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Symmetry, dimension, and the distribution of the conductance at the mobility edge
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The probability distribution of the conductance at the mobility eqgég), in different universality classes
and dimensions is investigated numerically for a variety of random systems. It is shovm(tipats universal
for systems of given symmetry, dimensionality, and boundary conditions. An analytical fqupig)ffor small
values ofg is discussed and agreement with numerical data is observed>Fbr Inp,(g) is proportional to
(g—1) rather thang—1)2.
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Disordered systems may show a transition from metalliggrals V/, , thus become X2 matrices; otherwise they are
states to insulating ones at a mobility eddewhich sepa- scalars and the spin “variables” have only one vatt@he
rates the two regions. The probability distributipig) of  site energieg,, are always independent af
the conductancg at the critical point of disordered systems In Fig. 1 we show three unitary systems with periodic
undergoing a localization—delocalization transition is stillboundary conditions. A magnetic field perpendicular to the
under investigatiori-** Previous studies have shown that direction of transport facilitates the existence of critical states
p(g) depends on the symmetry of the systénits  at the center of each Landau subband. We investigate the
dimensionality, the boundary conditions perpendicular to dependence gic(g) on the disorder strengiv. The flux per
the direction of transpof;'® and the amount of Unit area,a, has been kept constant at=1/8. For weak
anisotropy 2 Yet, a complete theory explaining the form of disorder, considerable finite size effects have to be_ elimi-
the distribution is still missing:!! Knowing that the conduc- nated. Even for the system shown with 29292 lattice sites

tance distributions are normal and log-normal in the ex-dashed line in Fig. Lthe distribution still has not com-
tended, metallic, and the localized, insulating regimes, reP!€t€ly converged to the form obtained for the two cases of

spectively, and taking into account the continuous nature oﬁtronger disorder, where the system size is onlx 64 lat-

o - TS ce sites(solid lines in Fig. 1. Anisotropic systems can be
the Anderson localization—delocalization transition, it seems . -0 1 10 same distributidhTable | contains the av-
reasonable to try to combine the two forms.

; . . .. erages and standard deviations of the relevant variables for
In this paper we have calculated the probability distribu- g

. . . X these ensembles as well as for those we use in later parts of
tion of the conductancéncluding the portion wherg>1)  (4ig paper.

for a variety of systems of different dimension and symme- e will discuss the transmission properties of a system in
try, give an approximate expression fog(g), compare our terms of its “extensive Lyapunov exponentg’, wheree?
numerical results to some analytical approximations, angre the eigenvalues df T andT is the transfer matrix in the
present a way of explaining the differences between theorghannel representation. Then, we have for the conductnce
and numerical results. We find it is necessary to examine th@n units of e?/h)*®

distributions of the smallest Lyapunov exponents and the re-
lationship between their respective mean values. We also
show thatp.(g) is independent of the particular point chosen 9
on the critical surface in parameter space, consistent with
similar findings on varying the distribution function of the 0.8 , . ;
disorder potentiat®!* Finally, we demonstrate that,(g) is —— W=40,E=-34
not analytic atg=1. —— W=20,E=-332
We have calculated the conductance distributions at the 06 W=035,E=-3295
mobility edge of a three-dimensionéD) system with or-
thogonal symmetry, a two—dimensionéD) system with
symplectic symmetry, and of several 2D systems with uni-
tary symmetry. All these systems possesss a mobility edge
and are modelled after the Anderson tight-binding Hamil- 02 L
tonian
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wheren,n’ are nearest neighbor sites in the 2D or 3D lattice. FIG. 1. The conductance distributions for three different critical

The variablesr, 7’ take on values of 1 or-1 for symplectic  two-dimensional systems with a magnetic field perpendicular to the
systems with spin-orbit interactions, where the hopping inteplane.
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TABLE I. The averages and variances of the conductance and 04 ‘ .
its logarithm for the ensembles we used in this work. O, U, S: p(ng)
orthogonal, unitary, symplectic; p, h: periodic, hard wall boundary e==-= p(In g,)
conditions. Unitary systems use periodic boundary conditions. 03+ °—--°p(ng,)

Ngiar: NUMber of samples.

