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Gap deformation and classical wave localization
in disordered two-dimensional photonic-band-gap materials
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By using twoab initio numerical methods, we study the effects that disorder has on the spectral gaps and on
wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two dif-
ferent responses depending on the lattice realization~solid dielectric cylinders in air or vice versa!, the wave
polarization, and the particular form under which disorder is introduced. Two different pictures for the pho-
tonic states are employed, the ‘‘nearly free’’ photon and the ‘‘strongly localized’’ photon. These originate from
the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and
single scatterer resonances, and they qualitatively explain our results.
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I. INTRODUCTION

Electromagnetic waves traveling in periodic dielect
structures will undergo multiple scattering. For the prop
structural parameters and wave frequencies, all waves
backscatter coherently; the result is total inhibition of prop
gation inside the structure. Such structures are ca
photonic-band-gap~PBG! materials1,2 or photonic crystals,
and the corresponding frequency ranges, for which propa
tion is not allowed, are photonic band gaps or stop ban
PBG materials can be artificially made in one, two, or th
dimensions. For example, a periodic lattice of dielect
spheres embedded in a different dielectric medium wo
work as a three-dimensional PBG material, for the pro
choice of lattice symmetry, dielectric contrast, and sph
volume filling ratio. In two dimensions, a periodic array
parallel, infinitely long, dielectric cylinders could work as
two-dimensional PBG material, prohibiting propagation in
direction perpendicular to the cylinders’ axis for some f
quency range~s!. The absence of optical modes in a photon
band gap is often considered as analogous to the absen
electronic energy eigenstates in the semiconductor en
gap. The ability of PBG materials to modulate electroma
netic wave propagation, in a similar way that semiconduct
modulate the electric current flow, can have a profound
pact in many areas in pure and applied physics. It is the
fundamental importance to study the effects of disorder3,4 on
the transmission properties of such materials.

Besides the nonresonant, macroscopic Bragg-like mult
scattering, there is also a second, resonant mechanism
contributes to the formation of the spectral gaps. This is5–7

the excitation of single scatterer Mie resonances.8 In a pre-
vious publication7 it was shown that for two-dimensiona
PBG materials, for theE polarization scalar wave case~elec-
tric field parallel to the cylinders’ axis!, these Mie resonance
PRB 610163-1829/2000/61~20!/13458~7!/$15.00
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are analogous to the electronic orbitals in semiconduct
The idea of the linear combination of atomic orbita
~LCAO! method was extended to the classical wave case
linear combination of Mie resonances~LCMR!, leading to a
successful tight-binding~TB! parametrization for photonic
band-gap materials. This moves the picture for the pho
states, from the one analogous to the nearly free elec
model to the one analogous to the strongly localized elec
whose transport is achieved only by hopping~tunneling!
from atom to atom. Depending then on which mechanism
dominant for the formation of the photonic gaps, we exp
different changes to the system’s properties when disorde
introduced. If the Bragg-like multiple scattering mechanis
is the dominant one, the photonic gaps should close quic
with increasing disorder, while if it is the excitation of Mi
resonances, the photonic gaps should survive large amo
of disorder, in a similar way that the electronic energy g
survives in amorphous silicon.

In this paper we will use twoab initio numerical methods
to study the effects of disorder on photonic gap format
and wave localization in two-dimensional PBG materia
The first is the finite difference time domain~FDTD! spectral
method,9,10 from which we obtain the photonic density o
states for an infinite, disordered PBG material, and the s
ond is the transfer-matrix technique,11 from which we obtain
the transmission coefficient for a wave incident onto a fin
slab of the disordered PBG material. From the transmiss
coefficient we can obtain the localization length for the ph
tonic states of the disordered material.4 The study will be on
both PBG material realizations~solid high dielectric cylin-
ders in air and cylindrical air holes in high dielectric! for
both wave polarizations, and it will incorporate three diffe
ent disorder realizations: disorder in position, radius, and
electric constant~these systems, though, will still be period
on the average!. We will find that only the case of solid
13 458 ©2000 The American Physical Society
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PRB 61 13 459GAP DEFORMATION AND CLASSICAL WAVE . . .
dielectric cylinders in air with the waveEz-polarized exhibits
the behavior expected from the strongly localized pho
picture, while for all other cases, the nearly free photon p
ture seems to be the dominant one.

