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By using twoab initio numerical methods, we study the effects that disorder has on the spectral gaps and on
wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two dif-
ferent responses depending on the lattice realizggotid dielectric cylinders in air or vice versahe wave
polarization, and the particular form under which disorder is introduced. Two different pictures for the pho-
tonic states are employed, the “nearly free” photon and the “strongly localized” photon. These originate from
the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and
single scatterer resonances, and they qualitatively explain our results.

[. INTRODUCTION are analogous to the electronic orbitals in semiconductors.
The idea of the linear combination of atomic orbitals
Electromagnetic waves traveling in periodic dielectric (LCAO) method was extended to the classical wave case as a
structures will undergo multiple scattering. For the properlinear combination of Mie resonancdsCMR), leading to a
structural parameters and wave frequencies, all waves maguccessful tight-bindingTB) parametrization for photonic-
backscatter coherently; the result is total inhibition of propa-band-gap materials. This moves the picture for the photon
gation inside the structure. Such structures are calledtates, from the one analogous to the nearly free electron
photonic-band-gagPBG) materiald? or photonic crystals, model to the one analogous to the strongly localized electron
and the corresponding frequency ranges, for which propagavhose transport is achieved only by hoppittgnneling
tion is not allowed, are photonic band gaps or stop banddrom atom to atom. Depending then on which mechanism is
PBG materials can be artificially made in one, two, or threedominant for the formation of the photonic gaps, we expect
dimensions. For example, a periodic lattice of dielectricdifferent changes to the system’s properties when disorder is
spheres embedded in a different dielectric medium wouldntroduced. If the Bragg-like multiple scattering mechanism
work as a three-dimensional PBG material, for the propeis the dominant one, the photonic gaps should close quickly
choice of lattice symmetry, dielectric contrast, and spheravith increasing disorder, while if it is the excitation of Mie
volume filling ratio. In two dimensions, a periodic array of resonances, the photonic gaps should survive large amounts
parallel, infinitely long, dielectric cylinders could work as a of disorder, in a similar way that the electronic energy gap
two-dimensional PBG material, prohibiting propagation in asurvives in amorphous silicon.
direction perpendicular to the cylinders’ axis for some fre- In this paper we will use twab initio numerical methods
guency ranges). The absence of optical modes in a photonicto study the effects of disorder on photonic gap formation
band gap is often considered as analogous to the absenceasfd wave localization in two-dimensional PBG materials.
electronic energy eigenstates in the semiconductor energphe first is the finite difference time domaRDTD) spectral
gap. The ability of PBG materials to modulate electromag-method”!® from which we obtain the photonic density of
netic wave propagation, in a similar way that semiconductorstates for an infinite, disordered PBG material, and the sec-
modulate the electric current flow, can have a profound im-ond is the transfer-matrix technigtiefrom which we obtain
pact in many areas in pure and applied physics. It is then athe transmission coefficient for a wave incident onto a finite
fundamental importance to study the effects of disottien  slab of the disordered PBG material. From the transmission
the transmission properties of such materials. coefficient we can obtain the localization length for the pho-
Besides the nonresonant, macroscopic Bragg-like multipléonic states of the disordered matefidlhe study will be on
scattering, there is also a second, resonant mechanism, tHaith PBG material realizationsolid high dielectric cylin-
contributes to the formation of the spectral gaps. THs’is ders in air and cylindrical air holes in high dielecjrifor
the excitation of single scatterer Mie resonarftés.a pre-  both wave polarizations, and it will incorporate three differ-
vious publication it was shown that for two-dimensional ent disorder realizations: disorder in position, radius, and di-
PBG materials, for th& polarization scalar wave caselec-  electric constantthese systems, though, will still be periodic
tric field parallel to the cylinders’ axjsthese Mie resonances on the average We will find that only the case of solid
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dielectric cylinders in air with the waig,-polarized exhibits In order to find the eigenmodes of a particular periddic
the behavior expected from the strongly localized photordisordered system, we first initialize the electric and mag-
picture, while for all other cases, the nearly free photon picnetic fields in the unit cellor a suitable supercgliusing

ture seems to be the dominant one. periodic boundary condition&(r +a) = e'* 2E(r) and simi-
larly for H(r), wherek is the corresponding Bloch wave
Il. NUMERICAL METHODS vector anda the lattice vector. These fields must have non-

