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We studied analytically and numerically the complex properties of random lasing modes. Mode repulsion in
frequency domain for inhomogeneously broadened gain media was confirmed by our numerical results. We
constructed a coupled-mode model to explain the synchronized lasing behavior for modes whose frequency
difference is less than the homogeneous gain width. The stability of coupled modes was investigated. The
effective competition coefficient, for two modes with both gain competition and field coupling is obtained
analytically. In our numerical experiments, we also found the coupled oscillations of two lasing modes. From
the analytical derivation, we demonstrated that such oscillations could reveal the field-coupling strength be-
tween the random modes.
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[. INTRODUCTION time length, and the spatial area, can be controlled, so that
excited mode can survive enough time length for observing
Over the past decade, random lasers received much attetinre interaction between the lasing modes. Real and numerical
tion of both theoretical and experimental grodp¥ In ad-  experiments show that the interactions between random las-
dition to many potential applications, the study of randoming modes could be observed, e.g., the mode repulsion in real
lasers is important from the fundamental physics point ofspace and spectral domain, the complex dynamic processes
view. It bridges two basic physics branches, laser physicsf coupled modes?®

(electromagnetic waves in gain systerasd Anderson local- The interaction between random modes in active random
ization (wave propagation in random systemiRandom laser media can be separated into two kinds.
not only becomes a new member of laser farhiiyut also (i) Direct coupling of electromagneti&M) field between

provides a new path to study localization phenonfehdn-  modes, such as the field leaked from one lasing mode can be
like the conventional lasers, the modes of random lasers ambsorbed by other modes. Because of the finite size of ran-
formed by random scattering instead of designed reflectiordom lasing systems, the eigenfrequency of a medectly
Because random lasing modes come from the eigenstates sifiould be called quasimodé a complex number, whose
disordered systenfsthey open a special door to study the imaginary part describes the decay rate. Because the eigen-
interplay between localization and amplificatith. frequencies are complex values, the eigenmodes are not or-
Although random lasing modes have been stuicfiéd thogonal to each other. This leads to a linear field coupling
and the interaction between them been obsenaddetailed between the modgsgjuasimodels Such mode coupling could
theoretical study is still missing. The interaction between thebe strong if two modes are spatially and spectrally close to
random lasing modes provides us a rare chance to quantitaach other.
tively study the properties of random modes. The informa- (ii) Competition of gain between modes which are spa-
tion obtained from the studies can reveal the fundamentaially overlapped, also called cross saturation in laser phys-
specialty of random lasers. We know it is hard to extract suclics. The process can be explained as that the local deplete of
detailed information from the transport studies of passiveexcited electrons by one lasing mode will suppress other
random systems for following reason§) The physical mode to lase.
quantities in the transport measurement, such as transmis- The physics importance of these two kinds of interaction
sion, reflection, and density of states, @aeeragedover between modes are obvious. Because the coupling between
many modes of the random systertis} it is very difficult to  the random modes can tell us how the field leaks from one
excite the modes dedpside a random system with an op- mode to another one, it is related to the propagation channels
tical field incident from outside. Other reasons, such as thef EM field in random system. Hence, a clear physical pic-
short lifetime of excited random modes, also make the exture of such coupling is essential for understanding wave
perimental and theoretical study difficult. These difficulties,localization. The competition of gain is related to the local
however, can be avoided in random lasers. First of all, only anteraction of the EM field with excited electrorisr other
few modes lase, thus the interaction between them is naictive particles Such competition can be regarded as an
averaged anymore. Second, the modes inside the randoimdirect interaction between random modes through the ac-
system can be excited, for example, by electric pumpingtive media. For two modes that are close in frequency and in
Finally, the pumping parameters, such as the strength, thgpace, the coupling and competition could be strong. Such
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interactions may strongly change the properties of lasing Despite the fact that most lasing modes are spectrally
modes, e.g., they influence which mode would lase, the dyseparated in the random laser with inhomogeneously broad-
namic behavior of the lasing modes, the spectral property ogned gain spectrum, two special cases are found experimen-
random laser, etc. A theoretical study of mode interactiongally. One is the observation of two lasing modes whose fre-

would allow us to understand thoroughly the physics behindluency spacing is less than the homogeneous linewidth of
random lasing phenomena. the gain material. Their field strengths are similar. The tem-