II. NUMERICAL METHODS

Electromagnetic wave propagation in lossless compo
dielectric media is described by Maxwell’s equations

m
]HW

]t
52¹W 3EW , e~rW !

]EW

]t
5¹W 3HW , ~1!

where the dielectric constante(rW) is a function of position.
In two dimensions, the two independent wave polarizatio
are decoupled. We assume the variation of the dielectric c
stant, as well as the propagation direction, along thexy
plane, and so the cylinders along thez axis. One of the po-
larizations is with the electric field parallel to thez axis and
the magnetic field on thexy plane (Ez- or TM-polarized! and
obeys a scalar wave equation. The other one is with
magnetic field parallel to thez axis and the electric field on
thexy plane (Hz- or TE-polarized! and obeys a vector wav
equation.

The first method we will use to study disordered PB
materials is the FDTD spectral method.12,13 In our FDTD
scheme, we first discretize thexy plane into a fine uniform
grid. Each grid point is centered in a unit cell which is fu
ther discretized into a 10310 subgrid, on which an arith
metic average of the dielectric constant is performed. In
problem we will assume dispersionless and lossless ma
als. For theEz polarization case we define the electric fie
on this grid and the magnetic field on two additional grid
one tilted by (d/2,0), on whichHy is defined, and one tilted
by (0,d/2), on which we defineHx . d is the side of the grid
cell. The corresponding finite-difference equations for
space derivatives that are used in the curl operators are
central-difference in nature and second-order accurate.
electric and magnetic fields are also displaced in time b
half time stepDt/2, resulting in a ‘‘leapfrog’’ arrangemen
and central-difference equations for the time derivatives
well. If one initializes the electric and magnetic fields at
5t0 and t5t01Dt/2, respectively, then updating the valu
of the electric field for each grid point (i , j ) at t5t01Dt is
done by

Ezu i , j
t01Dt

5Ezu i , j
t0 1

Dt

d e i , j
~Hyu i 11/2,j

t01Dt/2
2Hyu i 21/2,j

t01Dt/2

2Hxu i , j 11/2
t01Dt/2

1Hxu i , j 21/2
t01Dt/2

!, ~2!

where e i , j is the averaged dielectric constant for the g
point (i , j ). Similar equations follow for updating the mag
netic field components att5t013Dt/2, then Eq.~2! for Ez at
t5t012Dt, etc. This way the time evolution of the syste
can be recorded. For numerical stability and good conv
gence the number of grid points per wavelengthl/d must be
at least 20, and alsoDt<d/A2c, wherec is the speed of light
in vacuum. Similar equations, with the roles of the elect
and magnetic fields interchanged, apply for t
Hz-polarization case.
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In order to find the eigenmodes of a particular periodic~or
disordered! system, we first initialize the electric and ma
netic fields in the unit cell~or a suitable supercell! using
periodic boundary conditions:EW (rW1aW )5eikW•aWEW (rW) and simi-
larly for HW (rW), where kW is the corresponding Bloch wav
vector andaW the lattice vector. These fields must have no
zero projections with the modes in search. We choose a
perposition of Bloch waves for the magnetic field and set
electric field to zero:

HW ~rW !5(
gW

v̂gWe
i (kW1gW )rW1 ifgW, EW ~rW !50, ~3!

where fgW is just a random phase and the unit vectorv̂ is
perpendicular to bothEW and (kW1gW ), ensuring thatHW is trans-
verse and that¹W •HW 50. Once the initial fields are defined
we can evolve them in time using the ‘‘leapfrog’’ differenc
equations, while recording the field values as a time se
for some sampling points. As the electric field ‘‘builds’’ up
some particular modes dominate while most are depres
reflecting the underline lattice symmetries. Here we rec
only theEz field for theEz-polarization case and theHz field
for theHz-polarization. At the end of the simulation, the tim
series are Fourier transformed back into frequency sp
and the eigenmodesv(kW ) of the system appear as sha
peaks. The length of the simulation determines the freque
resolution while the time difference between successive
cordings determines the maximum frequency conside
This method scales linearly with size: a larger system w
still need the same number of time steps for the same
quency resolution, thus sometimes referred to also as
‘‘order-N’’ method.12

