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Strong group-velocity dispersion compensation with phase-engineered sheet metamaterials
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Resonant metamaterials usually exhibit substantial dispersion, which is considered a shortcoming for many
applications. Here we take advantage of the ability to tailor the dispersive response of a metamaterial, introducing
a new method of group-velocity dispersion compensation in telecommunication systems. The method consists
of stacking a number of highly dispersive sheet metamaterials and is capable of compensating the dispersion
of optical fibers with either negative or positive group-velocity dispersion coefficients. We demonstrate that
the phase-engineered metamaterial can provide strong group-velocity dispersion management without being
adversely affected by large transmission loss, while at the same time offering high customizability and a small
footprint.
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Dispersion management is an indispensable element of
optical communication systems, where dispersive effects—
originating from the materials, waveguide (fiber) geometries,
and optical amplification—accumulate to set limits on both
the distance and the bit rate of the data transfer. Various
compensation schemes have been developed to manage group-
velocity dispersive effects [1,2], but fundamental limits on
integrability, footprint, and customizability are imposed by
the physics in contemporary dispersion management systems.
Recent advances in nanofabrication and breakthroughs in the
field of metamaterials [3–8] have opened up a new range of
possibilities in device development. Most metamaterials rely
on highly resonant structures that force light to undergo a large
phase change near resonance frequencies. This results in strong
dispersion in a narrow spectral range, making them suitable
for dispersion management purposes. Indeed, it was recently
shown that light passing through a so-called metasurface
experiences up to a 2π phase shift upon transmission/reflection
in a system that is much thinner than the free-space wavelength
of the incident light, mimicking a phase discontinuity [9,10].
Phase properties in such metasurfaces are shown to be easily
tailorable, although it is important to note that this comes at
the cost of absorption in the dispersive region.

In this paper, we show that dispersion-engineered meta-
materials exhibiting a classical analog of electromagnetically
induced transparency (EIT) can address the group-velocity
dispersion problem without being adversely affected by return
loss. Originally, EIT is a quantum-mechanical phenomenon
characterized by a narrow transmission window in a relatively
wide absorption band [11–16]. The change in the transmission
is accompanied by a strongly nonlinear dispersion relation and,
hence, by group-velocity dispersion (GVD). Several groups
have now demonstrated that the phenomenon can be repro-
duced in purely classical systems by way of metamaterials
[17–24], where the transmission amplitude, the bandwidth,
and the center frequency of the transparency window can
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be modified through the geometry and the constituent ma-
terial properties. An emerging class of metamaterial designs
suggests replacing metallic resonant parts by dielectric ele-
ments [25]. Such designs can be extended to communication
wavelengths in view of the availability of extremely low-loss
dielectrics in this range of the electromagnetic spectrum. By
substantially suppressing dissipative losses, dielectric-based
metamaterials may allow for quality factors that are orders of
magnitude larger than what is possible with plasmonic-based
EIT designs. This would inspire a new range of applications,
including dispersion compensation.

Let us briefly state the problem in a quantitative way.
In telecommunication systems, data are transmitted as a
sequences of pulses of a certain shape and width, formed
by superposition of frequency-dependent plane waves with
a particular weight function, e.g., Gaussian. For a narrow-
banded pulse, the propagation constant β can be expanded
around the center frequency ω0:

β = β0 + β1�ω + β2�ω2 + β3�ω3 + · · · , (1)

where

βj = ∂jβ

∂ωj

∣∣∣∣
ω=ω0

, j = 1,2,3, . . . , (2)

where β1 = 1
vg

is the inverse of the group-velocity. β2, known
as the group-velocity dispersion (GVD) coefficient, manifests
itself as a broadening in the pulse width. The higher-order
terms result in distortion of the pulse from the initial form,
but they are usually negligible due to small strength. Pulse
broadening, however, causes intersymbol interference and
limits the bit rate of the communication line. To achieve large
distance communication, it is necessary to restore the data
pulses to the original width using a dispersion compensation
method. For this purpose, the broadened pulse is usually sent
through a second medium with the opposite sign of dispersion.
Indeed, the effect of GVD can be canceled completely if
the lengths and magnitudes of the second-order dispersion
coefficients for the two media satisfy the following condition:

