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Metal-insulator transitions in anisotropic two-dimensional systems
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Several phenomena related to the critical behavior of noninteracting electrons in a disordered two-
dimensional tight-binding system with a magnetic field are studied. Localization lengths, critical exponents,
and density of states are computed using transfer-matrix techniques. Scaling functions of isotropic systems are
recovered once the dimension of the system in each direction is chosen proportional to the localization length.
It is also found that the critical point is independent of the propagation direction, and that the critical exponents
for the localization length for both propagating directions are equal to that of the isotropic systemWe
also calculate the critical valug. of the scaling function for both the isotropic and the anisotropic system. It
is found thatALso: VAZAY. Detailed numerical studies of the density of statég) for the isotropic system
reveal that for an appreciable amount of disorder, the critical energy is off the band center.
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[. INTRODUCTION the same is not true for the conductance. Numerical
calculationd in three-dimensional anisotropic systems do not
The problem of Anderson localizatibin anisotropic sys- support a universal value of the conductance for the geomet-
tems has attracted considerable attefftiomecently. It is  ric mean. This might be due to too small sizes used in the 3D
generally acceptédhat anisotropy does not change the uni-system or to a lack of universality of the conductance at the
versality class and that the isotropic results are recoveredritical point.
once a proper scaling of the anisotropic results is performed. In this paper, we investigate the scaling properties of the
If the dimension of the system size is chosen to be directlfinite-size localization length,, and the critical value\ . of
proportional to the localization length, the system should béhe scaling function in a two-dimensional system described
effectively isotropic. The difficulty in implementing such a by a tight-binding model in the presence of a magnetic field.
procedure lies in the fact that the localization lengths areBoth the isotropic case as well as the anisotropic case will be
usually not knowna priori. It was found through detailed examined. This is perhaps the simplest system that exhibits
numerical calculatiorfsthat this scaling indeed works. It was the correct behavior of the metal-to-insulator transition. To
also showf that the probability distributions of the conduc- our knowledge, no such calculations have been previously
tance in the two directions are exactly equal to each othergeported for the anisotropic tight-binding model with a con-
provided that the ratio of the sides of the rectangle is proporstant magnetic field. Some of the questions we try to answer
tional to the ratio of the localization lengths in the two di- are as follows: How does the anisotropy affect the critical
rections. These scaling results were obtained for an anisdehavior, especially, will there be one or two critical expo-
tropic system where all the states were localized. nents for the localization lengths? How do the anisotropic
It is well known' that noninteracting electrons are local- quantities relate to the corresponding isotropic ones, espe-
ized in two-dimensional2D) disordered systems. There are, cially, can we expect the geometric mean of the two aniso-
however, some exceptions to this rule. These include eledfopic values to equal the isotropic value? What are the val-
trons having strong spin-orbit couplifiginteger quantum ues for the scaling functions at the critical point? In Sec. Il
Hall system$ and tight-binding models with random mag- we describe the model and the numerical methods we used.
netic fields® The best known example is the integer quantumin Sec. lll, we present and discuss our numerical results. In
Hall plateau transition occurring in a 2D noninteracting sys-Sec. IV, we summarize the conclusions of this work.
tem in a strong magnetic field. Extended states do not exist

as a result of Anderson localization except at a singular en- Il. MODEL AND METHODS
ergy near the center of each of the Landau subb&tiEhe _ o -
localization length diverges at these critical enerdigsas In the tight-binding model, one has the Hamiltonian
éx[E—Eq . - N

Another important point is the universality of the conduc- H= Z liYe;(i| + i2j,|i>\/ij<j I (1)

tance at the critical point of the Anderson transition for the

anisotropic systerfiFrom the generalized scaling functions, ) i . .

it has been established that the geometric mean of the critic¥fhere the summations run over lattice sitesdj. We con-
value A, of the scaling functiom\ %\, /M) (as a function sider only nearest-neighbor interaction in th_e hopplng inte-
of é&/M) is a constant independent of the strength of thegra}lsvij . The effects of an external magnetic field, charac-
anisotropy. (Here \,, denotes the finite-size localization t€fzed by a vector potential (VxA=B), enter the model
length of a quasi-one-dimensional strip of finite wideh) ~ Vid phases of the hopping integrals with

Numerical calculations in both twband three-dimensiorfal _ .