Here we will use this method to obtain the system’s de
sity of states~DOS!. If one chooses a large supercell inste
of the unit cell, then for eachkW point inside its first Brillouin
zone, the Fourier-transformed time series will consist o
number of peaks. Adding all contributions from allkW ’s will
result in a smooth function for the DOS. This is in contrast
older methods that used random fields as initial bound
conditions.4 Random initial fields will ensure the conditio
for nonzero projections to all of the system’s eigenmod
but in order to get coupled with them during ‘‘build’’ up,
large simulation time is required. Furthermore, the produ
DOS is not a smooth function of frequency, still consisti
of a large collection of peaks, and thus being useful only
an indication of the existence of spectral gaps. In o
method, the underline symmetries of the modes are alre
in the initial fields and so they couple more easily with the
Also, the larger the supercell, the smaller is its first Brillou
zone, and so the smaller the frequencies we initialize thro
the variouskW . This is why we can get smooth results even f
very low frequencies. In Figs. 1 and 2, we show the cal
lated density of states for the case of solid dielectric cyl
ders in air and cylindrical air holes in dielectric, respective
both for a square lattice arrangement and for both polar
tions. Along with them we also plot the corresponding ba
structure as obtained with the plane-wave expansion met
Our study is going to be based on these two photo
structures.



tri
r

e
f

s
te

th
an
ef
av
an

in
ve

i
b

rg
re

n a
e
ent
ent

is

n-
as
lly

ly

g

ly

g
ion
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The second method we will use is the transfer-ma
technique in order to obtain the transmission coefficient fo
wave incident along thexy plane on a slab~or a slice! of the
photonic material. The slice is assumed uniform along thz
axis and periodic along thex direction through application o
periodic boundary conditions, while in they direction it has a
finite width L. In this method one first constructs the tran
mitted waves at one side of the slice and then integra
numerically the time-independent Maxwell equations to
other side. There, the waves are projected into incident
reflected waves, and so a value for the transmission co
cient T can be obtained. Here, we are interested in the w
localization in disordered photonic-band-gap materials,
in particular in the localization lengthl;22L/ ln T.

A few remarks about the results of this method are
order. Waves with different incidence directions will ha
different reflection and transmission coefficients, so if one
looking for an average transmission, all directions should
included. It is shown, however, that there is also a la
dependence on the surface plane along which the structu

FIG. 1. Band structure~obtained with a plane-wave method! and
density of states~obtained with the FDTD spectral method! for a
two-dimensional square-lattice array of dielectric cylindersea510
in air eb51, with a filling ratio f .28%.

FIG. 2. Band structure~obtained with a plane-wave method! and
density of states~obtained with the FDTD spectral method! for a
two-dimensional square lattice array of air cylindersea51 in di-
electriceb510, with air filling ratio f .71%.
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cut. More specifically, a wave normally incident on a~1,0!
surface will have different transmission characteristics tha
wave incident with 45° on a~1,1! surface. This is becaus
certain modes cannot always get coupled with the incid
wave. One should then also average for the two differ
surface cuts, otherwise it will not be a true average. This
shown in Figs. 3 and 4, where we plot the~1,0! and the~1,1!
cuts, each with both incidence directions~normal and 45°
with respect to the surface! averaged. We see that taken i
dividually, none of them corresponds to the true gaps
shown in Figs. 1 and 2, but rather to wider and genera
displaced gaps. For example, in theEz-polarization case in
the first spectral gap@Figs. 3~a! and 4~a!#, with the ~1,0! cut,
the incident waves fail to couple with the theM modes of the
first band, while with the~1,1! cut, the incident waves fail to
couple with theX modes of the second band.

FIG. 3. Transmission coefficient for the periodic, and weak
disordered, system described in Fig. 1~obtained with the transfer
matrix technique!. Calculations are for two different surfaces alon
which the sample is cut. Effective disorders used@see Eq.~4!#: in
position;1.3, in radius;0.5, and in dielectric;0.3.

