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Symmetry, dimension, and the distribution of the conductance at the mobility edge
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The probability distribution of the conductance at the mobility edge,pc(g), in different universality classes
and dimensions is investigated numerically for a variety of random systems. It is shown thatpc(g) is universal
for systems of given symmetry, dimensionality, and boundary conditions. An analytical form ofpc(g) for small
values ofg is discussed and agreement with numerical data is observed. Forg.1, lnpc(g) is proportional to
(g21) rather than (g21)2.
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Disordered systems may show a transition from meta
states to insulating ones at a mobility edge,1,2 which sepa-
rates the two regions. The probability distributionp(g) of
the conductanceg at the critical point of disordered system
undergoing a localization–delocalization transition is s
under investigation.3–11 Previous studies have shown th
p(g) depends on the symmetry of the system,4 its
dimensionality,7 the boundary conditions perpendicular
the direction of transport,8–10 and the amount of
anisotropy.5,12 Yet, a complete theory explaining the form o
the distribution is still missing.3,11 Knowing that the conduc-
tance distributions are normal and log-normal in the
tended, metallic, and the localized, insulating regimes,
spectively, and taking into account the continuous nature
the Anderson localization–delocalization transition, it see
reasonable to try to combine the two forms.

In this paper we have calculated the probability distrib
tion of the conductance~including the portion whereg.1)
for a variety of systems of different dimension and symm
try, give an approximate expression forpc(g), compare our
numerical results to some analytical approximations, a
present a way of explaining the differences between the
and numerical results. We find it is necessary to examine
distributions of the smallest Lyapunov exponents and the
lationship between their respective mean values. We
show thatpc(g) is independent of the particular point chos
on the critical surface in parameter space, consistent w
similar findings on varying the distribution function of th
disorder potential.13,14 Finally, we demonstrate thatpc(g) is
not analytic atg51.

We have calculated the conductance distributions at
mobility edge of a three-dimensional~3D! system with or-
thogonal symmetry, a two–dimensional~2D! system with
symplectic symmetry, and of several 2D systems with u
tary symmetry. All these systems possesss a mobility e
and are modelled after the Anderson tight-binding Ham
tonian

H5(
n,t

unt&«n^ntu1 (
n,t,n8,t8

unt&Vn,n8^n8t8u, ~1!

wheren,n8 are nearest neighbor sites in the 2D or 3D latti
The variablest,t8 take on values of 1 or21 for symplectic
systems with spin-orbit interactions, where the hopping in
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grals Vn,n8 thus become 232 matrices; otherwise they ar
scalars and the spin ‘‘variables’’ have only one value.15 The
site energies«n are always independent oft.

In Fig. 1 we show three unitary systems with period
boundary conditions. A magnetic field perpendicular to t
direction of transport facilitates the existence of critical sta
at the center of each Landau subband. We investigate
dependence ofpc(g) on the disorder strengthW. The flux per
unit area,a, has been kept constant ata51/8. For weak
disorder, considerable finite size effects have to be eli
nated. Even for the system shown with 1923192 lattice sites
~dashed line in Fig. 1! the distribution still has not com
pletely converged to the form obtained for the two cases
stronger disorder, where the system size is only 64364 lat-
tice sites~solid lines in Fig. 1!. Anisotropic systems can b
rescaled to the same distribution.12 Table I contains the av-
erages and standard deviations of the relevant variables
these ensembles as well as for those we use in later par
this paper.

We will discuss the transmission properties of a system
terms of its ‘‘extensive Lyapunov exponents’’zi , whereezi

are the eigenvalues ofT†T andT is the transfer matrix in the
channel representation. Then, we have for the conductang
~in units of e2/h)16

g5(
i 51

N
1

cosh2~zi /2!
, ~2!

