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Metal-insulator transitions in anisotropic two-dimensional systems
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Several phenomena related to the critical behavior of noninteracting electrons in a disordered two-
dimensional tight-binding system with a magnetic field are studied. Localization lengths, critical exponents,
and density of states are computed using transfer-matrix techniques. Scaling functions of isotropic systems are
recovered once the dimension of the system in each direction is chosen proportional to the localization length.
It is also found that the critical point is independent of the propagation direction, and that the critical exponents
for the localization length for both propagating directions are equal to that of the isotropic system,n' 7

3 . We
also calculate the critical valueLc of the scaling function for both the isotropic and the anisotropic system. It
is found thatLc

iso5ALc
xLc

y. Detailed numerical studies of the density of statesn(E) for the isotropic system
reveal that for an appreciable amount of disorder, the critical energy is off the band center.

DOI: 10.1103/PhysRevB.63.085103 PACS number~s!: 71.30.1h, 71.55.Jv
ni
re
e

ct
b
a
ar

s
c-
he
o
i-
is

l-
e,
le

-
um
ys
x
e

c-
he
s,
tic

th
n

ve

cal
ot
et-

3D
the

the

ed
ld.
l be
ibits
To
sly
n-
wer
cal
o-
pic
pe-

so-
al-
II,
sed.
. In

te-
c-
I. INTRODUCTION

The problem of Anderson localization1 in anisotropic sys-
tems has attracted considerable attention2–5 recently. It is
generally accepted2 that anisotropy does not change the u
versality class and that the isotropic results are recove
once a proper scaling of the anisotropic results is perform
If the dimension of the system size is chosen to be dire
proportional to the localization length, the system should
effectively isotropic. The difficulty in implementing such
procedure lies in the fact that the localization lengths
usually not knowna priori. It was found through detailed
numerical calculations2 that this scaling indeed works. It wa
also shown6 that the probability distributions of the condu
tance in the two directions are exactly equal to each ot
provided that the ratio of the sides of the rectangle is prop
tional to the ratio of the localization lengths in the two d
rections. These scaling results were obtained for an an
tropic system where all the states were localized.

It is well known1 that noninteracting electrons are loca
ized in two-dimensional~2D! disordered systems. There ar
however, some exceptions to this rule. These include e
trons having strong spin-orbit coupling,7 integer quantum
Hall systems,8 and tight-binding models with random mag
netic fields.9 The best known example is the integer quant
Hall plateau transition occurring in a 2D noninteracting s
tem in a strong magnetic field. Extended states do not e
as a result of Anderson localization except at a singular
ergy near the center of each of the Landau subbands.8,10 The
localization length diverges at these critical energiesEc as
j}uE2Ecu2n.

Another important point is the universality of the condu
tance at the critical point of the Anderson transition for t
anisotropic system.4 From the generalized scaling function
it has been established that the geometric mean of the cri
valueLc of the scaling functionL 5

def(lM /M ) ~as a function
of j/M ) is a constant independent of the strength of
anisotropy. ~Here lM denotes the finite-size localizatio
length of a quasi-one-dimensional strip of finite widthM.!
Numerical calculations in both two-2 and three-dimensional4

disordered anisotropic systems support this claim. Howe
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the same is not true for the conductance. Numeri
calculations4 in three-dimensional anisotropic systems do n
support a universal value of the conductance for the geom
ric mean. This might be due to too small sizes used in the
system or to a lack of universality of the conductance at
critical point.

In this paper, we investigate the scaling properties of
finite-size localization lengthlM and the critical valueLc of
the scaling function in a two-dimensional system describ
by a tight-binding model in the presence of a magnetic fie
Both the isotropic case as well as the anisotropic case wil
examined. This is perhaps the simplest system that exh
the correct behavior of the metal-to-insulator transition.
our knowledge, no such calculations have been previou
reported for the anisotropic tight-binding model with a co
stant magnetic field. Some of the questions we try to ans
are as follows: How does the anisotropy affect the criti
behavior, especially, will there be one or two critical exp
nents for the localization lengths? How do the anisotro
quantities relate to the corresponding isotropic ones, es
cially, can we expect the geometric mean of the two ani
tropic values to equal the isotropic value? What are the v
ues for the scaling functions at the critical point? In Sec.
we describe the model and the numerical methods we u
In Sec. III, we present and discuss our numerical results
Sec. IV, we summarize the conclusions of this work.