FIG. 4. Transmission coefficient for the periodic, and weak
disordered, system described in Fig. 2~obtained with the transfer-
matrix technique!. Calculations are for two different surfaces alon
which the sample is cut. Effective disorders used: in posit
;0.35, in radius;0.25.
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PRB 61 13 461GAP DEFORMATION AND CLASSICAL WAVE . . .
This is expected to be lifted once disorder is introduc
into our system, since the sense of direction will be someh
lost. Disorder can be introduced as a random displaceme
random change in the radius, or a random change in
dielectric constant of the cylinders. It is not clear, howev
what amount of disorder would be needed for this. We
peated the calculations for small enough amounts of diso
so that the spectral gaps, as found from the FDTD meth
remain almost unchanged for all three different disor
mechanisms. As seen in Figs. 3 and 4, indeed, in some c
the coupling is achieved. For example, for the first gap in
Ez-polarization case, with the~1,0! cut, theM modes of the
first band are now coupled with the incident waves and
pear in the transmission diagram. These could be easily
taken for disorder-induced localized states entering the g
but they are not, since for the values of disorder used,
first gap is virtually unchanged. On the other hand, with
~1,1! cut, the coupling toX modes of the second band is n
yet achieved, still yielding a wrong picture for the gap. I
creasing the disorder further will eventually destroy a
sense of direction and there will be no distinction betwe
the two cases. Figures 3 and 4 will be useful as a guid
which results can be trusted and which cannot, if one u
only one surface cut and small values of disorder. As a g
eral rule, we can deduce that the~1,0! cut should be used fo
the Ez-polarization case, while the~1,1! cut would be better
for the Hz-polarization case.

III. RESULTS AND DISCUSSION

We first looked into the spectral gaps’ dependence
disorder using the FDTD spectral method. Our system c
sisted of an 838 supercell, each cell discretized into a 3
332 grid. We studied two systems: a square lattice arra
solid cylinders, with dielectric constantea510, in air (eb
51) with a filling ratio f 50.28%, and a square lattice arra
of air cylinders (ea51) in dielectric materialeb510, with
air filling ratio f 50.71%, as described in Figs. 1 and 2. W
divided the supercell’s first Brillouin zone into a 10310
grid, which for the irreducible part yields 66 differentkW
points. For each particular disorder realization~i.e., disorder
type! and disorder strength, we run the simulation for
these 66kW ’s. At eachkW , however, we use a different diso
dered configuration~i.e., a different seed in the random num
ber generator!, and so a large statistical sample is automa
cally included in our result. In each case, the effect
disorder is measured by the rms error of the dielectric c
stant^e&, which is defined as12,4

e25
1

N (
i 51

N

~e i
d2e i

p!2, ~4!

where the sum goes over allN5838332332565 536 grid
points,e i

d and e i
p are the dielectric constants at sitei in the

disordered and periodic case, respectively, and^ & means the
average over different configurations~different kW ’s in our
case!. In both settings~dielectric cylinders in air and vice
versa! the filling ratio of the high dielectric material is sim
lar, and so^e& is expected to have the same meaning a
weight.
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Four different disorder realizations are studied:~i! disor-
der in position, but without allowing any cylinders to overla
with each other,~ii ! disorder in position allowing cylinder
overlapping to occur,~iii ! disorder in radius, and~iv! disor-
der in dielectric constant~the last one only in the solid cyl
inder case!. For each different realization we consider va
ous disorder strengths, and thus different effective disord
^e&, for which we record the upper and lower gap edges
the first two photonic band gaps~if they exist!. Results are
summarized in Figs. 5 and 6, for the solid and air cylind
cases, respectively. We note that theEz polarization case for
the solid cylinders is very different from all other cases: t
gaps survive very large amounts of positional disorder, es
cially if no overlaps are allowed. In fact, once the disord
becomes large enough for overlaps to be possible, the
quickly closes, as shown in Fig. 5. The actual DOS grap
for the two different realizations of the positional disord
are shown in Fig. 7, for three different values of the effect
disorder. On the other hand, if the disorder is of the third

FIG. 5. The edges of the photonic band gaps as a function of
effective disorder̂ disorder&[^e& @as was defined in Eq.~4!#, for
the system described in Fig. 1. Four different disorder realizati
are studied.

FIG. 6. The edges of the photonic band gaps as a function of
effective disorder̂ disorder&[^e& @as was defined in Eq.~4!#, for
the system described in Fig. 2. Three different disorder realizat
are studied.
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fourth kind, the gaps close very quickly, even for mod
values of the effective disorder.