FIG. 1. The conductance distributions for three different critic
two-dimensional systems with a magnetic field perpendicular to
plane.
©2001 The American Physical Society02-1
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whereN is the number of open channels. The distribution
the conductance should therefore be discussed in conne
with that of the Lyapunov exponents. The distribution of t
smallest positive Lyapunov exponentz1 can be approximated
by a Wigner distribution withb51, independently of the
actual universality class of the system:16,17

p~z1!'
p

2

z1

^z1&
2

expS 2
p

4

z1
2

^z1&
2D , ~3!

where^.& denotes the ensemble average. This approxima
works reasonably well, if̂z1& is small enough, which is true
in two and three dimensions, but not, e.g., in four. Appro

matingg'g15
def

cosh22(z1/2), we can rewrite this distribution
in terms of ln(g) as

p~ ln g!'p~ ln g1!5E
0

`

dS ln~g!12 ln coshS z1

2 D D p~z1!dz1

'
p

2^z1&
2

z1

tanh
z1

2

expS 2
p

4

z1
2

^z1&
2D ~4!

evaluated at ln(g)522 ln cosh(z1/2). This obviously neglects
contributions to the conductance from higher channels
therefore overestimates the distribution in the range lng)
<0. Note, that, because cosh2(z1/2)>1 for all z1 , ln(g1)<0.
One finds thatp(ln g1) is already in reasonable agreeme
with p(ln g), indicating that the higher channels’ contrib
tions are small, though not entirely negligible. Therefo
p(ln g1) can be used as a starting point for discussion of
correct distribution of the conductance in the rangeg<1.
Figure 2 shows the numerical results for 10 000 cubic s
tems of orthogonal symmetry with periodic boundary con
tions. It can be seen clearly from Fig. 2 that bothp(ln g1) and
Eq. ~4! are in very good agreement with the detailed nume
cal results. Also shown is the distributionp(ln g2), where
g25g11cosh22(z2/2), which agrees already very well wit
the distribution of the total conductance. Squares of symp
tic symmetry behave similarly. Also, systems with hard w
boundary conditions show the same qualitative behavio

TABLE I. The averages and variances of the conductance
its logarithm for the ensembles we used in this work. O, U,
orthogonal, unitary, symplectic; p, h: periodic, hard wall bound
conditions. Unitary systems use periodic boundary conditio
Nstat: number of samples.

System Nstat ^g& sg
2 ^ ln(g)& s ln(g)

2

2D U, W54 10 000 0.445 0.082 21.120 0.842
2D U, W52 10 000 0.428 0.079 21.172 0.887
2D U, W50.5 10 000 0.393 0.078 21.306 1.027
2D S, p 500 000 0.749 0.088 20.401 0.283
2D S, h 500 000 0.691 0.108 20.531 0.418
3D O, p 500 000 0.391 0.108 21.418 1.282
3D O, h 10 000 000 0.284 0.087 21.929 1.762
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both 3D orthogonal systems and 2D symplectic ones. A su
mary of the averages and variances ofz1 andz2 can be found
in Table II.

Using a different, more elaborate approach, Muttalib a
Wölfle11 derived for quasi-one–dimensional, weakly diso
dered systems a formula for the critical probability distrib
tion over the whole range ofg, including g.1. It can be
written as

p~ ln g!55
1

Z

Az1 sinhz1

tanh
z1

2

e2~G/4!z1
2
: g<1

A2

Z
g e2a(g21)2: g>1,

~5!

where the formula for the rangeg<1 again needs to be
evaluated at ln(g)522 ln cosh(z1/2). The parameterG can be
used to fit this function to the numerical results. (a is a
function of G.! Taking G5p/^z1&

2 and noting that sinh(z1)
'z1 for small z1, the similarity of Eq.~5! and Eq.~4! is
apparent. This suggests replacingz1 in the prefactor of Eq.
~3! with Az1 sinh(z1). Preliminary results show that this ac
tually results in better agreement with data even for som
what higher values of̂z1&. It should be noted though, that i
G instead of the average value ofz1, one should use the mos

d
:
y
s.

FIG. 2. The distribution of the total conductanceg of cubes with
10310310 lattice sites and periodic boundary conditions, toget
with the distributions for the contributions from the first (g1) and
the first two (g2) channels of the same ensemble. The thin solid l
is the result of Eq.~4! with ^z1&52.825.

TABLE II. The averages and variances of the two small
Lyapunov exponents.Nstat510 000.