II. MODEL AND METHODS

In the tight-binding model, one has the Hamiltonian

H5(
i

u i &« i^ i u1(
i , j

8u i &Vi j ^ j u, ~1!

where the summations run over lattice sitesi and j. We con-
sider only nearest-neighbor interaction in the hopping in
gralsVi j . The effects of an external magnetic field, chara
terized by a vector potentialA (“3A5B), enter the model
via phases of the hopping integrals with

Vi j 5t i j e
22p i (e/h)*

r i

r jA(r )dr, ~2!
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FIG. 1. The critical values of
the scaling functions can be ob
tained from the large-M limit of
lM /M at the critical energy.
From the almost symmetrical be
havior of the values for the non
critical energies at either side o
the critical one, we assume tha
the value for Ec is between
22.966 and22.965, but closer to
the second one. Left: difficult-
hopping direction; right: easy-
hopping direction.
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the integral connecting lattice sitesi and j by a straight line.
In two dimensions with a magnetic inductionB perpendicu-
lar to the plane of the system, one can choose the gaug
the vector potential in such a manner that the phases va
in one direction within the plane and are integer multiples
some number 2pa in the other direction, such that the valu
of a completely characterizes the influences of the magn
field on the system. In particular, the denominator of a ra
nal a equals the number of bands in the density of state
the system without disorder. Introducing anisotropy into
system by choosing different amplitudest i j in the two direc-
tions within the plane will effect only the position of thes
bands, not their number. We bring disorder into the sys
by independently choosing all the site energies« i from a
rectangular distribution of widthW centered at 0; thusW is a
measure of disorder strength. BothW andE are measured in
units of the largest hopping matrix elementt, which is taken
to be unity.

As our main method, we use the transfer-matrix metho1

where a matrixTM connects the amplitudes of a state at bo
ends of a quasi-one-dimensional strip of widthM and length
N@M . Due to the anisotropy, we have to do this in the tw
spatial directions separately. Therefore, we get two set
parameterslM ,x andlM ,y , which lead to two separate loca
ization lengthsjx and jy in the x and y direction, respec-
tively. Scaling of the data is used to improve on the values
jx andjy , which are then analyzed to find the critical ene
gies, where the localization lengths diverge as well as
critical exponents of these divergences.

We obtain the density of states by using a Lancz
procedure11 to diagonalize the Hamiltonian on squares
~linear! sizeL. The energy-level separation distribution fun
tion p(s) should deviate markedly from a Poisson distrib
tion for the local density of states around the critical ener
approaching the Wigner distribution for the unita
ensemble.12,13 We also use the density of states to show t
for sufficiently strong disorder the critical energy does n
necessarily coincide with the band center.

III. RESULTS

To obtain the critical energyEc for the anisotropic tight-
binding model, first we calculatelM ,x andlM ,y for different
strip widthsM and energiesE above and below the critica
energyEc . As the exact position ofEc varies with the dis-
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order strengthW, the hopping integraltx,1 in the difficult
hopping direction, as well as the magnetic field parametea,
we restrict our investigation to one set of these parame
W50.1, tx50.8, anda5 1

8 . The data for the more localize
states show thatM /lM versusM is a straight line. The in-
verse slope of each of these lines gives a first estimate for
localization lengthsjx or jy , respectively, thus the smalle
the slope, the more extended are the corresponding ei
states of the system. For energies closer toEc , the lines
would be essentially horizontal. In order to accurately obt
Ec , we have systematically calculatedlM ,x and lM ,y for
largeM. The results are shown in Fig. 1, where we plotlM ,x
andlM ,y for the anisotropic case for energies very close
Ec . From Fig. 1, we can confirm the existence of an e
tended state. Notice thatlM /M decreases as a function ofM,
which signifies localized states. For localized states,lM
eventually reaches its large-M limit, which is a constant, and
thereforelM /M decreases asM increases. However, as ca
be seen from Fig. 1, at the critical energyEc , lM /M satu-
rates to a constant due to the absence of length scales
the case studied (W50.1, ty51.0, tx50.8, anda5 1

8 ), we
find that the critical energyEc is between22.966 and
22.965, but closer to the second value. From Fig. 1, we
also obtain the critical valuesLc of lM /M for both direc-
tions of propagation. We findLc

x50.9260.01 and Lc
y

51.3960.01 with a geometric mean of 1.1360.01.
To confirm that the geometric meanLc of the two aniso-

tropic values is related to the value for the isotropic case,
have calculated systematicallylM /M versusM for the iso-
tropic system (W54.0, tx5ty51.0, and a5 1

8 ) for very
large values ofM. These results are shown in Fig. 2. Fro

FIG. 2. The critical value of the isotropic scaling function. Fro
the large-M data, we estimate it to be 1.1060.03.
3-2
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Fig. 2, we obtain that indeedEc523.40 in this case, in
agreement with previous results10,14 that used different
techniques to getEc . In addition, Fig. 2 shows clearly that a
the critical point of the isotropic systemLc

iso51.1060.03,
which is approximately equal to the geometric mean of
two anisotropic valuesLc

x andLc
y .