The picture is very different in the other cases, as see
Fig. 6. The effect of the positional disorder is the sam
independent of whether overlaps are allowed or not. Thi
most clearly seen in Fig. 8, where the actual DOS graphs
plotted for the air cylinder case for both polarizations and
both positional disorder realizations. Allowing the air cyli
ders to overlap, though, means that the connectivity of
background material will break. Our results, thus, indic
that there is no connection between the connectivity of
background material and the formation of the spectral g
in this 2D case. Most importantly, however, we note that
disorder in radius has a similar effect to that of the positio
disorder in closing the gaps. In fact, it is also similar to t
effect of the disorder in radius for theEz-solid-cylinder case.
So, in the case of air cylinders, the type of the disorder tha
introduced into the system does not play a significant ro
but rather, it is only the effective disorder~measured through
the dielectric constant’s error function! that determines the
effect on the spectral gaps. On the other hand, for
Ez-solid-cylinder case, the type of disorder plays a profou
role: if the ‘‘shape’’ of the individual scatterer is preserve
the gaps can sustain large amounts of disorder, while if
not preserved, the gaps collapse in a manner similar to th
cylinder case.

We next go over the localization length results, whi
were obtained with the transfer-matrix technique. Here,

FIG. 7. The density of states for the system of Fig. 1 with theEz

polarization, for three different positional disorder strengths. T
solid line is when no scatterer overlaps are allowed, while the d
ted line is when scatterer overlaps are allowed. ‘‘^overlaps& ’’ is the
average number of overlapping cylinders.
t
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system consisted of a 337 supercell~3 along thex axis!,
with each cell discretized into an 18318 grid ~a small super-
cell was used in order to ease the computation burden!. In
the x direction we applied periodic boundary condition
while in they direction the supercell was repeated four time
to provide a total lengthL for the slab ofL528 unit cells.
The structures studied are exactly the same as describe
fore. The lattice was cut along one only symmetry directio
the ~1,0!, since for large disorders we expect all ‘‘hidden
modes to be coupled with the incident wave~in any case, we
know from Figs. 3 and 4 which results can be complet
trusted and which cannot!. For each disorder realization an
strength, we used 11 differentkW values uniformly distributed
between normal and 45° angle incidence, and for eachkW we
used a different disordered configuration, so these will c
stitute our statistical sample. For eachkW we find the mini-
mum transmission coefficient inside each gap, from wh
we find the minimum localization length, and then avera
over allkW ’s, i.e., l;22L/^ ln T& ~in the periodic case we firs
averaged overT in order to correctly account for differen
propagation directions, but in the highly disordered case
not so important any more, and so we just average over
localization lengths!.

Our results are shown in Figs. 9 and 10~because of the
small statistical sample and the small supercell used, the
points appear very ‘‘noisy,’’ especially for large disorders!.
We note here, as well, the distinct difference between
Ez-solid-cylinder case for positional disorder and all oth
cases. Especially for the first spectral gap, the localiza
length not only remains unaffected by the disorder, bu

e
t-

FIG. 8. The density of states for the system of Fig. 2 for bo
field polarizations, for two different positional disorder strength
The solid line is when no scatterer overlaps are allowed, while
dotted line is when scatterer overlaps are allowed.
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PRB 61 13 463GAP DEFORMATION AND CLASSICAL WAVE . . .
even decreases~this is not an artifact of the averaging pro
cedure!. The first conclusion from this is that the mech
nisms responsible for the gap formation in this case are
affected by the presence of positional disorder, and so t
are definitely not macroscopic~long-range! in nature. The
fact that the localization length decreases is attributed to
coupling of more@1,1# symmetry modes with the inciden
wave as the disorder increases@they provide a smallerl to
the average, as seen in Fig. 3~a!#. This decrease should not b
mistaken for additional localization induced by the disord
~the classical analog of Anderson localization in electron!,
since the latter is macroscopic in nature, and does not a
for strongly localized waves. The decrease in the localiza
length continues until a fairly large disorder value, and th
it increases to a saturation value~the dielectric error function
can reach only up to some value for positional disorde!.
This saturation value is higher for the case where overl
are allowed, but still is very small compared to other cas
so waves remain strongly localized.

FIG. 9. The localization length as a function of the effecti
disorder for the system described in Fig. 1 with theEz polarization,
for four different disorder realizations.