Electromagnetic wave propagation in lossless composit€€ro projections with the modes in search. We choose a su-
dielectric media is described by Maxwell's equations perposition of Bloch waves for the magnetic field and set the
electric field to zero:

i VXE (”)aE VXH (1)
—=—-VXE, e(r)—=VXxH, . N e L
Koot H(r) =2 vge! o +idg E(r)=0, 3
. g
where the dielectric constar({r) is a function of position. R
In two dimensions, the two independent wave polarizationsvhere ¢ is just a random phase and the unit veatois
are decoupled. We assume the variation of the dielectric corperpendicular to botk and (124_@), ensuring thaH is trans-
stant, as well as the propagation direction, along tye yerse and tha¥ - H=0. Once the initial fields are defined,
plane, and so the cylinders along thexis. One of the po- e can evolve them in time using the “leapfrog” difference
larizations is with the electric field parallel to tlzeaxis and equations, while recording the field values as a time series
the magnetic field on they plane €,- or TM-polarized and 51 some sampling points. As the electric field “builds” up,
obeys a scalar wave equation. The other one is with thgome particular modes dominate while most are depressed,
magnetic field parallel to the axis and the electric field on  refecting the underline lattice symmetries. Here we record
thexy plane H- or TE-polarized and obeys a vector wave gy theE, field for theE,-polarization case and th, field
equation. _ _ for the H,-polarization. At the end of the simulation, the time
The first method we will use to study disordered PBGgeries are Fourier transformed back into frequency space,

materials is the FDTD spectral methtfd® In our FDTD and the eigenmodes(K) of the system appear as shar

scheme, we first discretize thgy plane into a fine uniform ks. Th gl h of the simulati yd PP he f P

grid. Each grid point is centered in a unit cell which is fur- pea S‘.T € e_ngt 0 t € simu ation determines the requency
resolution while the time difference between successive re-

ther discretized into a 2010 subgrid, on which an arith- : : ; .
. . . . cordings determines the maximum frequency considered.
metic average of the dielectric constant is performed. In OUL . ethod scales linearly with size: a larger system will

problem we will assume dispersionless and lossless materi-. X
. i . . still need the same number of time steps for the same fre-
als. For theE, polarization case we define the electric field uency resolution. thus sometimes referred to also as an
on this grid and the magnetic field on two additional grids’gorder)—/N” method 12
one tilted by d/Z,Q), on Wh'thy IS Qefmed,_and one t||t_ed Here we will use this method to obtain the system’s den-
by (0d/2), on which we definé, . d is the side of the grid sity of stategDOS). If one chooses a large supercell instead
cell. The corresponding finite-difference equations for the i ' S 2T o
space derivatives that are used in the curl operators are th&f the unit cell, then for eack point inside its first Brillouin
central-difference in nature and second-order accurate. THePne, the Fourier-transformed time series will consist of a
electric and magnetic fields are also displaced in time by &umber of peaks. Adding all contributions from &ls will
half time stepAt/2, resulting in a “leapfrog” arrangement resultin a smooth function for the DOS. This is in contrast to
and central-difference equations for the time derivatives aglder methods that used random fields as initial boundary
well. If one initializes the electric and magnetic fieldstat conditions? Random initial fields will ensure the condition
=t, andt=t,+ At/2, respectively, then updating the values for nonzero projections to all of the system’s eigenmodes,

of the electric field for each grid point,§) att=t,+At is  butin order to get coupled with them during “build” up, a
done by large simulation time is required. Furthermore, the produced

DOS is not a smooth function of frequency, still consisting

ot At ¢ At A2 A2 of a large collection of peaks, and thus being useful only as
B T =E5+ F(Hyhoﬂ/z,j —Hy[[2 0 an indication of the existence of spectral gaps. In our
hl method, the underline symmetries of the modes are already
_ HxH?jiAlt//zzﬁL Hx|itf)j+_A1722), (2)  inthe initial fields and so they couple more easily with them.

