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Maria Kafesaki

Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), P.O. Box
1527, 71110 Heraklion, Crete, Greece, and Dept. of Materials Science and Technology, Univ. of Crete, Greece.

Costas M. Soukoulis

Ames Laboratory, Iowa State University, Ames, Iowa 50011, and Institute of Electronic Structure and Laser (IESL),
Foundation for Research and Technology Hellas (FORTH), P.O. Box 1527, 71110 Heraklion, Crete, Greece, and Dept. of

Materials Science and Technology, Univ. of Crete, Greece.

Vahid Sandoghdar

Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
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We show theoretically that finite two-dimensional (2D) photonic crystals in thin semiconductor membranes
strongly modify the spontaneous emission rate of embedded dipole emitters. Three-dimensional Finite-
Difference Time-Domain calculations show over 7 times inhibition and 15 times enhancement of the emission
rate compared to the vacuum emission rate for judiciously oriented and positioned dipoles. The vertical index
confinement in membranes strongly enhances modifications of the emission rate as compared to vertically
unconfined 2D photonic crystals. The emission rate modifications inside the membrane mimic the local electric
field mode density in a simple 2D model. The inhibition of emission saturates exponentially as the crystal
size around the source is increased, with a 1/e length that is inversely proportional to the bandwidth of the
emission gap. We obtain inhibition of emission only close to the slab center. However, enhancement of emission
persists even outside the membrane, with a distance dependence which dependence can be understood by
analyzing the contributions to the spontaneous emission rate of the different vertically guided modes of the
membrane. Finally we show that the emission changes can even be observed in experiments with ensembles
of randomly oriented dipoles, despite the contribution of dipoles for which no gap exists. c© 2005 Optical
Society of America

OCIS codes: 130.130, 160.0160,270.5580

1. Introduction

The last decade has seen a remarkable increase in the
experimental efforts to control spontaneous emission dy-
namics of dipole transitions by tailoring the dielectric
surroundings of the source. While studies in elementary
geometries, such as planar interfaces1–6 or spherical par-
ticles,7–10 remain of current interest, particular impe-
tus in spontaneous emission control derives from solid
state cavity quantum electrodynamics (CQED),6, 11 and
the increasing capability to shape semiconductors on the
nanometer scale. Of particular interest in this respect
are photonic band gap materials.12 As first proposed by
Bykov13 and Yablonovitch,14 three-dimensionally peri-
odic arrangements of dielectric material on wavelength-
sized length scales allow to create a medium in which
spontaneous emission processes can not only be en-
hanced but also completely inhibited. These photonic
crystals offer many exciting prospects in fundamental
physics, ranging from CQED, control of black-body ra-
diation15 and the slowing and storage of light,16 as well
as device opportunities12 for producing and processing
of optical signals on sub-micron length scales.

Although efforts in realizing spontaneous emission

control in three-dimensional (3D) photonic band gap
crystals have been partly successful,17–19 the advantages
of easier fabrication and characterization has motivated
many groups to work on lower-dimensional, i.e., two-
dimensional (2D) crystal structures. Photonic crystals
in thin semiconductor membranes have recently shown
particular promise to realize ultrasmall cavities with
very high quality factors, suited for quantum optics in
the strong coupling limit.20–22 In addition, the first ex-
perimental evidence23–25 for large emission inhibition
of quantum dots and quantum wells in photonic crys-
tal membranes has recently been reported. Although all
these results suggest that the effect of the gap in the in-
plane band-structure is greatly enhanced by the vertical
index contrast, a systematic study of the potential for
spontaneous emission rate control offered by membrane
photonic crystals is lacking.

In this Paper we present a theoretical study of the
spontaneous emission rate modifications in membrane
photonic crystals that consist of only a finite number
of unit cells. Such an analysis is particularly challenging
for structures that are limited in size because approaches
that are based on the commonly used plane-wave electro-
magnetic eigenfunction calculations26–31 cannot be used.
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We have therefore used a method similar to that recently
proposed by Hwang et al.,32 Xu et al.33, 34 and Hermann
and Hess,35 based on the three-dimensional finite differ-
ence time-domain method (FDTD).36

The paper is organized as follows: in Section 2 we sum-
marize our theoretical approach and discuss the numer-
ical characteristics of the method. In Section 3 we dis-
cuss the spontaneous emission lifetime modification for
a dipole in the center of a photonic crystal membrane,
and compare our result to both 2D and 3D plane wave
calculations of the local density of states. In Section 4
we focus on the dependence of the emission lifetime on
the orientation of the transition dipole moment and the
position of the emitter in the central plane of the mem-
brane. In section 5 we consider the role of the crystal size
in determining the spontaneous emission rate, and pro-
pose a relation between the width of the emission gap
and the number of crystal rows that need to surround
the emitter to obtain maximum inhibition. In section 6,
we focus on the effect of membrane thickness and of the
height of the dipole above the membrane center on the
emission lifetime. We show that a simple model for the
emission rate in homogeneous dielectric slabs explains
many of the observed features. Finally, in Section 7 we
discuss the prospects for experiments involving localized
ensembles of emitters with randomly distributed dipole
moments. Conclusions are presented in Section 8.