The critical value oflM /M is related to the exponenta0
that can be obtained from the multifractal analysis8 of the
eigenfunctions at the critical energy byLc

215p(a02d),
where d is the Euclidian dimension of the system
Huckestein26 calculated Lc51.1460.02 for a real-space
model, while Lee et al.27 determine Lc5 ln21(11A2)
'1.13 for a network model, both of which are close to t
valueLc

iso51.1060.03 obtained for the isotropic case of th
2D tight-binding model with a constant magnetic field.

The next step is to use the values for the localizat
lengths obtained in this manner to plotlM ,x /M as a function
of jx /M andlM ,y /M as a function ofjy /M . After combin-
ing the data for all energies into one graph, one usually
to adjust the values for the localization lengths slightly
make the data fall on a smooth curve. Figure 3 shows
these two functions are independent of the value ofE, as
expected for one-parameter scaling. However, the two s
ing functions differ in their large-j limit: the value is higher
for the easy-hopping direction. To compensate for this
isotropy effect, we use the following straightforward idea2

lM ,x (lM ,y) is a length in thex(y) direction along the
length of the strip, so the appropriate scale should bejx(jy).
However, M is a length measuring the width of the str
and therefore has to be scaled with the other localiza
length. Thus we plot (lM ,x /jx)(jy /M ) versus (jy /M ) and
(lM ,y /jy)(jx /M ) versusjx /M in Fig. 4. Not only do we
obtain the same scaling function for both, but it is also
same as the isotropic one, which we included for referen
The isotropic case was forW54 anda5 1

8 . Of course, under
the assumption of one-parameter scaling, the form of
~isotropic! scaling function should not depend on the valu
of W anda directly ~as long as neither vanishes complete!

FIG. 3. The scaling functions for the difficult-~open symbols!
and easy-~filled symbols! hopping directionslM /M as a function
of j/M . The localization lengths have been adjusted to bette
the data to a smooth curve. Energies are23.0, 22.99, 22.98,
22.97, 22.969, 22.968, 22.967, 22.964, 22.96, 22.95,22.94,
and22.93.
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but only parametrically via the localization lengt
j(E,W,a). Thus, the product of the two rescaled anisotro
functions equals the square of the isotropic scaling functi
Immediately it is seen from this that the isotropic scali
function equals the geometric mean of the two anisotro
scaling functions,

S lM

M D
iso

5AlM ,x

M

lM ,y

M
~3!

as the rescaling factorsjx and jy cancel each other. As we
have shown before in Fig. 1 and Fig. 2, indeed Eq.~3! is
obeyed.

The procedure of fitting the data to a smooth scaling fu
tion provides us with more accurate estimates of the loc
ization lengths, which we can now use to determine the c
cal behavior ofj. In Fig. 5, we plot the localization length

t

FIG. 4. Plotting the rescaled scaling functions~cf. text! for the
difficult- ~open symbols! and easy-~filled symbols! hopping direc-
tions together with the scaling function for an isotropic syste
~crosses!.

FIG. 5. The divergence of the localization lengths at the criti
energy: open symbols, difficult-hopping direction; filled symbo
easy-hopping direction. The values are taken after the adjustm
made to obtain Fig. 5. Inset: To extract the critical exponent of
localization lengths we plotj vs uE2Ecu in a log-log plot. Both
exponents are found to be 2.360.1, roughly equal to the theoretica
value for the isotropic system.
3-3
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MARC RÜHLÄNDER AND COSTAS M. SOUKOULIS PHYSICAL REVIEW B63 085103
FIG. 6. The density of states
for the lowest subband for a disor
der strength ofW54.0 ~left! and
W52.0 ~right!, indicating that the
critical energy is off the band cen
ter. A fit to a Gaussian distribution
suggests that the band center
the W52.0 case is at E0

'23.38, whereas the critical en
ergy isEc'23.32.
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as a function of energy. One can clearly see that the st
are less localized in the easy-hopping direction, as was t
expected. Figure 5 also allows us to estimateEc , the energy
where the localization length diverges. We expect this cr
cal energy to be independent of the strip orientation, a
higher-dimensional system would undergo a phase trans
at this point, and our data give a strong indication thatEc is
indeed the same for both directions. We estimateEc
'22.96560.001. This is consistent with the results o
tained in Fig. 1.