Also, the larger the supercell, the smaller is its first Brillouin
where ¢ ; is the averaged dielectric constant for the gridzone, and so the smaller the frequencies we initialize through
point (i,j). Similar equations follow for updating the mag- the variousk. This is why we can get smooth results even for
netic field components at=ty+ 3At/2, then Eq(2) for E;at  very low frequencies. In Figs. 1 and 2, we show the calcu-
t=to+2At, etc. This way the time evolution of the system |ated density of states for the case of solid dielectric cylin-
can be recorded. For numerical stability and good converders in air and cylindrical air holes in dielectric, respectively,
gence the number of grid points per wavelengtd must be  both for a square lattice arrangement and for both polariza-
at least 20, and alst=<d//2c, wherec is the speed of light tions. Along with them we also plot the corresponding band
in vacuum. Similar equations, with the roles of the electricstructure as obtained with the plane-wave expansion method.
and magnetic fields interchanged, apply for theOur study is going to be based on these two photonic
H,-polarization case. structures.
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two-dimensional square-lattice array of dielectric cylindeys- 10 . FIG. 3. Transmission _coef'fl_uen_t for the perI(_)dlc, and weakly
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matrix techniqug Calculations are for two different surfaces along

~ which the sample is cut. Effective disorders ugsde Eq.(4)]: in
The second method we will use is the transfer-matrixposition ~1.3, in radius~0.5, and in dielectric-0.3.

technique in order to obtain the transmission coefficient for a
wave incident along they plane on a slalfor a slice of the  cut. More specifically, a wave normally incident on(;r0)
photonic material. The slice is assumed uniform alongzthe surface will have different transmission characteristics than a
axis and periodic along thedirection through application of wave incident with 45° on &1,1) surface. This is because
periodic boundary conditions, while in tlyadirection it has a certain modes cannot always get coupled with the incident
finite width L. In this method one first constructs the trans-wave. One should then also average for the two different
mitted waves at one side of the slice and then integratesurface cuts, otherwise it will not be a true average. This is
numerically the time-independent Maxwell equations to theshown in Figs. 3 and 4, where we plot ttie0) and the(1,1)
other side. There, the waves are projected into incident anduts, each with both incidence directiofreormal and 45°
reflected waves, and so a value for the transmission coeffivith respect to the surfageveraged. We see that taken in-
cientT can be obtained. Here, we are interested in the waveividually, none of them corresponds to the true gaps as
localization in disordered photonic-band-gap materials, anghown in Figs. 1 and 2, but rather to wider and generally
in particular in the localization length~—2L/InT. displaced gaps. For example, in tBe-polarization case in

A few remarks about the results of this method are inthe first spectral gafiFigs. 3a) and 4a)], with the (1,0) cut,
order. Waves with different incidence directions will have the incident waves fail to couple with the the modes of the
different reflection and transmission coefficients, so if one idirst band, while with the€1,1) cut, the incident waves fail to
looking for an average transmission, all directions should b&ouple with theX modes of the second band.

included. It is shown, however, that there is also a large
) u

dependence on the surface plane along which the structure i ¢
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FIG. 4. Transmission coefficient for the periodic, and weakly
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density of stategobtained with the FDTD spectral methofbr a matrix techniqug Calculations are for two different surfaces along
two-dimensional square lattice array of air cylinders=1 in di- which the sample is cut. Effective disorders used: in position
electric e,= 10, with air filling ratio f =71%. ~0.35, in radius~0.25.
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This is expected to be lifted once disorder is introduced 060
into our system, since the sense of direction will be somehow

| SOLID cylinders in AIR

055 b upper edge of 2nd gap

lost. Disorder can be introduced as a random displacement, ™ P 4
random change in the radius, or a random change in the 45, | ),7 - /\>
dielectric constant of the cylinders. It is not clear, however, - e P

. . P
what amount of disorder would be needed for this. We re-& 045 fa2a-"", <

. . S lower edge of 2nd gap
peated the calculations for small enough amounts of disorde3 00 e disorder in position - no overtaps
so that the spectral gaps, as found from the FDTD method & o7 disorder in position - with overlips
remain almost unchanged for all three different disorder 3. ;s | v+ disorder in dielectric constant

. . . . . . 1
mechanisms. As seen in Figs. 3 and 4, indeed, in some case, upper edge of Ist sap

the coupling is achieved. For example, for the first gap in the 0.0 } j“ﬂ\’**:;\‘,‘\_ M‘*@\k:n ]

E,-polarization case, with thél,0) cut, theM modes of the S U e o e

first band are now coupled with the incident waves and ap- 025 lower edge of Ist gap

pear in the transmission diagram. These could be easily mis 5, ‘ ‘ ‘ ‘ ‘

taken for disorder-induced localized states entering the gap 0 1 2 3 4 5 6
but they are not, since for the values of disorder used, the <disorder>

first gap is virtually unchanged. On the other hand, with the ' £ 5. The edges of the photonic band gaps as a function of the
(1,1) cut, the coupling toX modes of the second band is not effective disorder disordej=(e) [as was defined in Eq4)], for

yet achieved, still yielding a wrong picture for the gap. In- the system described in Fig. 1. Four different disorder realizations
creasing the disorder further will eventually destroy anyare studied.