In our theoretical discussion, reabsorption and reemissioROral measurement reveals that the evolution of these two

of photons are ignored with the approximation that the eleci0des is synchronized, i.e., lasing starts and stops at the
tronic lifetime at lower-lasing level is very short. Because theS@me time. This obviously tells us that there exists another
photons from one lasing mode can be reabsorbed by ele@?€chanism which can balance the mode competition. This
trons at lower-lasing level and reexcited electrons can emif’echanism is the field coupling between the two modes,
photons into other modes, so the process will cause an extfgmely, the EM field leaked from one mode is absorbed by
coupling between modes. But in our four-level electronicanother. When the frequencies of two modes are close, their
model, if the lifetime of lower-lasing level is very shditis ~ €Oupling could be very strong. The other case is that two
true generally, such effects could be very weak. modes close in frequency are coupled, but their field
Recently, some experimental resfiltsave shown the strengths are quite different. Their lasing period is different.
complex behaviors of random lasing modes when there ar&he stronger modécalled main modglases longer than the
coupling and competition between them in inhomogeneou¥/€aker one(called side mode Both phenomena are also
active media. We know, that the gain competition of modesob_served in the random laser with homogeneously broadened
in homogeneously broadened gain material causes the mod@a!n spectrum. _ _ o
spatially to repel each other and their distance is related to N our numerical simulations, we found additional phe-
the localization length if the frequency is in the localized "°Mmena and dynamic processes of coupled modes that are
regime. This was first predicted theoreticaliyen observed NOt observed experimentally. For example, we observed the
experimentally’ But the inhomogeneous broadening of gaincoupled _osullauons of two strongly coupled rar]dom modes.
material adds one more dimension to mode competition. BelO explain all these results, we need a theoretical model. In
cause in inhomogeneous gain material, the active atoms afBIS pPaper, we presented quantitative treatment of these phe-

separated into several subgroups. The gain of each subgrofigmena by semiclassical laser theofi&&’ Due to the com-
is homogeneous and is centered around a certain frequend)l€Xty Of the active random systems, we have to make some

The central frequencies of all subgroups are evenly distrib@PProximation, which will be discussed in the later sections.
uted in frequency domain, but the weights of different sub-Our goal is to find the physical mechanisms behind all the
groups are different. Such subgrouise source of inhomo- phenomen_a descrlbed_ earlier. This paper is organized as fol-
geneous broadeningn real material could be caused by Iows_. S_ectlon Il contains the nl_JmerlcaI results of mode re-
many physical effects, such as the Doppler effect of the expulsion in frequency domain of mhomogeneously broade_ned
cited gas atoms or the nearly degenerated energy levels [@ndom laser. Based on the solution to the coupled field
dye molecules. So the mode competition of gain exists nogduations of two modes, we give the theoretical explanation
only in spatial domain, but also in spectral domédifferent of synchrom;e_d lasing behgwor of two couple_d modes. In
subgroups In the experimentd, the gain material Sec. III_, stab|I_|ty of_ two galn-co_mpeted anq fl_eld-couple(_i
(rhodamine 640 dye in glassy hpstas inhomogeneously _mo_des is studied Wlth rate equations. The criterion of stak_)|l-
broadened, and only small area(smaller than the typical ity is pr.esented. Section |V focuses on the coupled relaxatlc_)n
mode siz¢ was pumped. Thus all lasing modes should beoscnlatlon_s of two strongly cou'pled lasing modes.. Theoreti-
spatially overlapped. In other words, the strong spatial comeally, we flnd that the frequencies of such oscillations reveal
petition is locked in the experimental condition, so that onlythe coupling strength between the random modes. In Sec. V,
one mode would lase and suppress all others if the gain wak€ Summarize the results and emphasize the importance of
homogeneous. The experimentally observed coexistence §fudying the random lasing modes.