FIG. 10. The localization length as a function of the effecti
disorder for the system described in Fig. 2 for both field polari
tions, for two different disorder realizations.
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All other cases, on the other hand, show a common p
tern of behavior: photon states become quickly delocali
with increasing disorder. The localization length is increas
until the point where the localization induced by the disord
becomes dominant. After this it starts decreasing, until
nally it reaches some saturation point. Note also that ther
an almost quantitative agreement between some cases
was not really expected, e.g., for the disorder in radius in
first gap with the waveEz-polarized, for both lattice settings
as seen in Figs. 9~a! and 10~a!. Only the case of disorder in
the dielectric constant seems to deviate, having very quic
a very large effect, with the localization length directly sat
rating to some constant value. So, for air cylinders in diel
tric with any type of disorder, and for theEz-solid-cylinder
case with disorder that does not preserve the scatte
‘‘shape,’’ the behavior under disorder is similar.

All these results can be understood if we adopt two d
ferent ‘‘pictures’’ for the photon states, depending on whi
is the dominant mechanism that is responsible for the form
tion of the spectral gaps in each case. The first is the ‘‘nea
free’’ photon picture, in which the gap-forming mechanis
is the nonresonant macroscopic Bragg-like multiple scat
ing, while the second is the ‘‘strongly localized’’ photo
picture, in which the gap-forming mechanism is the micr
scopic ~short-range! excitation of single scatterer Mie reso
nances.

Sharp Mie resonances appear only for the solid cylin
case, and they can be thought of as analogous to the at
orbitals in semiconductors. Using this analogy, a tig
binding model, based on a linear combination of Mie res
nances, was recently developed for the photonic states in
Ez-solid-cylinder case.7 But if a tight-binding model can give
a satisfactory description of the photonic states, then i
expected that certain behavioral patterns found in semic
ductors should apply in our case, too. So, positional disor
should have a small effect on the gaps, in a similar way t
the energy gap survives in amorphous silicon. Also, cha
ing the scatterer should have a similar effect to changing
atoms in the semiconductor, yielding a large amount of i
purity modes that quickly destroys the gap. This pattern
definitely confirmed here for theEz-solid-cylinder case. In
this case, multiple scattering and interference can only h
to make the gaps wider, but are definitely not decisive on
existence of a gap.

For the macroscopic Bragg-like multiple scatterin
mechanism, the lattice periodicity is a very important fac
for the existence of a spectral gap. If it is destroyed, th
coherence in the backscattered waves will be destroyed,
so will the spectral gaps. It is of small consequence the ex
way that the periodicity is destroyed, and so different dis
der realizations will have similar effects. Also, since the ga
close more easily, it will be easier to observe the localizat
induced on the waves by the disorder itself, i.e., the class
analog of Anderson localization in electrons. All these a
recognized in the case of air cylinders in dielectric.

Finally, in theHz-solid-cylinder case, there were no ga
to begin with, and so we can have no results about it. Ho
ever, sharp Mie resonances appear for this case as well,
if their excitation was the dominant scattering mechanism
gap would be expected here as well. The difference with
Ez is that the former is described by a vector wave equati
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while the latter is described by a scalar one~and thus closer
to the electronic case!. The form of the wave equation mus
then, be an important factor in determining the relat
strength of the two gap-forming mechanisms.

IV. CONCLUSIONS

We have shown that several results in periodic and r
dom photonic-band-gap materials can be understood in te
of two distinct photonic states.~a! The ‘‘local’’ states, based
on a single scatterer Mie resonance, with the multiple s
tering playing a minor role; these states are more con
niently described in terms of an LCAO type of approach a
are the analog of thed states in transition metals. ‘‘Local’
photonic states appear in the case of high dielectric cylind
surrounded by a low-dielectric host and forE-polarized
waves.~b! The ‘‘nearly free’’ photonic states, where Bragg
like multiple scattering is the dominant mechanism resp
sible for their appearance; these states are more conveni
described in terms of a pseudopotential type of approach
th
-

p-

hy

ys
.

N.
-
s

t-
e-
d

rs

-
tly

nd

are the analog ofs ~or p) states in simple metals.
Each type of photonic state responds differently to

presence of disorder: For the ‘‘local’’ states case, the ga
robust as the periodicity is destroyed, and it is hardly
fected by the disorder as long as the identity of each in
vidual scatterer is preserved; however, if the shape, or o
characteristics influencing the scattering cross section
each individual scatterer, is altered by disorder, the gap te
to disappear. On the other hand, for the ‘‘nearly free’’ sta
case, the gap is very sensitive and tends to disappear e
as the periodicity is destroyed.
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