sense of direction and there will be no distinction between
the two cases. Figures 3 and 4 will be useful as a guide 0 kqyr different disorder realizations are studiéd:disor-

which results can be trusted and which cannot, if one useger in position, but without allowing any cylinders to overlap

only one surface cut and small values of disorder. As a gengjth each other(ii) disorder in position allowing cylinder
eral rule, we can deduce that tfie0) cut should be used for overlapping to occur(iii) disorder in radius, andv) disor-

the E,-polarization case, while thel,1) cut would be better oy in dielectric constartthe last one only in the solid cyl-

for the H,-polarization case. inder casg For each different realization we consider vari-
ous disorder strengths, and thus different effective disorders
Ill. RESULTS AND DISCUSSION (e), for which we record the upper and lower gap edges for

. . the first two photonic band gagd they exis). Results are

~We first looked into the spectral gaps’ dependence oy mmarized in Figs. 5 and 6, for the solid and air cylinder
disorder using the FDTD spectral method. Our system coNzages; respectively. We note that Sepolarization case for
sisted of an &8 supercell, each cell discretized into a 32 e solid cylinders is very different from all other cases: the
X 32 grid. We studied two systems: a square lattice array Ofaps survive very large amounts of positional disorder, espe-
solid cylinders, with dielectric constart,=10, in air (e,  cjally if no overlaps are allowed. In fact, once the disorder
=1) with a filling ratio f=0.28%, and a square lattice array pecomes large enough for overlaps to be possible, the gap
of air cylinders €,=1) in dielectric materiak,= 10, with  quickly closes, as shown in Fig. 5. The actual DOS graphs
air filling ratio f=0.71%, as described in Figs. 1 and 2. Wefor the two different realizations of the positional disorder
divided the supercell's first Brillouin zone into & %Q0  are shown in Fig. 7, for three different values of the effective
grid, which for the irreducible part yields 66 differeit disorder. On the other hand, if the disorder is of the third or
points. For each particular disorder realizatioe., disorder
type) and disorder strength, we run the simulation for all ‘ - ‘ - -
these 66K’s. At eachk, however, we use a different disor- ~ *> | e [AIR cylinders in DIELECTRIC| |
dered configuratiofi.e., a different seed in the random num- e
ber generatgr and so a large statistical sample is automati-
cally included in our result. In each case, the effective T ol lower edge of 2nd E. gap
disorder is measured by the rms error of the dielectric con¥ lower edge of H. gap

050 §

. . . 4 g o—= £_-disorder in position - no overlaps
Stant( €> y Wh|Ch IS deﬂ ned ég’ ~ o0 E_-disorder in position - with overlaps
§‘ 040 ¢ w— —8 E_-disorder in radius
S = H_-disorder in position - no overlaps
§~ oo H - disorder in position - with overlaps
;;; 035 | > -+ H_ - disorder in radius

upper edge of 1st E_ gap

1 N
=y 2 (e, (@
030 F

where the sum goes over &ll=8X 8x 32X 32=65 536 grid
points,eid and €” are the dielectric constants at sitén the , ‘ , ,
disordered and periodic case, respectively, @ncheans the 0.0 0.5 10 15 2.0 25 3.0
average over different configuratiordifferent k's in our <disorder>

casg. In both settings(dielectric cylinders in air and vice FIG. 6. The edges of the photonic band gaps as a function of the
versa the filling ratio of the high dielectric material is simi- effective disordexdisordej=(e) [as was defined in Eq4)], for

lar, and so(e) is expected to have the same meaning andhe system described in Fig. 2. Three different disorder realizations
weight. are studied.