lasing modes can only be explained by the fact that the in-

homogeneous broadening of gain gives them a new dimen-), ‘\;ope REPULSION AND SYNCHRONIZED LASING

sion (subgroupsto survive (lase simultaneous]yAt a high

pumping intensity(when a single subgroup can support a First we checked the experimental observation of mode
lasing modg lasing modes are found to be regularly spacedepulsion in frequency domain of inhomogeneously broad-
in frequency. That is an indication of mode repulsion in theened gain material by our numerical simulation. The inho-
spectral domain. Every lasing mode depletes only a subgroumogeneously broadened gain spectrum was constructed with
of excited molecules. Each subgroup of excited moleculesiumerous homogeneous lines. The inhomogeneous linewidth
could be regarded as a homogeneously broadened gaim 150 THz, 30 times of the homogeneous linewidtk
source at certain frequency, and it can only support one las=5 THz.>'? The Maxwell’s equations are coupled to the
ing mode around that frequency. The frequency spacing ofate equations of electronic populations. Temporal evolution
lasing modes corresponds to the homogeneous linewidth aff the electromagnetic field is calculated with the finite dif-
the subgroup molecules. We will see that such phenomeni@rence time domain method. The lasing spectrum is ob-
really also appear in our numerical simulation in a similartained by Fourier transform. For simplicity, we calculated
condition. one-dimensional(1D) random lasers which could reveal
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FIG. 1. Numerically calculated lasing spectrum at the pumping FIG. 2. The field amplitudeég of two lasing modes vs time
rate of P,=1x10" s ! of a 1D random laser system with inhomo- The synchronized lasing of two modes are shown.
geneous gain material. Almost regularly spaced peaks are shown.
modes of random lasers with homogeneously broadened gain

qualitative properties of 2D and 3D random lasers. The beSPectrum. _ _
haviors of 2D and 3D random lasers are qualitatively the Numerically, we simulated such phenomena in a homoge-

same. Our 1D random system is made of binary layers witf€ous ?al;n systlem. The .1;) rhandom dsystem CSBSlStS %f 100
dielectric constantg;=2.5 ande,=5.29. The layer thick- pairs of binary layers with the randomne®¢,=0.1 an

W,=0.6. The small system size allowed us to calculate
nessa=ay(1+W,y), b=bg(1+W,y), wherea,=48 nm, b . ; . ;
W,=0, by=80 nm, Wy=0.2, v is a random value in the many random configurations and find one with two coupled

; . . . Th i
range[ —1,1]. The system consists of 700 pairs of binary modes e pumping process startstal and stops at

=15 ps. At a pumping rat®,=4x10° s™1, the spectrum
layers, the system length 100 um. Only the central part of 1\ 5 o Jasing peaks with frequency separation 0.8 THz.

the system with length 3@m is pumped. Due to the weak Fjgyre 2 shows the temporal evolution of the amplitude of
randomness, the modes are spatially extended. Thus the Iagg electric fieldAg for these two lasing modes. Laser pulses
ing modes must overlap with each other and compete for thg, these two modes rise at the same time. The pulse duration
gain. At high pumping rate, the lasing modes are almosis nearly identical. These results agree with the experimental
regularly spaced in frequency as shown in Fig. 1. We als@jata.
repeated the calculation of similar systems with different pa- The next guestion is whether such synchronized lasing
rameters, and found that the regular spacing of lasing peaksaodes can be obtained in theoretical analysis. Our answer is
is a common feature of the lasing spectra. The frequencyes. Because the system, including the EM fields and elec-
separation of neighboring lasing modes is about 7 THzfron populations for two modes, is complex, we would end
which is a little smaller than the theoretical valu&\ @ up with a large number of coupled differential equations if
=10 THz2?! We note that the frequency spacing betweernwe do not make any approximation or simplification. Strictly
adjacent lasing modes is much larger than the average frespeaking, when two modes are close in frequency, the EM
guency spacing between eigenmodes in the random systenild equations should be used to explain the detailed cou-
This indicates that lasing in most eigenstates is suppresseqaling and competition between them. For the field equations,
because their frequencies are too close to one of the lasinge separate the space and time variables, and assume the
modes which has depleted the gain in one subgroup of exequations for the spatial part are solved. The eigenmodes and
cited molecules. Cross saturation of gain allows only onesigenfrequencies are already obtained. We only need to solve
mode to lase within a homogeneous line of the gain materiathe time-dependent part. With the field equations for modes,
However, we do observe two kinds of exceptions as inwe can get the instantaneous interaction between the modes.
experiments. Next we will focus on the first kind. We ob- However, the field equation&ven scalar field equations
serve that two lasing modes are spatially overlapped and theould be too hard to solve sometimes, especially when they
frequency separation between them is less than the homogare coupled with the rate equations for electrons. In this pa-
neous linewidth. Thus they should interact with the sameper, we will use the scalar field equations to study the syn-
subgroup of excited molecules, and the gain competitiorchronization of two coupled lasing modes, but use the pho-
would suppress lasing in one of them if there were no otheton rate equations to investigate their stabilities. Such
interaction. The facts that they lase simultaneously and thesimplification is reasonable because the synchronization is
field strengths are similar suggest that there must be addrelated to the phases of mode oscillations which could only
tional interactions between them. This additional interactiorbe studied with the field equations, while the stability is the
is the field coupling between the modes. It also exists irtime-averaged behavior of the lasing modes. These methods
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are commonly used in the laser phydicwhen the dynamic lapped at tails. We can think that such two localized lasing
processes are studied. modes are two cavities connected by a small window. If the