System Nstat (@  of  (n@) ohg 02 |

2D U, W=4 10000 0.445 0.082 —1.120 0.842

2D U, W=2 10000 0.428 0.079 —1.172 0.887 o1 |

2D U, W=0.5 10000 0.393 0.078 —1.306 1.027

2D S, p 500000 0.749 0.088 —0.401 0.283 / ;

2D S, h 500000 0.691 0.108 —0.531 0.418 0.0 besceemmon .
3DO, p 500000 0.391 0.108 —1.418 1.282 -8 -6 -4 2 0 2
3D O, h 10000000 0.284 0.087-1.929 1.762 In(g)

FIG. 2. The distribution of the total conductangef cubes with
whereN is the number of open channels. The distribution 0f10>< 10x 10 lattice sites and periodic boundary conditions, together
the conductance should therefore be discussed in connectiéfit _the distributions for the contributions from the ﬁ“‘M ar!d .
with that of the Lyapunov exponents. The distribution of the!" fIrSt W0 @) channels of the same ensemble. The thin solid line

I . is the result of Eq(4) with (z,)=2.825.
smallest positive Lyapunov exponenjtcan be approximated
by a Wigner distribution with=1, independently of the

actual universality class of the systéft’ both 3D orthogonal systems and 2D symplectic ones. A sum-
mary of the averages and variancezpéndz, can be found
Tz - Zf in Tat_)le Il. _ _
p(z;)~ z —exp — 7 51 (3) Using a different, more elaborate approach, Muttalib and
(z1) 4 (zy) Wolfle** derived for quasi-one—dimensional, weakly disor-

dered systems a formula for the critical probability distribu-
where(.) denotes the ensemble average. This approximatiotion over the whole range dj, includingg>1. It can be
works reasonably well, ifz;) is small enough, which is true written as

in two and three dimensions, but not, e.g., in four. Approxi-
def

matingg~ g, = cosh %(z,/2), we can rewrite this distribution

1 {z, sinhz, (T2
in terms of Ing) as 7 5 °© 1. g=<l1
1
tanhz-
= 2 p(Ing)= 2 (5
p(lng)=~p(Ing,)= | &|In(g)+2Incosh—=| |p(z;)dz;
0 2 \2

o Zl 4 v Zi )

~ exp — 4

2(2)? tanke: 4 (2;)? where the formula for the rangg<1 again needs to be

2 evaluated at Inf)=—2In coshg/2). The parametdr can be

used to fit this function to the numerical resulta s a
function of I'.) Taking I'=/(z,)? and noting that sinkz()
~z, for small z;, the similarity of Eq.(5) and Eq.(4) is
apparent. This suggests replacingin the prefactor of Eq.
(3) with z; sinh(z;). Preliminary results show that this ac-
tually results in better agreement with data even for some-

evaluated at Irf)=—2 In coshg;/2). This obviously neglects
contributions to the conductance from higher channels an
therefore overestimates the distribution in the range)In(
<0. Note, that, because cd§h/2)=1 for all z;, In(g;)=<O0.
One finds thatp(Ing,) is already in reasonable agreement

with p(Ing), indicating that the higher channels’ contribu- what higher values ofz,). It should be noted though, that in

tions are small, though not gnhrely_ negl|g!ble. T_hereforer instead of the average value zyf, one should use the most
p(Ing;) can be used as a starting point for discussion of the

correct distribution of the conductance in the rarggel. ,
Figure 2 shows the numerical results for 10000 cubic sys- '~BLE Il. The averages and variances of the two smallest
tems of orthogonal symmetry with periodic boundary condi--yapunov exponentdls,= 10 000,

tions. It can be seen clearly from Fig. 2 that bpin g,) and

2 2
Eq. (4) are in very good agreement with the detailed numeri—SyStem {2y 7 (z) iz
cal results. Also shown is the distributignlng,), where 2D S, p 1.424 0.621 3.987 0.924
g,=0;+cosh %(z,/2), which agrees already very well with 2D S, h 1.635 0.811 4.065 1.186
the distribution of the total conductance. Squares of symplecp 0, p 2.825 1.918 4.965 1.829
tic symmetry behave similarly. Also, systems with hard wall3p o, h 3.411 2475 5518 2132

boundary conditions show the same qualitative behavior in
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FIG. 3. The conductance dis-
b) tributions for (a) three-
dimensional systems of orthogo-
nal symmetry with 1&10Xx10
lattice sites and (b) two-
dimensional systems of symplec-
tic symmetry with 440 lattice
sites (thick lines. The thin lines
are fits to the data according to
Eq. (5 with T'=m/(2.27 T