0.25 | loweredge of Ist E_gap
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frequency (®ai2mc) FIG. 8. The density of states for the system of Fig. 2 for both

field polarizations, for two different positional disorder strengths.
FIG. 7. The density of states for the system of Fig. 1 withEge The solid line is when no scatterer overlaps are allowed, while the
polarization, for three different positional disorder strengths. Thedotted line is when scatterer overlaps are allowed.
solid line is when no scatterer overlaps are allowed, while the dot-
ted line is when scatterer OV?rlapS .are allowe(b\?érlap$” is the System consisted of a>37 Superce"(3 a|0ng thex axis),
average number of overlapping cylinders. with each cell discretized into an ¥8.8 grid (a small super-
cell was used in order to ease the computation byrdan
fourth kind, the gaps close very quickly, even for modestthe x direction we applied periodic boundary conditions,
values of the effective disorder. while in they direction the supercell was repeated four times,
The picture is very different in the other cases, as seen ifp provide a total length. for the slab ofL =28 unit cells.
Fig. 6. The effect of the positional disorder is the sameThe structures studied are exactly the same as described be-
independent of whether Overlaps are allowed or not. This i$0re_ The lattice was cut a|0ng one On|y Symmetry direction,
most clearly seen in Fig. 8, where the actual DOS graphs arge (1,0), since for large disorders we expect all “hidden”
plotted for the air cylinder case for both polarizations and formodes to be coupled with the incident waie any case, we
both positional disorder realizations. Allowing the air cylin- know from Figs. 3 and 4 which results can be completely
ders to overlap, though, means that the connectivity of thgrysted and which cannotFor each disorder realization and
background material will break. Our results, thus, indicate strength, we used 11 differektvalues uniformly distributed
that there is no connection between the connectivity of th
etween normal and 45° angle incidence, and for davie

background material and the formation of the spectral gap
in this 2D case. Most importantly, however, we note that thel used a different disordered conf|gurat|on so these will con-

disorder in radius has a similar effect to that of the positionaftitute our statistical sample. For eakhwe find the mini-
disorder in closing the gaps. In fact, it is also similar to themum transmission coefficient inside each gap, from which
effect of the disorder in radius for tH#,-solid-cylinder case. We find the minimum localization length, and then average
So, in the case of air cylinders, the type of the disorder that isver allk’s, i.e.,|~— 2L/{InT) (in the periodic case we first
introduced into the system does not play a significant roleaveraged ovefl in order to correctly account for different
but rather, it is only the effective disordéneasured through propagation directions, but in the highly disordered case it is
the dielectric constant’s error functipthat determines the not so important any more, and so we just average over the
effect on the spectral gaps. On the other hand, for théocalization lengths
E,-solid-cylinder case, the type of disorder plays a profound Our results are shown in Figs. 9 and (iecause of the
role: if the “shape” of the individual scatterer is preserved, small statistical sample and the small supercell used, the data
the gaps can sustain large amounts of disorder, while if it ipoints appear very “noisy,” especially for large disorders
not preserved, the gaps collapse in a manner similar to the aWe note here, as well, the distinct difference between the
cylinder case. E,-solid-cylinder case for positional disorder and all other
We next go over the localization length results, whichcases. Especially for the first spectral gap, the localization
were obtained with the transfer-matrix technique. Here, outength not only remains unaffected by the disorder, but it
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All other cases, on the other hand, show a common pat-
b e ot esion oo ] tern of behavior: photon states become quickly delocalized
© disorder in position - with overlaps - with increasing disorder. The localization length is increased,
3 b o orderinradivs ‘. o until the point where the localization induced by the disorder
- Yoq becomes dominant. After this it starts decreasing, until fi-
e e ‘9‘-}@ 1 nally it reaches some saturation point. Note also that there is
RS an almost quantitative agreement between some cases that
. - was not really expected, e.g., for the disorder in radius in the
. " first gap with the wavé ,-polarized, for both lattice settings,
e ] as seen in Figs.(8) and 1@a). Only the case of disorder in
e T . > o0 ° the dielectric constant seems to deviate, having very quickly
2t . % | a very large effect, with the localization length directly satu-
e rating to some constant value. So, for air cylinders in dielec-
- e . tric with any type of disorder, and for the,-solid-cylinder
‘ : ' ‘ case with disorder that does not preserve the scatterer's
“shape,” the behavior under disorder is similar.
o ] ) All these results can be understood if we adopt two dif-
FIG. 9. The localization length as a function of the effective o ant “pictures” for the photon states, depending on which
disorder for the system described in Fig. 1 with Ehepolarization, s the dominant mechanism that is responsible for the forma-
for four different disorder realizations. tion of the spectral gaps in each case. The first is the “nearly
free” photon picture, in which the gap-forming mechanism
even decreaseshis is not an artifact of the averaging pro- is the nonresonant macroscopic Bragg-like multiple scatter-
cedurg. The first conclusion from this is that the mecha-ing, while the second is the “strongly localized” photon
nisms responsible for the gap formation in this case are urpicture, in which the gap-forming mechanism is the micro-
affected by the presence of positional disorder, and so theycopic (short-rangg excitation of single scatterer Mie reso-
are definitely not macroscopidong-range in nature. The nances.
fact that the localization length decreases is attributed to the Sharp Mie resonances appear only for the solid cylinder
coupling of more[1,1] symmetry modes with the incident case, and they can be thought of as analogous to the atomic
wave as the disorder increasgbey provide a smallef to  orbitals in semiconductors. Using this analogy, a tight-
the average, as seen in Figad. This decrease should not be binding model, based on a linear combination of Mie reso-
mistaken for additional localization induced by the disordernances, was recently developed for the photonic states in the
(the classical analog of Anderson localization in electfons E,-solid-cylinder casé But if a tight-binding model can give
since the latter is macroscopic in nature, and does not apply satisfactory description of the photonic states, then it is
for strongly localized waves. The decrease in the localizatiorxpected that certain behavioral patterns found in semicon-
length continues until a fairly large disorder value, and thenductors should apply in our case, too. So, positional disorder
it increases to a saturation val(tee dielectric error function should have a small effect on the gaps, in a similar way that
can reach only up to some value for positional disorder the energy gap survives in amorphous silicon. Also, chang-
This saturation value is higher for the case where overlapfg the scatterer should have a similar effect to changing the
are allowed, but still is very small compared to other casesatoms in the semiconductor, yielding a large amount of im-
so waves remain strongly localized. purity modes that quickly destroys the gap. This pattern is
definitely confirmed here for th&,-solid-cylinder case. In
this case, multiple scattering and interference can only help
to make the gaps wider, but are definitely not decisive on the
. . o ° existence of a gap.
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For the macroscopic Bragg-like multiple scattering
mechanism, the lattice periodicity is a very important factor
for the existence of a spectral gap. If it is destroyed, then
coherence in the backscattered waves will be destroyed, and
so will the spectral gaps. It is of small consequence the exact
way that the periodicity is destroyed, and so different disor-
der realizations will have similar effects. Also, since the gaps
close more easily, it will be easier to observe the localization
induced on the waves by the disorder itself, i.e., the classical
analog of Anderson localization in electrons. All these are
recognized in the case of air cylinders in dielectric.