Let us consider two modesandB. Their frequencie, ~ window is not large, two lasing modes and their lasing fre-
and wg are close, and they are spatially overlapped. Theiquencies are still well defined. Actually, the distance between
quality factors are slightly different. The coupled field equa-two coupled modes is a little larger than the localization

tions are lengths of the modes, but the coupling is strong enough to
generate physical effects. Second, the saturable gain adds a
d2E; (1) dE(t) smalllnonlir?ear par_[a} complex value, s_eE in Eq. (1)]_ to
i MR T + 0?Ei(t) the dielectric coefficient. Such an active nonlinearity can

make two orthogonal passive modes to couple to each other,
) 12 and can lead to more complicated behavigms., the phase
__ E d“Pi(t) i (ﬂ) dEj(t) 1) lock) if its value is large enough. In our numerical configu-
e df? Yii V, dt ° rations, the strong-coupling phenomena are pretty rare to be
observed, just as those in experimenigext we will see that
The subscript,j can be 1(for modeA) or 2 (for modeB).  the coupling effects are observable, and such effects provide
E(t) is the electric field. The polarizatiod(t); can be sepa- a different way to study the interaction between localized
rated into two partsP;(t)=eo(x' +ix")Ei(t), the imagi- modes in real finite systems.
nary part is the source of optical gaiw; is the eigenfre- The general solutions of coupled EG) are very hard to
quency of the passive systel. is the spatial volume of the obtain, but we can get approximate solutions under certain
mode;e is the average dielectric constamt= w; /QI is the conditions. To SImpIIfy our derivation we need to make some
decay rate of the cavity, whef@; is the quality factory;; is ~ @pproximations(i) We neglect the gain saturation effe@t)
the field-coupling constant, and it can be expressed in th&e assume the quality factors of modeandB are not very
form y;=G;;/C, whereG;; is the external-sourceonduc-  different; (i) we assume moda reaches the lasing thresh-
t|V|ty andC is the Capacityin the effective circuit model. old first and its field is much Stronger than that of m@jso
Equation (1) is widely used in the dynamic study of a that the field output from moda influences mod®, but the
laser cavity with external source. Generally, the coupling'everse influence of mod&on modeA is weak and ignored.
constanty;; is proportional to [E;(x)E;(x)dx which in- After. the pumping starts, modﬁe reaches thg lasing thresh-
cludes both spatial and spectral overlap information of twoPld first. The field of modeA increases quicklyE;f(t)
modes. In the random laser, if the modes are localiggd, [f() is an exponentially growing function if mod& does
xexpX—x|/& andE,xexp(—|x—Xy|)/&. Theny;; represents not interact with modd_3]. Meanwhile, mod_eB is closg to
the overlap of the tails of the two localized states. Its value igbut still below the lasing threshold. The field equation for
proportiona' to exp€|X2_Xl|/§), Whereg is the |arger one in modeB is similar to that of a driven oscillator:
&, and &,. Hence, the coupling can be neglected when the
spatial distance between the two modes is much larger than d?Ex(t) , dEy(t)
&, . In other words, the coupling constant is a parameter that dt2 Y27 gt
reveals the spatial overlap of the localized states. If the cen-
tral frequencies of two modes are far away, the integral VARG 0 )
JEi(X)E;(x)dx is almost zero; but if they are near to each L AVA (lwa) Erf(t)exp —iwyt). 2
other so that the spectral distance is comparable with the
widths of peakgthe tails of peaks are overlappetthie cou-  y,= 72—(80/8)(1)%)(" is the total loss which is very small
pling constant could be large enough to have physical efbecause mod® is near thresholdw, is the frequency of
fects. The last term in Eq1) can be thought of as an exter- modeB when we include the pulling effect of the gain me-
nal force to the modé. The coupling effect depends on the dium. Because frequencies of the two modes are close, there
frequency difference between the two modes too. Only wheiis resonant absorption of the field from mao8ldoy modeB.
the frequencyw; of the external force is close to the mode Suppose that(t) changes much slower in the lasing process
eigenfrequencyy; (in resonanck the effect of external force of mode B, because the energy of modeis absorbed by
is dramatically enlarged. Both conditions, being spatially andnodeB resonantly. The solution to E¢R) has the forr?
spectrally close to each other, are needed for the strong-
coupling effect. On the other hand, it is known in Anderson V,
localization theory that such frequency-close moslesuld Ez(t)“m( V_) ti(t). )
be spatially separated far away so that they are orthogonal to 2
each other. How caiboth conditions be satisfied? As we The factor proportional to timeis from resonant absorption.
discussed above, the orthogonality of localized modes is trud/e can see that the field of mo@ecan increaséasterthan
for infinite-long random passive systerteold cavitieg, but  that of modeA although mode lases after modé. We need
in our realfinite randomactive systems, there are two rea- to point out that at resonance, the instantaneous energy flow
sons for modes to overcome the orthogonality and satisfylirection is determined by the phase of the EM fi¢le.,
both conditions. First, the modes in a finite system are actuwhether it does positive or negative work in a pejiatbt by
ally quasimodes; two quasimodes are not strictly orthogonathe field strength. Because the phase change could be slower
to each other because their resonant spectral peaks are ovétan the field strength change, there could be a net energy