The divergence of the localization length near the criti
energy is expected to follow a power law,

j~E!5j0uE2Ecu2n, ~4!

with some critical exponentn. To test this hypothesis, w
plot the logarithm ofj versus the logarithm ofuE2Ecu. The
result is shown in the inset of Fig. 5. That our data follow
straight line rather reasonably reconfirms our estimate
Ec , as the plot obviously is quite sensitive to the choice
that value. Furthermore, both sets of data can be fitted by
same straight line, giving the same critical exponentn'2.3
60.1. Once again, this is the same as the isotropic value
very close to the theoretically predicted value8 of 7

3 for the
isotropic system.

The distribution of energy-level separations in a giv
energy interval depends on the typical extension of
eigenstates of the system with eigenvalues in that ene
region. Spatial overlap of eigenfunctions close in ene
helps to delocalize the particle. In a finite system, more
the strongly localized eigenfunctions can be accommoda
without significant overlap. The more extended the eig
functions become, the more difficult it becomes to fit seve
into the finite space, and they must be separated in ene
This leads to the phenomenon of level repulsion, kno
from chaos theory. The corresponding distribution of le
separationssi5Ei2Ei 21 goes to zero for smalls. In con-
trast, the distribution for a range of localized eigenstates
a maximum at vanishing level separation. More specifica
random matrix theory predicts13 a Poisson distribution for
the localized case and a Wigner distribution for the exten
case. We have calculated the distribution of energy-le
separationsp(s) for the anisotropic system studied in Fig.
We find that for an energy range close toEc
522.965, p(s) is Wigner-like, whereas for the other en
ergy ranges it is Poisson-like.
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Level statistics for the isotropic system have been ext
sively studied by Potempaet al.14,15 and Batschet al.,16,17

proving the validity of the approach in distinguishing loca
ized from extended states. In addition, the level number v
anceS2(^N&)5x^N& has been numerically obtained for th
isotropic system,18 using the Chalker-Coddington networ
model,19 and compared with analytical theories,20 which give
for the spectral compressibilty x5@d2D(2)#/2d,
whereD(2) is the multifractal exponent of the wave fun
tion at the critical point.21 Klesse and Metzler obtainx
50.12460.006.18 Numerically obtained values forD(2) in-
clude 1.4360.03 for a continuum model,22 1.56 for a net-
work model,23 and 1.6260.02 and 1.71 for a tight-binding
model.24,25 Due to the limited size of our systems, we we
not able to produce results forx for our anisotropic model.
The number of energy eigenvalues sufficiently close to
critical point is not large enough to give good statistics
the number varianceS2(^N&). This point has to be addresse
in the future.

Finally, Fig. 6 shows the positions ofEc for isotropic
systems atW52 andW54 to be different from the band
center. Although a Gaussian is not the correct form for
density of states, it is usually a reasonable fit. For the str
ger disorder,W54, the best approximation is achieved wi
a Gaussian centered atE523.7 with a standard deviation o
s50.4. Figure 2 strongly indicatesEc523.4 ~arrow in left
panel of Fig. 6!. Similarly, for the lesser disorder,W52,
a Gaussian centered atE523.38 with a standard deviation
of s50.21. A plot similar to that for the more strongl
disordered case shows thatEc523.32. However, forW
<1 the critical energyEc lies at the center of the Landa
band.

IV. CONCLUSIONS

In summary, we have performed a detailed numeri
study of the scaling properties of highly anisotropic syste
in 2D, with a metal-to-insulator transition. Scaling functio
of the isotropic systems are recovered once the dimensio
the anisotropic system is chosen to be proportional to
localization length. It is also found that the critical point
independent of the propagation direction and that the crit
exponents for the localization length in both propagating
3-4
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rections are equal to that of the isotropic system. The crit
value Lc of the scaling function for both the isotropic an
the anisotropic cases has been calculated. It is obtained
Lc

iso5ALc
xLc

y51.1060.03. Finally, density of states calcu
lations revealed that the critical energy lies away from
center of the Landau band.
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