System ^z1& sz1

2 ^z2& sz2

2

2D S, p 1.424 0.621 3.987 0.924
2D S, h 1.635 0.811 4.065 1.186
3D O, p 2.825 1.918 4.965 1.829
3D O, h 3.411 2.475 5.518 2.132
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FIG. 3. The conductance dis
tributions for ~a! three-
dimensional systems of orthogo
nal symmetry with 10310310
lattice sites and ~b! two-
dimensional systems of symplec
tic symmetry with 40340 lattice
sites ~thick lines!. The thin lines
are fits to the data according t
Eq. ~5! with G5p/(2.2)2, G
5p/(2.55)2, andG5p/(1.4)2 for
the 3D periodic, 3D hard wall, and
2D cases, respectively.
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probable one, which is smaller than the average value b
factor of about 0.8 in the case of a Wigner distribution. D
spite their deriving11 a distribution for the whole range ofg,
their formula still overestimates slightly the weight of th
rangeg<1 in 3D systems. However, in the 2D symplec
case, they slightly underestimate this weight. A change in
fitting parameterG does not remedy this discrepancy in
satisfactory manner. Figure 3 shows numerical results
gether with a fit according to Eq.~5!. The first panel shows
the distributions for 3D orthogonal systems with 10310
310 lattice sites. In a log-linear plot one can see that Eq.~5!
increasingly overestimatesp(ln g) for ln(g)→2`. For the
2D symplectic case shown in the second panel, a fit for lng)
close to 0 results in a very strong underestimation far fr
ln(g)50. The fit presented for both kinds of boundary co
ditions still gives an overall understimation of the portion
the conductance distribution18 with g<1.

To understand the qualitatively different behaviors of t
theoretical approach, one has to look at the averages o
higher Lyapunov exponents.17 In the quasi-one-dimensiona
weakly disordered case for which Eq.~5! was derived, one
has ^z2&52•^z1&, independent of dimension, symmetry,
boundary conditions.16,17,19For the 3D orthogonal ensemble
one finds at the critical point that^zi&

2} i , and thuŝ z2& is
significantly smaller than 2•^z1&,

17 so that the contribution
of the second channel is higher than expected from Eq.~5!,
whereas for the 2D symplectic case,^z2&.2^z1&, so that the
second channel’s contribution is smaller than expec
Compare the values in Table II, which support these ar
ments.

We also looked at the conductance distribution in
rangeg>1. In order to have a sizeable ensemble for t
range, we took half a million samples for 2D symplec
systems of 40340 lattice sites with both periodic and ha
wall boundary conditions as well as for 3D orthogonal s
tems of 10310310 lattice sites with periodic boundary con
ditions. For cubes with hard wall boundary conditions w
even took ten million samples. About 20% of the symplec
samples, 6% of the 3D samples with periodic boundary c
ditions, and 3% of the 3D samples with hard wall bounda
conditions turn out to have a conductance bigger than 1.
the latter ensemble, only about 470 out of the ten milli
samples have a conductanceg.2 and only one sample ca
21220
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be found withg.3. We find that in the rangeg.1, lnpc(g)
is at most linear in (g21), as can be seen from Fig. 4. Th
is in disagreement with the theory presented by Muttalib a
Wölfle,11 which predicts a quadratic dependence with a lo
rithmic correction, and which therefore expects a posit
first derivative of lnpc(g) in g. Note also that this contradict
the expectation of diverging higher cumulants, which acco
ing to the nonlinears-model ought to result in power law
tails on the large-g side of the distribution. This is not sur
prising, considering the qualitatively different behavior
thed53 case from thed521« case, to which the nonlinea
s-model applies~see, e.g., Markosˇ and Kramer, 199317!. Fi-
nally, Fig. 4 shows that the first derivative ofpc(g) is
discontinuous20 at g51. We suppose that this nonanalytic
behavior was not taken into account by the analysis of M
talib and Wölfle.11

In conclusion, we have shown that the critical distributi
of the conductance in disordered systems is universal
systems of given dimensionality, universality class, a
boundary conditions. We show further that for systems
quite different types, the total conductance is distributed o
slightly differently from the distribution of the first channe
and give arguments for the quality of corrections depend

FIG. 4. The distribution for an ensemble of 500 000 cubic s
tems ~thick line! shows a behavior lnp5const.1(g21)a with a
'1 ~thin line! in the regiong>1 and a discontinuity in its first
derivative atg51. The distribution for an ensemble of 500 00
square systems behaves similarly. Both cases shown use per
boundary conditions.
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on the statistics of the second channel. We present a form
for pc(ln g) which agrees reasonably well with the numeric
results in the rangeg<1. Finally, we found nonanalycity o
pc(g) at g'1 and estimated an exponent of roughly 1
ln pc(g) as a function ofg21 rather than the predicted expo
nent of 2.
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