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Confining light in deep subwavelength electromagnetic cavities
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We demonstrate that it is possible to confine electromagnetic radiation in cavities that are significantly
smaller than the wavelength of the radiation it encapsulates. To this aim, we use the techniques of transfor-
mation optics. First, we present a “perfect cavity” of arbitrarily small size in which such confined modes can
exist. Furthermore, we show that these eigenmodes have a continuous spectrum and that bending losses are
absent, in contrast to what is observed in traditional microcavities. Finally, we introduce an alternative cavity

configuration that is less sensitive to material imperfections and still exhibits deep subwavelength modes
combined with high quality factor, even if considerable material losses are included. Such a cavity may be
interesting for the storage of information in optical data processing and for applications in quantum optics.
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Transformation optics has recently shed new light on the
interaction between electromagnetic radiation and matter.'~
It provides a recipe to design components that guide electro-
magnetic waves along predetermined curved coordinate
lines. The advantage of this technique is that it allows to
approach an electromagnetic problem from a geometric per-
spective, by bending and squeezing the coordinate lines.
These geometric distortions of space can then be converted
into a medium with well-defined constitutive parameters.>*
Based on an early idea of Pendry,' transformation optics was
first used to design a spherical perfect lens.> The most excit-
ing example of transformation optics is the invisibility cloak
but it has also been applied for beam manipulation, lenses,
and illusion devices.>>%~!4 The cloaking idea can moreover
be used, e.g., in acoustics, to hide structures from acoustic
waves,!> hydrodynamics, to protect coastlines or platforms
from tidal waves,'® or quantum mechanics for cloaking of
matter waves.!’

So far, the main focus of transformation optics has been
on cloaking and beam manipulation. Here we want to show
that these ideas can also be used to design devices that are
able to confine electromagnetic energy. Nowadays, this can
be achieved with microcavities—the most important imple-
mentations being Fabry-Perot, dielectric, and photonic crys-
tal cavities'®!'>—and by the use of electromagnetically in-
duced transparency to slow down or even stop light.?>2! The
characteristics of a microcavity are determined by two im-
portant parameters: the quality factor Q, which describes the
temporal confinement of the electromagnetic field, and the
mode volume V, which is a measure of its spatial extent.!8
Indeed, several applications involving optical storage require
electromagnetic energy to be confined in a small volume
over a long period of time.'® Unfortunately, traditional cavi-
ties are severely limited in size due to the wavelike nature of
light, which imposes a lower limit on the mode volume and
hence prevents the miniaturization of photonic components
below the wavelength.?? In addition, the electromagnetic
storage systems mentioned above all suffer from fundamen-
tal losses, e.g., whispering gallery losses in dielectric
microcavities.'®
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In this Brief Report, we want to present a dielectric cavity
of deep subwavelength dimensions in combination with a
high quality factor. We start by recalling the transformation-
optical machinery leading to the invisibility cloak. The val-
ues of the permittivity and permeability that implement a
distortion of the electromagnetic space can be calculated by
properly designing the transformation of the coordinate
lines.>* In the case of an invisibility cloak, the electromag-
netic fields cannot propagate inside the cloaked region, e.g.,
a sphere with radius R;. This is realized by mapping the
physical radius R, on the origin of the electromagnetic space.
Additionally, the outer boundary at radius R, in physical
space is mapped onto itself in electromagnetic space, ensur-
ing a smooth transition into the transformation medium and
eliminating reflections. Any continuous coordinate transfor-
mation r'=f(r) that satisfies the boundary conditions f(R,)
=0 and f(R,)=R, will thus implement the effect of an invis-
ibility cloak.

For a cavity that encapsulates electromagnetic energy, we
have to achieve the inverse of a cloak: light rays may not
escape from the outer boundary for a cavity. We thus have to
ensure that electromagnetic waves cannot pass beyond the
outer radius R,. Adapting the constraints used for the invis-
ibility cloak, we can impose the boundary condition f(R,)
=0 at the outer boundary and allow the radiation to penetrate
into the inner region with radius R;. This amounts to impos-
ing that the transformation function is continuous at this
boundary. We therefore need the following boundary condi-
tions for the transformation function of a cavity:

f(R1)=R1’ f(R2)=0- (1)

One can interpret this cavity as a medium that cloaks away
the surrounding space, instead of the surrounded space. Let
us first consider the cylindrical case as shown in Fig. 1. This
setup consists of three regions: I and III are vacuum whereas
region II contains a transformation medium, where we will
use a radial coordinate transformation mapping the coordi-
nates (p, ¢,z) onto the coordinates (p’,¢’,z’') as defined by
the transformation,
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FIG. 1. (Color online) The coordinate transformation of the per-
fect cavity. The surrounding space is made invisible through a radial
coordinate transformation that maps R, on the origin in electromag-
netic space and is matched with vacuum at R,. Expressed in Carte-
sian coordinates (x), the coordinate lines get folded back on them-
selves in closed curves. This is the origin of the perfect
confinement.