disordered anisotropic systems support this claim. However, Vij=tje 2m(emI A 2
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< TE. . OO E=-2967 <ot Soome E=-2967 critical energies at either side of
0.6 o0 E = -2.966 = E'=-2.966 the critical one, we assume that

o—0E=-2965 08 e E=-2965 the value for E. is between

o=-—0 E = -2.064 -~ E=-2964 —2.966 and—2.965, but closer to

04 . . ‘ ‘ ‘ , 06 ‘ ‘ ‘ ‘ ‘ ‘ the second one. Left: difficult-
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M M hopping direction.

the integral connecting lattice sitegndj by a straight line.  order strengthw, the hopping integral,<1 in the difficult

In two dimensions with a magnetic inducti@perpendicu- hopping direction, as well as the magnetic field parameter

lar to the plane of the system, one can choose the gauge fare restrict our investigation to one set of these parameters
the vector potential in such a manner that the phases vanisi/=0.1, t,=0.8, anda= 5. The data for the more localized

in one direction within the plane and are integer multiples ofstates show thal"/\, versusM is a straight line. The in-
some number 2« in the other direction, such that the value verse slope of each of these lines gives a first estimate for the
of & completely characterizes the influences of the magnetitocalization lengthst, or &, respectively, thus the smaller
field on the system. In particular, the denominator of a ratiofhe slope, the more extended are the corresponding eigen-

nal @ equals the number of bands in the density of states oftates of the system. For energies closeEq the lines

the system without disorder. Introducing anisotropy into thewould be essentially horizontal. In order to accurately obtain

- ; : . . E., we have systematically calculated, , and \y, , for
system by choosing different amplitudgsin the two direc- c’ S X M.y
tions within the plane will effect only the position of these largeM. The results_ are shpwn in Fig. 1, wh_ere we Dlgf x
bands, not their number. We bring disorder into the syste ndXwy for.the anisotropic ca?e forhenergles veryfclose to
by independently choosing all the site energigsfrom a tecﬁdeF(riosTatzlgll\lolt’icvevih;;n/ hcjlogelgTe;sgse;slséiﬂiect% n%l’; ex-
rectangular distribution of widtklV centered at O; thug/is a :

f disorder st th. Bathand E di which signifies localized states. For localized stateg,
measure ot disorder strength. Baiandk are measured in eventually reaches its largd-limit, which is a constant, and
units of the largest hopping matrix elemeénwhich is taken

) therefore\,, /M decreases adl increases. However, as can
to be unity.

A . thod the t ; tri thod be seen from Fig. 1, at the critical energy, Ay /M satu-

h S our m?[nTme od, V}/etl;]se eI.:ags er—fma :'Xt met botr’lrates to a constant due to the absence of length scales. For
where a matrixiy connects the ampiitudes of a state al bothy,e 55 studied§=0.1, t,=1.0, t,=0.8, anda=3), we
ends of a quasi-one-dimensional strip of widilhand length

N>M. Due to th isot h 1o do this in the t find that the critical energyE. is between—2.966 and
- bue 1o the anisotropy, we have 1o do this In the W°—2.965, but closer to the second value. From Fig. 1, we can

spatial directions separately. Therefore, we get two sets oélso obtain the critical values . of A /M for both direc-
parametera.y , and\y, ,, which lead to two separate local- . . C X:M y

e . L tions of propagation. We findA;=0.92+0.01 and A{

ization lengthsg, and &, in the x andy direction, respec- _ 1.39+0.01 with a geometric mean of 1.4.01

tively. Scaling of the data is used to improve on the values of 'I.'o gon.firm that th% geometric mea, o.f thé tWo aniso-

& and&,, which are then analyzed to find the critical ener- . . X :
gies, where the localization lengths diverge as well as th fopic values is related to Fhe value for the isotropic case, we
critic,al exponents of these divergences ave calculated systematically, /M versusM for the iso-

' ﬁtropic system W=4.0, t,=t,=1.0, and a=3) for very

We obtain the density of states by using a Lanczo e val M. Th results are shown in Fig. 2. Erom
proceduré! to diagonalize the Hamiltonian on squares of arge values olvl. These resufts are sho 9. . FTo