+ w, Ey(t)

1/2
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flow from modeA to modeB even when the field strength of ¥g1 is amplification rate of moda. v} is the field damping

modeB is the same as mode This can explain our numeri- rate of modeA caused by leakage to the environment and
cal result that the field of the later lasing mode can be strongther modes except mod® v}, is the spatial-temporal av-

ger than that of the first lasing mode in the cobuildup Pro-grage of the coupling constant between modlemdB. «q;
cess. The process also can be understood as that modejg self-saturation parameter of mode and k., iS Cross-

provides additional pumping to modg (while modeB re-  gaqyration parameter which includes the information of gain
sults in additional loss of mod&). The net energy flow from competition. We have similar definition oz, ¥5, 51,

modeA to modeB through photon hopping accelerates theKu, and «,, for modeB. We make two approximations)

lasing process in mo_dB. If the quall_ty factors of the tV_VO the self-saturation and cross-saturation effects are w@ak;
modes are not very different, mo&s/\(lll start to lase a”‘?' S the photon hopping current is determined by the difference
field strength may even catch up with that of molevhile o ohoton density. The first approximation is widely used in
mode A still builds up. That is why we observe the two o aser systems. For the second one, as we discussed above,
modes lase almost at the same time. S|m|larl'y, when the o fiald coupling of two modes by photon hopping could be
pumping stops, the mode that decays faster will resonantly, e complex if the resonance effect is included. However,
absorb energy from the slower decaying one. Then th e can suppose this is the averaged effect over a time inter-

former’s decay is slowed down while the latter’s decay be'val that is much longer than the period of the field.

comes.faster. As a result,.the_ two modes stop lasing at the The physical meaning of cross saturation could be more
sar;e t'ﬁne too, as shown in 'I:'g' 2 f th d kind fcomplex in a random laser than in a conventional laser. If the
inally, we give some explanation of the second kind of, 5,45 mness is very wedthe system is almost homogeneous

cpupled m(_)des. In the second kind, one mode has MUCHha, the gain saturation results in the grating effect. The
higher quality faptor than the other. They are called the Maloss-saturation parametef; could be much larger when
mode and the side mode. The side mode is observable in thee froquencies of two modes are close. In general cases of

spectrum becaus_e of an enhanced effect. When _the d'ﬁeren?gndom lasers whose dielectric randomness is much larger
between the main mode frequeney, and the side mode

