable from the form of the probability
distribution of the total transmissiong.
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