(linean sizeL. The energy-level separation distribution func-
tion p(s) should deviate markedly from a Poisson distribu- Ly
tion for the local density of states around the critical energy, Lot
approaching the Wigner distribution for the unitary '
ensemblé?'3We also use the density of states to show that < 09|
for sufficiently strong disorder the critical energy does not = “E\{ o Eeas
necessarily coincide with the band center. 0.8 | e E=345 1
——eE=234
07 o---oEf-3.35 |
Ill. RESULTS e
0.6 : ' '
To obtain the critical energg. for the anisotropic tight- 0 >0 11810 150 200

binding model, first we calculatey , and\y, , for different
strip widthsM and energie€ above and below the critical FIG. 2. The critical value of the isotropic scaling function. From
energyE.. As the exact position o varies with the dis- the largeM data, we estimate it to be 1.4®.03.
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FIG. 3. The scaling functions for the difficultopen symbols FIG. 4. Plotting the rescaled scaling functiofes. text) for the

and easydfilled symbol$ hopping directions\, /M as a function  difficult- (open symbolsand easy<filled symbolg hopping direc-

of &M. The localization lengths have been adjusted to better fitions together with the scaling function for an isotropic system
the data to a smooth curve. Energies ar8.0, —2.99, —2.98, (crosses

—2.97, —2.969, —2.968, —2.967, —2.964, —2.96, —2.95,-2.94,

and —2.93. but only parametrically via the localization length
&(E,W, ). Thus, the product of the two rescaled anisotropic
functions equals the square of the isotropic scaling function.
Immediately it is seen from this that the isotropic scaling
function equals the geometric mean of the two anisotropic
scaling functions,

Fig. 2, we obtain that indee,=—3.40 in this case, in
agreement with previous resuft$* that used different
techniques to ge. . In addition, Fig. 2 shows clearly that at
the critical point of the isotropic systemi $°=1.10+0.03,

which is approximately equal to the geometric mean of the N VY
two anisotropic values\; and AY. (_’V') _/MMxAmy 3)
IS

The critical value of\\, /M is related to the exponeiat, M M M
that can be obtained from the multifractal anal§si$ the
eigenfunctions at the critical energy by_ '=m(ay—d),
where d is the Euclidian dimension of the system.
HuckesteiR® calculated A,=1.14+0.02 for a real-space
model, while Lee etal?” determine A,=In"(1+2)
~1.13 for a network model, both of which are close to the
value A$°=1.10+ 0.03 obtained for the isotropic case of the
2D tight-binding model with a constant magnetic field.

The next step is to use the values for the localization
lengths obtained in this manner to phay; /M as a function
of §/M and\y, /M as a function o, /M. After combin-
ing the data for all energies into one graph, one usually has
to adjust the values for the localization lengths slightly to
make the data fall on a smooth curve. Figure 3 shows that
these two functions are independent of the valueEpfs
expected for one-parameter scaling. However, the two scal-
ing functions differ in their large: limit: the value is higher
for the easy-hopping direction. To compensate for this an-
isotropy effect, we use the following straightforward idea:
Amx (Mwy) is a length in thex(y) direction along the
length of the strip, so the appropriate scale should,§¢,).
However,M is a length measuring the width of the strip . ;
and therefore has to be scaled with the other localization 300 298 296 294 292
length. Thus we plotXy «/§,)(&,/M) versus &,/M) and E

()‘M.y/'gy)(gle) vers_usgle _'n Fig. 4. Not on_ly_ do we FIG. 5. The divergence of the localization lengths at the critical
obtain the same scaling function for both, but it is also thegnergy: open symbols, difficult-hopping direction; filled symbols,
same as the isotropic one, which we included for referenceasy-hopping direction. The values are taken after the adjustments
The isotropic case was fW=4 anda= 3. Of course, under made to obtain Fig. 5. Inset: To extract the critical exponent of the
the assumption of one-parameter scaling, the form of theocalization lengths we plog vs |[E—E| in a log-log plot. Both
(isotropig scaling function should not depend on the valuesexponents are found to be 8.1, roughly equal to the theoretical

of Wand« directly (as long as neither vanishes completely value for the isotropic system.

as the rescaling facto, and &, cancel each other. As we
have shown before in Fig. 1 and Fig. 2, indeed R).is
obeyed.