. : S than the grating effedthe grating effect will not change the
frequencyws is equal to the relaxation-oscillation frequency ;

of the main mode, the EM field of the side is greatly distibution  of  mode field = mudy 'S
Wsp * E.(x)|?|E;i(x)|?dx. Very different f i -
enhanced. This is another kind of resonance effect, and it c =/ IE; (1" (x)|°dx. Very different fromy;j, «, Is pro

be derived f he oh X includina th “portional to the overlap ahtensityof modes, so it is almost
e derived from the photon rate equations inciuding the gai dependent of the frequency difference between modes. If
saturation. Because this effect has been well studied in las

hvsicst? il not di the details h ®he modes are localized states, the value;pfwill strongly
physics,” we will not discuss the details here. depend on the distance between the centers of the two

modes.
ll. STABILITY OF TWO COUPLED-COMPETING Following the original notations in laser physiaye can
RANDOM MODES rewrite Egs.(5) and(7) as
Our numerical study indicates that the lasing of two /
modes, which are spatially overlapped and close in fre- dny a1
: patially overiapp gr | @ BT | fro— =g Ny, (8)
guency, can be stable. In principle, when two modes are Ny
spatially overlapped the gain competition would allow only
one mode to lase. However, in the presence of field coupling an, Y12
between the two modes, second mode could start lasing. qr | @2 Ban2— ‘921_n_2 N1|N2. ©

How both modes can be stable in the lasing process is still a
question. To confirm our numerical results, we need theoreta; = yqi— ¥ — vij, Bi=vgikii,» 0ij=vqikij- If we set the
ical derivation to understand the stability of these randonright sides of the above equations to be zero, we obtain the
lasing modes. To simplify our derivation, we solved the phO—“zero-gain" curves for the two modes in the, vs n, plane.
ton rate equations. We denoted the two mollesydB with  We can see from Eq€8) and (9) that the coupling terms
the subnotes 1 and 2: change the zero-gain curves for the two modes from straight
lines to hyperbolic lines. To show the effect of mode cou-
dn; Yg1M , , pling on the stability of competing modes, we choose the
At 1t rqqngt Ky Y1N1+ y1N2—=Ny) @4 following parameters:a;=1.1, B,=0.4, 0,,=0.8, a,
=0.9, 8,=0.3, 6,,=0.7, y1,= v5;=0.35. The zero-gain
curves are plotted in Fig. 3. First we set the field-coupling
(5) terms;zi’j =0, i.e., no coupling of modes. The zero-gain lines
for the two modes should be straight lines, which are shown
by the dotted lines in Fig. 3. The gain-competition factor
— Yoo+ Y5 (N1 —Ny) (6)  which is defined a= 60,,0,,/818,>1 is shown in Fig. 3
by the angleAWB larger thans from original side. So that
the two modes cannot be stable simultaneously. Only one
=YgaN2(1— Koo+ Kp1N1) = YoM — Yo1(N1—Ny). mode, either modé\ (at pointA in Fig. 3) or modeB (at
(7) pointB in Fig. 3), can lase. Next the field-coupling terms are

=Yg1N1(1— k11N — K1) — y1N1+ yi(N;—Ny),

dn, Yg22
dt 1+ K22n2+ K21n1
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FIG. 3. Zero-gain curves to show the stable property of two 0 10 t(ZOS) \ 30 40
modes with iZnteraction. The solid lines are the zero-gain curves P Stop pumping

for two modes in the presence of both gain competition and field o ) ]

coupling. The dotted lines are the zero-gain curves without field FIG. 4. The coupled oscillations of two lasing modes. Both field

coupling. magnitudesAg and electron population inversioaddN near the two
modes’ centers are shown.

turned on. In the presence of field coupling, the effective

competition parameter near the crossing point of two hypergillation§ of the two modes'. The phases of their o;cillgtions
bolic lines is are 7 different. The numerical results are shown in Fig. 4.

These coupled oscillations are related to the electronic sys-
Ceo= (01— Y1 N1) (01— y51/N2) 1 B15. (100 tem; namely, the electronic populations also oscillate. For
each mode, the phase of electronic oscillation is almost

The value ofC, could be smaller than 1 whil€ is larger ~ different from the oscillation of the field.

than 1. As shown in Fig. 3, the angl&om original side To explain this complex photon-electron dynamic process,
around the cross poi’ is smaller thanz. Then the two  We need to solve the coupled equations for the EM fields and
modes can be stable, i.e., both modes lase. electronic populations of the two modes. The solutions are