L1β
M1
2 + L2β

M2
2 = 0, (3)
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FIG. 1. (Color online) Transmission amplitude (black), transmis-
sion phase (blue), and group-velocity dispersion (red) for a generic
EIT system. The gray line shows the spectral distribution of a
Gaussian pulse of the form Ê(ω − ω0) =

√
2πτ 2

0 e− 1
2 τ2

0 (ω−ω0)2
to

be dispersion-compensated. τ0 = 10 ps, which corresponds to a
bandwidth of 0.18 nm, or a transmission rate of at least 10 Gbit/s.

where Li and βMi
2 are the length and GVD of the ith

medium, respectively [1]. Liβ
Mi
2 quantifies the total residual

dispersion imposed on the pulse after traveling through the ith
medium. Figure 1 shows the behavior of an EIT medium. The
transmission phase and, hence, the GVD changes drastically
around the transmission peak. Interestingly, GVD has opposite
signs around the transmission peak, which can be utilized to
manage both negative and positive dispersion by positioning
the pulse at the right- or left-hand side of the transmission
peak. Theoretically, the mechanism underlying EIT can best
be explained by a model of two interacting resonant modes,
having nearly the same resonance frequency and differing in
coupling strength to the incident electromagnetic field. One
mode, known as the radiative (or bright) mode, can strongly
couple to the external incident field, while the other, the
dark mode, barely couples to the external field. The dark
and radiative modes can nevertheless interact with each other
through near-field coupling, resulting in strongly resonant and
dispersive behavior. It has been experimentally verified that
EIT can be implemented as a thin conductive sheet of magnetic
and electric meta-atoms [26]. Reflection and transmission of
the conductive sheet can be connected to the electric and
magnetic conductivity [27],

r = 2(ζσ
(e)
|| − ζ−1σ

(m)
|| )

4 + 2ζσ
(e)
|| + 2ζ−1σ

(m)
|| + σ

(e)
|| σ

(m)
||

,

(4)

t = 4 − σ
(e)
|| σ

(m)
||

4 + 2ζσ
(e)
|| + 2ζ−1σ

(m)
|| + σ

(e)
|| σ

(m)
||

.

In Eq. (4), σ
(e)
|| (σ (m)

|| ) is the electric (magnetic) conductivity
of the EIT sheet, and ζ is the wave impedance of the external
waves. To satisfy the compensation condition [Eq. (3)], one
can either adjust the dispersion of an individual sheet or use
multiple EIT sheets. As will be discussed below, multiple
sheets might be necessary to perform an ideal dispersion
compensation. In addition, metamaterials provide us with
the unique opportunity of impedance matching to avoid
complications arising from multiple reflections [28]. Applying

FIG. 2. (Color online) (a) Variation of GVD with regard to the
changes in the static susceptibility ξ = ε0χ

static
se with κ = 9.00 ×

1028. (b) Variation of GVD with regard to the changes in the
coupling efficiency κ with ξ = 1 × 1015/ζ . γr = 0.01 × 1015 and
γd = 0.000 001 × 1015 in both figures.

the impedance matching condition, ζσ
(e)
|| = ζ−1σ

(m)
|| , Eq. (4)

simplifies to

r = 0, t = 2 − ζσ
(e)
||

2 + ζσ
(e)
||

. (5)

The electric conductivity of a single sheet can be derived by
solving a coupled-resonator model [26]:

σ
(e)
|| = −iωξ

Dd(ω)

Dr(ω)Dd(ω) − κ2
, (6)

where Dd = ω2
d − iγdω − ω2 and Dr = ω2

r − iγrω − ω2. γd

and ωd (γr and ωr) are, respectively, the damping factor and
resonance frequency of the dark (radiative) mode, and κ

denotes the near-field coupling strength of the two resonators.
ξ = ε0χ

static
s is the static susceptibility of the conductive sheet.