R,

/J’=R1 Rz(p R)) (2)

while the other coordinates (¢,z) remain unchanged. This
coordinate transformation, shown in Fig. 1, is one possible
transformation that satisfies the boundary conditions derived
above. As the radial coordinate gets folded, the correspond-
ing coordinate lines in Cartesian coordinates follow closed
loops: a particle, identified by a positive (negative) x coordi-
nate and moving along a vertical coordinate line in region
(I), is bent toward the right (left) in the transformation me-
dium and returns into the vacuum region on the same vertical
line, staying bounded in this region for an infinite time.

In order to confirm this geometrical picture, we have cal-
culated the bounded modes of this system. Since the cavity is
a linear system with cylindrical symmetry, the modes can be
written as

E(r,7) =E(p)e/ "1, 3)

where m is an integer quantifying the angular momentum of
the mode and w is an eigenfrequency. There is no z depen-
dence of the solutions since we are considering here an infi-
nite cylinder. In general, @ can be a complex value w=w’
+iw”, where the imaginary part is related to the losses of the
electromagnetic energy due to dissipation or radiation. The
eigenfrequencies and their corresponding eigenmodes are de-
termined by calculating the solutions of Maxwell’s equations
in each region (I, II, and IIT) and combining them with the
proper boundary conditions. Without loss of generality, we
can assume TM polarization. In the vacuum regions (I) and
(I1), Maxwell’s equations can be combined to Helmholtz’
equation. One can derive that the magnetic field in these
regions (I) and (III) is given by

H%(P) = AJm(kOP) + BYm(k()p) > (4)
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FIG. 2. (Color online) (a) Material parameters of the perfect
cavity as defined by Eq. (2). (b) The parameters of the equivalent
spherical implementation. (c) The magnetic field distribution of a
perfectly confined cavity mode with R,/N\g=0.0032; the magnetic
field is exactly zero in the outer region, implying the absence of
energy radiated away to infinity.

41(p) = EH (kop) + FH'Y (kop), (5)

where ky=w/c, J,, and Y,, are the Bessel functions of the
first and second kind, H;p and H,(f) are the Hankel functions
of first and second kind, and (A,B,E,F) are complex inte-
gration constants; we may set B=F=0 to impose finite en-
ergy and Sommerfeld’s radiation condition. Inside the trans-
formation medium (region II), our analysis has shown that
the magnetic fields have a similar form with the radial coor-
dinate replaced by f(p),

where, once again, (C,D) are arbitrary complex numbers. At
the interface between two materials, the tangential compo-
nents of the electric and magnetic fields must be continuous.
When we apply these conditions at p=R; and p=R,, we find
a set of four equations,

AT (koRy) = CJ,[kof (R ]+ DY, [kof(R))], ()

[(R)

I (koR)) = cf( ‘)J nlkof (Ri)]+ D= Y[kof(R )1,

(8)

CI[kof(R)1+ DY, [kof(R)]= EH Y (koRy),  (9)

f( )

L&) 2)1 Tkf (Ro) ]+ DLy Lkt (Ro)] = EHL O ko),

(10)

where the prime (') denotes differentiation with respect to
the radial coordinate p.

Surprisingly, when we apply the transformation function
defined by Eq. (1), we notice that there is no quantization of
the eigenfrequencies. This means that modes with an arbi-
trary value of w’ can exist inside this cavity, even if the
free-space wavelength (A\g=2mc/w') is many times larger
than the dimensions of the cavity. In Fig. 2, we show the
magnetic field of such a deep subwavelength mode in which
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the free-space wavelength is 300 times larger than the outer
radius of the cavity. From this figure, one can observe that
the field is exactly zero in the outside region (p>R,). This
means that the electromagnetic energy is entirely located in-
side the cavity: these subwavelength modes are thus charac-
terized by an infinite quality factor. One might therefore call
this device a “perfect cavity.” Since the boundary conditions
(7)-(10) are independent of R;, the perfect cavity retains its
properties for arbitrary values of the radius of the inner
vacuum region.

The values of the permittivity and permeability required
to materialize this cavity can be determined using the equiva-
lence relations of transformation optics.>* With the transfor-
mation function as given in Eq. (2), we find the following
nontrivial components:

p
= . €)=pl= , (11)
P P p @ @ p-R,
R? p—R
z 1 2
=uf=— 12
T (R -R)* p (12

The variation in these components as a function of the physi-
cal coordinate p is shown in Figs. 2(a) and 2(b). Each com-
ponent of e} and ,u,; has a negative value, imposing the use of
left-handed materials. It is easily seen that any transforma-
tion medium satisfying f(R;)=R,; and f(R,)=0 will have a
region with left-handed materials. Subsequently, we notice
the behavior at the outer boundary, which is analogous to the
inner boundary of the invisibility cloaks: the radial compo-
nent becomes zero while the angular component tends to
minus infinity. We also studied a spherical implementation of
this cavity and we found that it also exhibits a continuum of
deep subwavelength modes with perfect quality factor. The
material implementation is more realistic than the cylindrical
case as it does not require any component of the constitutive
parameters that tend to infinity, as shown in Fig. 2(b).