The above derivation shows that the stability for two las-complicated and provide little physical insight. Next, we will
ing modes depends on the value of their effective competifirst present a qualitative understanding and then a simplified
tion factorce at the Crossing point, |arger or smaller than 1. model. We argue that the oscillations result from strong cou-
The next question is the following: how can the two modesPling of two modes. Without coupling, the relaxation of each
reach the crossing point of their zero-gain curves? In othefnode could cause the field and population oscillate indepen-
words, how can the two modes reach their stable workingently. When two modes are strongly coupled, their origi-
condition? As we discussed in the preceding section, th&ally independent relaxation oscillations can be coupled and
resonance absorbing of the energy between the two modé§nerate new oscillations. With this understanding, we used
can help them get to the stable lasing condition. If the effecthe model of coupled oscillators:
tive competition factoiC,<1 both modes can be stable si-
multaneously, ifC.>1 one mode will be suppressed. We f72nlJr any
note that the effective competition parame@rdepends on e o
the mode-coupling parameters, thus the abnormal stability of
random lasing modes is a representation of mode-coupling

+wiiny = €10, (11

a°n, an,
2 _
effect. ?4' 72W4‘w01n2—§21n17 (12
IV. RELAXATION OSCILLATIONS OF STRONGLY wherey, andy, are the damping rates near the stable work-

COUPLED MODES ing condition,w,; andw,, are the relaxation-oscillation fre-

In our numerical study, we also observed the coupled osduencies of two modes without coupling,, and &;, are
cillations of two modes. The configuration in the central partcoUpling constants which we will explain later.
of the 1D random system is kept the same as that used in the FOr the random systems we studied numerically, the
study of synchronized lasing in Sec. Ill. We add ten pairs ofdamping rates are small, thus the damping terms can be ne-
binary layers at each end of the system. The pumping time iglécted. We obtain the oscillation-frequencies of two
increased from 15 ps to 25 ps. Thus the coupled modes afrongly coupled modes:
almost the same as in Sec. lll, but their quality factors are > 2
larger and their lasing time should be longer. Tracking their , @110 " \/

+

field amplitudes in time, we can clearly see the coupled os- R

w§+ w5
2

— wiws+ &gy (19
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If wo1=wer=weo and &1,= &,1= ¢, the frequencies of two sers with inhomogeneously broadened gain spectra. For spa-
coupled modes are . = ‘/wozoi £. We see that there should tially overlapped lasing modes, gain competition results in
be two eigenoscillations of the coupled modes. One is fasteir repulsion in frequency. Numerical results and analytical
oscillation, the other is slow oscillation. In our case, the slowderivation reveal the effect of field coupling on random las-
oscillation frequency is very small compared to the fast oneing modes. The synchronized lasing of two coupled modes is
This meansé=w?,. Thus the fast oscillation is what we €xplained with the field equations. The stability of field-
observed in our numerical experiment. The oscillation fre-coupled gain-competing random modes is discussed based
quency . =+2¢. From the eigenoscillation functions of ©ON _the photo_n rate equations. The_ criterion of.stablllty is
(n;,n,)T, we confirm that the fast oscillation corresponds toderived, and its relation to the coupling strength is revealed.

the two oscillators which haver phase difference. After Moreover, the coupled oscillation of two strongly coupled

comparing Eqs(13) and (1), the physical meaning of is modes is observed in our numerical simulation. A simplified
clear: = wqyy,. Finally wé get mode based on coupled-oscillators illustrates that the fre-
: o .

quency of the coupled relaxation oscillation depends on the
w= \/m_ (14) coupling strength. .This discover_y provides a different
i method of measuring the coupling strength of random
The above resulfor the more general one in EQL3)] tells o des. Since the properties of random modes directly affect
us that the coupling strengtly;, between random lasing |ight transport in disordered systems, the parameters we ob-
modes can be extracted from the measurement of thgined from the random laser study, e.g., the coupling and
coupled-oscillation frequencies. This is a different method tq:oss-saturation parameters of random modes, facilitate fur-
measure the coupling strength of random modes inside th@er quantitative studies. Although the lasing modes repre-
disordered systems. sent only a special subset of eigenmodes in a random system,
the understanding of their complex behaviors opens a new
V. SUMMARY window for fully understanding disordered systems.

In summary, we have studied the interactions between
random Iasing modes..I.Despite the fact that some p_henomena, ACKNOWLEDGMENTS
such as gain competition, have been observed in conven-
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