Finally, in theH ,-solid-cylinder case, there were no gaps
to begin with, and so we can have no results about it. How-
ever, sharp Mie resonances appear for this case as well, and

FIG. 10. The localization length as a function of the effective if their excitation was the dominant scattering mechanism, a

disorder for the system described in Fig. 2 for both field polariza-gap would be expected here as well. The difference with the
tions, for two different disorder realizations. E, is that the former is described by a vector wave equation,
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while the latter is described by a scalar daed thus closer are the analog of (or p) states in simple metals.
to the electronic cageThe form of the wave equation must, Each type of photonic state responds differently to the
then, be an important factor in determining the relativepresence of disorder: For the “local” states case, the gap is

strength of the two gap-forming mechanisms. robust as the periodicity is destroyed, and it is hardly af-
fected by the disorder as long as the identity of each indi-
IV. CONCLUSIONS vidual scatterer is preserved; however, if the shape, or other

i o characteristics influencing the scattering cross section of
We have shown that several results in periodic and rangach individual scatterer, is altered by disorder, the gap tends
dom photonic-band-gap materials can be understood in termg gisappear. On the other hand, for the “nearly free” states

of two distinct photonic statega) The “local” states, based ¢ase, the gap is very sensitive and tends to disappear easily
on a single scatterer Mie resonance, with the multiple scatag the periodicity is destroyed.

tering playing a minor role; these states are more conve-
niently described in terms of an LCAO type of approach and
are the analog of thd states in transition metals. “Local”
photonic states appear in the case of high dielectric cylinders Ames Laboratory is operated for the U.S. Department of
surrounded by a low-dielectric host and f&rpolarized Energy by lowa State University under Contract No.
waves.(b) The “nearly free” photonic states, where Bragg- W-7405-ENG-82. This work was supported by the Director
like multiple scattering is the dominant mechanism responef Energy Research Office of Basic Energy Science and Ad-
sible for their appearance; these states are more convenientignced Energy Projects. It was also supported by the Army
described in terms of a pseudopotential type of approach andesearch Office, an E.U. grant, and a NATO grant.
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