For a single EIT sheet, β2 can be tailored either by adjusting
the coupling strength or by changing ξ (see Fig. 2). The latter
is proportional to the area density of packed resonators. It can
be observed in Fig. 2 that increasing either of the parameters κ

or ξ increases β2 in favor of stronger dispersion compensation,
although at the expense of reduced bandwidth of the dispersion
curve. The region close to the GVD extrema, defining the
β2 bandwidth, provides the highest dispersion compensation
amplitude. Moreover, the third-order dispersion (β3) has its
lowest value in this region, although it increases when moving
away from the extremal points. Therefore, to take advantage
of strong dispersion compensation as well as low pulse
distortion due to third-order dispersion, the data pulse should
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be accommodated well inside the flat band of β2. This imposes
a limit on the maximally achievable β2 with a single EIT sheet
since the bandwidth and magnitude of β2, as shown in Fig. 2,
are complementary and cannot be maximized simultaneously.
To satisfy Eq. (3) and avoid large pulse distortion at the same
time, it is necessary to use multiple EIT sheets. However, it
should be kept in mind that accumulated losses from multiple
EIT sheets would sacrifice the amplitude of transmitted pulses
in exchange for lower distortion. To further understand this
tradeoff, we have investigated two different configurations.
The first case [Fig. 3(b)] is designed to show a relatively
small GVD in the spectral width of the Gaussian input pulse.
The parameters for the individual sheets in this arrangement
are ξ = 1.5 × 1015/ζ , κ = 6.76 × 1028, γr = 0.01 × 1015,
and γd = 0.000 001 × 1015. Such small damping rates can
be achieved using dielectric-based designs similar to those
reported in Ref. [25]. This configuration requires using 908
individual EIT units to satisfy the compensation condition (3).
For the second case [see Fig. 3(c)], β2 for a single sheet is
boosted by increasing ξ to 4 × 1015/ζ , resulting in a much
more dispersive system (larger β total

2 ), but also in increased
third-order dispersion in the spectral region of interest. This
reduces the number of required sheets to 130. To avoid cou-
pling between the sheets, the individual EIT units are spaced in
such a way that they do not sense the near field of neighboring
units. The concept of sheet metamaterial is perfectly valid in
this case, and the effect of the increasing number of layers
is simply linear scaling of the other properties. Therefore,
the proposed scheme does not inherit fabrication and design
hurdles of bulk metamaterials, where closely stacked unit
cells result in hybridization and substantial change to the
effective-medium properties, unnecessarily complicating the
design without benefiting the performance. Figure 3 compares

FIG. 3. (Color online) The change in the group delay, second-,
and third-order total residual dispersion for (a) 25 km long fiber, (b)
908 EIT layers with ξ = 1.5 × 1015/ζ , and (c) 130 EIT layers with
ξ = 4 × 1015/ζ . Gray shaded area shows the spectral distribution of
the Gaussian pulse with τ0 = 10 ps. Resonance frequency of both EIT
models is chosen to reach to the maximum dispersion at the center
frequency of the Gaussian pulse.

the group delay and the two lowest-order total residual
dispersion of both cases when used to compensate the GVD
of a single-mode step-index fiber. The fiber is considered to
have a cylindrical core of radius a and refractive index nc, and
a cladding with a refractive index of n. The effective index of
the fiber, considering both material and waveguide dispersion,
is approximated by [29]

neff = n(1 + b�). (7)

The approximation is valid for small index contrast (� =
nc−n

n
� 1), where

v = ak0

√
n2

c − n2, W = 1.1428v − 0.996, b = W 2

v2
.