= 7/(2.55%, andT" = /(1.4 for

2 the 3D periodic, 3D hard wall, and
2D cases, respectively.
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probable one, which is smaller than the average value by Be found withg>3. We find that in the rangg>1, Inp.(g)
factor of about 0.8 in the case of a Wigner distribution. De-js at most linear ing— 1), as can be seen from Fig. 4. This
spite their deriving" a distribution for the whole range @ s in disagreement with the theory presented by Muttalib and
their formula still overestimates slightly the weight of the Walfle,** which predicts a quadratic dependence with a loga-
rangeg=<1 in 3D systems. However, in the 2D symplectic rithmic correction, and which therefore expects a positive
case, they slightly underestimate this weight. A change in théirst derivative of Inp(g) in g. Note also that this contradicts
fitting parameterl” does not remedy this discrepancy in athe expectation of diverging higher cumulants, which accord-
satisfactory manner. Figure 3 shows numerical results toing to the nonlinear-model ought to result in power law
gether with a fit according to Eq5). The first panel shows tails on the largeg side of the distribution. This is not sur-
the distributions for 3D orthogonal systems with 100  Prising, considering the qualitatively different behavior of
X 10 lattice sites. In a log-linear plot one can see that(gy. thed=3 case from thel=2+ ¢ case, to which the nonlinear
increasingly overestimates(Ing) for In(g)——x. For the o-model appliegsee, e.g., Markoand Kramer, 1993). Fi-
2D symplectic case shown in the second panel, a fit fa)In( nally, Fig. 4 shows that the first derivative @f.(g) is
close to O results in a very strong underestimation far fronfliscontinuou®’ at g=1. We suppose that this nonanalytical
|n(g):0 The fit presented for both kinds of boundary Con_behaViOT W?S not taken into account by the analysis of Mut-
ditions still gives an overall understimation of the portion of talib and Wifle.**
the conductance distributibhwith g<1. In conclusion, we have shown that the critical distribution
To understand the qualitatively different behaviors of thisof the conductance in disordered systems is universal for
theoretical approach, one has to look at the averages of tfgystems of given dimensionality, universality class, and
higher Lyapunov exponen{%_"] the quasi-one-dimensionaL boundary conditions. We show further that for systems of
weakly disordered case for which E@) was derived, one quite different types, the total conductance is distributed only
has(z,)=2-(z;), independent of dimension, symmetry, or slightly differently from the distripution of the'first channe!,
boundary condition®!”-*°For the 3D orthogonal ensemble, and give arguments for the quality of corrections depending
one finds at the critical point th§Zi>Zoci, and thus(z,) is . ‘
significantly smaller than 2z;),” so that the contribution — 3d orthogonal
of the second channel is higher than expected from(&y.
whereas for the 2D symplectic cage;)>2(z;), so that the
second channel's contribution is smaller than expected.

0 [ eem TTTC 2d symplectic

________

Compare the values in Table I, which support these argu- 10

ments. = ,
We also looked at the conductance distribution in the 10

rangeg=1. In order to have a sizeable ensemble for that

range, we took half a million samples for 2D symplectic 10°

systems of 4840 lattice sites with both periodic and hard

wall boundary conditions as well as for 3D orthogonal sys- 10"

tems of 10 10X 10 lattice sites with periodic boundary con-
ditions. For cubes with hard wall boundary conditions we
even took ten million samples. About 20% of the symplectic £ 4. The distribution for an ensemble of 500 000 cubic sys-
samples, 6% of the 3D samples with periodic boundary congems (thick line) shows a behavior Ip=const+ (g— 1) with
ditions, and 3% of the 3D samples with hard wall boundary~1 (thin line) in the regiong=1 and a discontinuity in its first
conditions turn out to have a conductance bigger than 1. Fderivative atg=1. The distribution for an ensemble of 500 000
the latter ensemble, only about 470 out of the ten millionsquare systems behaves similarly. Both cases shown use periodic
samples have a conductange 2 and only one sample can boundary conditions.
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on the statistics of the second channel. We present a formula Ames Laboratory is operated for the U.S. Department of
for p.(In g) which agrees reasonably well with the numericalEnergy by lowa State University under Contract No.
results in the rangg=<1. Finally, we found nonanalycity of W-7405—-Eng—82. This work was supported by the Director
p.(g) at g~1 and estimated an exponent of roughly 1 infor Energy Research, Office of Basic Science. P.M. would
In p.(g) as a function of— 1 rather than the predicted expo- like to thank Ames Laboratory for their hospitality and sup-

nent of 2.
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