The procedure of fitting the data to a smooth scaling func-
tion provides us with more accurate estimates of the local-
ization lengths, which we can now use to determine the criti-
cal behavior of¢. In Fig. 5, we plot the localization lengths
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06 | {l I : |-w| for the lowest subband for a disor-
i " der strength ofW=4.0 (left) and
I
o o L5 I W= 2.0 (right), indicating that the
w04 ] lll ! critical energy is off the band cen-
1O ¢ ll ter. A fit to a Gaussian distribution
|
02 | l,l'l' | suggests that the band center in
0.5 I the W=2.0 case is atE,
ﬂ“m“ ~ —3.38, whereas the critical en-
0.0 0.0 =l - ergy isE.~—3.32.
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as a function of energy. One can clearly see that the states Level statistics for the isotropic system have been exten-
are less localized in the easy-hopping direction, as was to bsively studied by Potempat al!**® and Batschet al, ¢’
expected. Figure 5 also allows us to estinate the energy  proving the validity of the approach in distinguishing local-
where the localization length diverges. We expect this criti-ized from extended states. In addition, the level number vari-
cal energy to be independent of the strip orientation, as ance3 2((N))=x(N) has been numerically obtained for the
higher-dimenSional SyStem would Undergo a phase tranSiti0&otr0piC Systerﬁ? using the Cha]ker-Coddington network
at this point, and our data give a strong indication tais  model® and compared with analytical theori@ayhich give
indeed the same fQI’ .bOth d!rections_. We estim@ie oy  the spectral  compressibilty y=[d—D(2)]/2d,
~—2.965-0.001. This is consistent with the results ob-\\herep(2) is the multifractal exponent of the wave func-
tained in Fig. 1. o ___tion at the critical point! Klesse and Metzler obtairy
The (_jlvergence of the localization length near the critical _ 0.124+0.00618 Numerically obtained values fdd(2) in-
energy is expected to follow a power law, clude 1.43-0.03 for a continuum modéf, 1.56 for a net-
E(E)=£|E—EJ *, 4 Wwork r;]4ogel?3 and 1.62-0.02 and 1.71 for a tight-binding
model=™<> Due to the limited size of our systems, we were
with some critical exponent. To test this hypothesis, we not able to produce results far for our anisotropic model.
plot the logarithm of¢ versus the logarithm dE—E.|. The  The number of energy eigenvalues sufficiently close to the
result is shown in the inset of Fig. 5. That our data follow acritical point is not large enough to give good statistics for
straight line rather reasonably reconfirms our estimate fothe number variancE?((N)). This point has to be addressed
E., as the plot obviously is quite sensitive to the choice forin the future.
that value. Furthermore, both sets of data can be fitted by the Finally, Fig. 6 shows the positions d. for isotropic

same straight line, giving the same critical exponem2.3  gystems aW=2 andW=4 to be different from the band
+0.1. Once again, this is the same as the isotropic value a%ﬁnter. Although a Gaussian is not the correct form for the
very close to the theoretically predicted vl § for the density of states, it is usually a reasonable fit. For the stron-
isotropic system. ger disorderW=4, the best approximation is achieved with

The O.“St”bu“on of energy-level separations In a giveny o ssjan centered Bt — 3.7 with a standard deviation of
energy interval depends on the typical extension of the

) . . . o=0.4. Figure 2 strongly indicates,= — 3.4 (arrow in left
eigenstates of the system with eigenvalues in that energ . o .
region. Spatial overlap of eigenfunctions close in energ anel Of. Fig. 6. Similarly, for thellesser d|sordek/,v=_2_,
helps to delocalize the particle. In a finite system, more oft Gaussian centered _Et_: —3.38 with a standard deviation
the strongly localized eigenfunctions can be accommodate@l @=0-21. A plot similar to that for the more strongly
without significant overlap. The more extended the eigendisordered case shows thi=—3.32. However, forw
functions become, the more difficult it becomes to fit severar<1 the critical energyE; lies at the center of the Landau
into the finite space, and they must be separated in energp.a”d-
This leads to the phenomenon of level repulsion, known
from chaos theory. The corresponding distribution of level
separationss,=E; —E; _; goes to zero for smak. In con- IV. CONCLUSIONS
trast, the distribution for a range of localized eigenstates has
a maximum at vanishing level separation. More specifically, In summary, we have performed a detailed numerical
random matrix theory predictsa Poisson distribution for study of the scaling properties of highly anisotropic systems
the localized case and a Wigner distribution for the extendeéh 2D, with a metal-to-insulator transition. Scaling functions
case. We have calculated the distribution of energy-levebf the isotropic systems are recovered once the dimension of
separation®(s) for the anisotropic system studied in Fig. 1. the anisotropic system is chosen to be proportional to the
We find that for an energy range close t&, localization length. It is also found that the critical point is
=—2.965, p(s) is Wigner-like, whereas for the other en- independent of the propagation direction and that the critical
ergy ranges it is Poisson-like. exponents for the localization length in both propagating di-
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