(8)

The fiber core diameter is chosen to be 5.3 μm, � = 0.006, and
n is calculated from a Sellmeier model for quenched silica [30].
For the numerical calculations of the wave propagation, a
transfer matrix method has been used. Individual EIT sheets
are assumed to be decoupled and arranged in a periodic array
embedded in the fiber medium. The reflection and transmission
coefficients of EIT sheets are calculated from the model
in Eq. (5). Numerical values of the dispersion orders are
derived from the transmission phase �t (ω) = Im[log (t(ω))],
where

βj = ∂j�t (ω)

∂ωj
, j = 1,2,3, . . . . (9)

It should also be noted that the dark and radiative resonance
frequencies are adjusted so that the GVD peak coincides
with the center frequency of a Gaussian data pulse of
the form Ê(ω − ω0) =

√
2πτ 2

0 e− 1
2 τ 2

0 ω2
, with τ0 = 10 ps. The

dispersion-compensated pulse, using the first configuration
[Fig. 3(b)], has an electric field amplitude of |E| = 0.0022,
whereas, for the second configuration [Fig. 3(c)], the amplitude
is |E| = 0.639, showing an almost three orders of magnitude
improvement with respect to the first case. The substantial
reduction in transmission loss should be attributed only to the
avoidance of dissipative losses in the individual EIT sheets,
since the radiative loss is eliminated by using impedance
matching. Theoretically, loss can be further reduced by
decreasing the dark and radiative resonator damping. For
purposes of illustration, we have calculated this limit of
vanishing damping losses (γd = 0 and γr = 0) and we have
found that the pulse amplitude as well as the pulse width
can be restored near to its initial value given that fact that
the higher-order dispersions can be minimized arbitrarily by
designing a flatter β2 extremum and using more EIT sheets.

The resulting pulse shape for the optimal case of Fig. 3(c)
is shown in Fig. 4(a). The dispersion-compensated pulse (blue
line) is compared with the initial Gaussian (black circles) and
the broadened/dispersed pulse (red line). The inset of Fig. 4(a)
shows the small deviation from the initial pulse shape caused
by higher-order dispersion, although it is clear from the picture
that the Gaussian shape is well preserved in spite of relatively
high third-order dispersion.

Finally, Fig. 4(b) shows a random pulse train launched into
the fiber. The red curve plots the pulse train after traveling
25 km inside the fiber, and the blue curve plots the pulse train
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FIG. 4. (Color online) (a) Comparison of broadened, com-
pressed, and initial pulses for 130 EIT sheets with ξ = 4 × 1015/ζ .
Inset shows the deviation from the initial Gaussian shape due to
higher-order dispersion. (b) A train of broadened Gaussian pulses
at the end of a 25 km fiber before (red) and after (blue) dispersion
management using the array of metamaterial sheets. (The red curve
is normalized to the amplitude of the output pulses.)

after passing through 130 EIT sheets. The center-to-center
separation of pulses in this case is 75 ps. There is significant in-
tersymbol interference (overlapping of pulses) in the dispersed

signal, but because of the excellent dispersion compensation
by the metamaterial sheets, intersymbol interference is com-
pletely removed in the compensated final pulse train. While
the form and bandwidth of the pulses are almost perfectly
restored to their initial values, the amplitude is damped to
63.9% of the initial pulse amplitude, still a very good result
that is not achievable with other GVD compensation methods.
In conclusion, we have demonstrated a proof-of-principle
of a dispersion-compensation system using phase-engineered
metamaterials providing a highly customizable dispersion
band. The system can be fabricated in a compact volume using
nanofabrication methods, and it can be easily integrated into
the communication line. The phase-engineered metamaterial
can provide strong group-velocity dispersion without being
adversely affected by large transmission loss. Higher-order
dispersion introduced by the system is in tradeoff with
dissipation, and one can be exchanged for another depending
on the specific line requirements.
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