Unfortunately, we have found that the design discussed
above is highly sensitive to the value of the material param-
eters. Essentially being a strange kind of cloak, one might
expect the same kind of sensitivity: as material parameters
deviate from the ideal values, an invisibility cloak retains its
cloaking characteristics, albeit less performant.® In this case,
however, when we perturb the cavity by taking away a little
rim from the outer boundary, we notice that the eigenmodes
disappear completely. In the second part of this Brief Report,
we therefore propose an alternative design of the cavity that
eliminates this singularity. When the outer boundary is not
perfectly mapped onto the origin in electromagnetic space,
our simulations show that energy is radiated away to infinity.
This prohibits the existence of confined modes. We can rein-
troduce deep subwavelength modes with an additional per-
turbation at the inner boundary, thus removing the imped-
ance matching. This will lead under certain conditions to
destructive interference of the outside field. This idea is sup-
ported by the solutions of the dispersion relation and by our
full-wave simulations with a finite-element solver (COMSOL
MULTIPHYSICS). We start from a perfect cavity with the trans-
formation function,
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FIG. 3. (Color online) The nonsingular cavity is constructed
from a perfect cavity but with thin rims AR, and AR, removed at
the inner and outer boundaries (vertical broken lines). (a) The re-
sulting material parameters do not assume extreme values. (b) The
magnetic field distribution inside this cavity, corresponding to a
deep subwavelength solution with R, /Ng=0.19. There is a small
part of the mode situated outside the outer radius, corresponding to
a quality factor Q=1.1x10'°.

R S

p \WVRZ P (13)
from which we now slice off thin rims at both the inner and
outer boundaries, i.e., the material is situated between the
radii R;+AR;, and R,—AR,. The material parameters that
constitute this transformation are shown in Fig. 3(a), where
we have chosen perturbations of a few percent; this reduces
the constraints on the materials significantly (the permittivity
and permeability range from —0.15 to —6.76). For this con-
figuration, the dispersion relation allows for one single mode
solution, for every integer value of the angular momentum
parameter m. In Fig. 3(b), we plot the magnetic field of such
a mode with m=8, which has R,/\y=0.19, i.e., the wave-
length is more than five times larger than the outer radius of
the cavity, and a quality factor of 1.1 X 10'°. We notice that it
has the same structure as for the perfect cavity.

The reader might object that the typical high losses in the
metamaterials required for the cavity’s implementation will
adversely affect the subwavelength modes. We have there-
fore extended the formalism to calculate the eigenfrequen-
cies of the cavity made from lossy metamaterials. By con-
sidering TM polarization, only one permeability (uf) and
two permittivities (eﬁ, eg) need to be implemented. We now
introduce the loss tangents « and S of the permeability and
the permittivity, respectively. We can show that the effect of
these loss tangents boils down to replacing the transforma-
tion f(p) by g(p)=V(1+ia)(1+iB)f(p), and to add a factor
(1+iB)~" to the right-hand side of Egs. (8)—(10). We have
determined the resulting quality factor by using realistic loss
tangents that are found for fishnet structures operating at op-
tical frequencies.?? The negative permeability, which occurs
close to the magnetic resonance of the fishnet, has typically a
large loss tangent of approximately =1 whereas the permit-
tivities have a nonresonant Drude dispersion with typical
loss tangent 8=1072. Our results show that such a lossy cav-
ity still supports subwavelength modes, although with much
lower quality factor. We have found that the quality factor
can be increased by improving the impedance matching at
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FIG. 4. (Color online) The magnetic field of an eigenmode of
the cavity including material losses. When we fix the geometric
parameters at R;=0.0015R,, AR;=0.75R,, AR,=0.083R,, a=1.0,
B=1.0X10"2, and y=1.5825X 1072, we find a subwavelength so-
lution with angular mode number m=11 at R,,/A=0.14 with Q
=1983. The real parts of € and u stay bounded between 0 and —5.2.

the inner boundary by filling the inner region with a nonmag-
netic material with loss tangent y= (. This procedure led us
after optimization with COMSOL MULTIPHYSICS to the results
shown in Fig. 4: we find again deep subwavelength eigen-
modes (R, /A=0.14) with quality factors up to Q= 2000.

PHYSICAL REVIEW B 82, 113102 (2010)

These Q factors are higher than the theoretical upper limit
predicted for plasmonic cavities.?*

In this Brief Report, we have demonstrated that electro-
magnetic radiation can be confined in cavities with dimen-
sions well below the wavelength of the radiation. With the
transformation-optical equivalents of Refs. 15-17, similar
subwavelength cavities may also be constructed for waves of
other nature, such as acoustic, hydrodynamical, or matter
waves.

At this point we would like to note that we were recently
informed about a related paper addressing light confinement
with transformation optics.?
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