2. Method

The quantum analysis of spontaneous emission based on
Fermi’s Golden Rule asserts that the spontaneous emis-
sion rate of an emitting dipole varies with its position
r and orientation d̂, depending on the availability of
photon modes at the source position and frequency ω.
The central quantity that takes this into account is the
local radiative density of states37 (LRDOS) ρ(r, d̂, ω).
The LRDOS is a classical electromagnetic quantity that
appears in the classical analysis of radiating antennas,
where it describes the power needed to drive a point-
like electric dipole oscillating at fixed current.32–35 This
power is due to the work W ∝ j ·E that the field E radi-
ated by the source j(r, t) does on the source itself. The
rate of spontaneous emission Γ in a dielectric structure,
normalized to the free-space rate Γvac, therefore can be
found by comparing the work W done on the source in
the dielectric structure to the work Wvac done on the
same current source in vacuum.

We use the three-dimensional finite different time
domain method (FDTD) method for our calculations
throughout this work. An important advantage of the
finite difference time domain method33–36 over conven-
tional methods2, 28, 29 to calculate the LRDOS is that
the field E of a point source, and hence the LRDOS,
is readily calculated without solving for the electromag-
netic eigenmode basis of the dielectric structure. Further-
more, the FDTD method can even be used to calculate
the LRDOS for lossy systems in which eigenmode ex-

pansions are invalid. In this paper we follow the method
of Hermann and Hess,35 in which the LRDOS is sim-
ulated for a wide frequency range at once via broad-
band temporal excitation of a dipole point source. For
a pulsed source with frequency spectrum j(r0, ω), the
time-trace of the electric field E(r0, t) at the position r0

of the source can be Fourier transformed to determine
the LRDOS in terms of its vacuum value ρvac(ω):

ρ(r0, d̂, ω) = ρvac(ω)
W (r0, d̂)

Wvac

= ρvac(ω)
j(r0, ω) · E(r0, ω)

j(r0, ω) · Evac(r0, ω)
(1)

We have evaluated the validity and pitfalls of this nu-
merical method by comparing the simulated spontaneous
emission rate enhancement with exact analytical results
for a dipole in a dielectric sphere,7–9, 35 and for a dipole
near a planar interface between two dielectrics.2–4 Fig-
ure 1 shows that accurate results for the emission rate
modification are obtained by the FDTD method for a
representative test case where a dipole is placed near a
planar interface between air and silicon. By examining
the LRDOS obtained with pulses at different center fre-
quencies, we have established that results consistent to
within ∼ 1% can be obtained in the frequency ranges
where the vacuum emission power of the dipole current
pulse exceeds ∼ 5% of its maximum value. Through-
out this paper we use temporal excitation pulses with a
Gaussian envelope and bandwidths around 50% of the
central frequency.

Agreement of the simulated LRDOS with the exact
LRDOS not only depends on sufficient spectral overlap
of the input current with the frequency range of inter-
est, but also on the spatial discretisation. Apart from
the obvious requirement that the discretisation must be
sufficiently fine to resolve features of the dielectric struc-
ture, the accuracy is affected by the dispersive proper-
ties of the cubic discretisation grid itself. To illustrate
this point, Fig. 2 shows the apparent LRDOS of a ho-
mogeneous dielectric of index n = 3.4 over a very wide
frequency range, obtained by the procedure described in
Eq. (1). The exact LRDOS of the homogeneous dielectric
(parabola in Fig. 2) equals n times the vacuum LRDOS,
independent of frequency. In contrast, Fig. 2 shows that
large discrepancies occur for large frequencies. The devi-
ation exceeds 5% for frequencies at which the wavelength
in the dielectric is shorter than 10∆, where ∆ is the
spacing between adjacent discretisation grid points. The
source of the discrepancy is the well-known anisotropic
dispersion of the cubic grid as well as the cut-off of the
grid for wave vectors in excess of (π/∆, π/∆, π/∆). We
have calculated the density of states of the discretisation
grid (filled with vacuum and with medium of index n)
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Fig. 1. Symbols: spontaneous emission rate normalized
to emission rate in vacuum as a function of normalized
frequency for a dipole in front of, and oriented parallel to
a planar dielectric interface separating silicon (ǫ = 11.76)
and vacuum calculated using the 3D FDTD method.
The normalized frequency corresponds to the separation
z between source and interface, normalized to the vac-
uum emission wavelength λ. For the dipole in vacuum
(positive z), results are shown for three separations. In
units of the grid discretization ∆, these are z = 25∆
(circles), 5∆ (diamonds) and 2∆ (squares). The same
temporal excitation pulses were used for z = 25∆ and
5∆ to span two different normalized frequency ranges
2πz/λ. For the dipole in silicon (negative z) the results
shown were obtained with a single excitation pulse and
a single dipole position at z = −25∆ from the interface.
Excellent agreement with the exact local radiative den-
sity of states modification (solid line) is obtained. The
total simulation volume was 300× 300× 120 ∆3 in size.

from its dispersion relation,36
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where ∆t is the magnitude of the time step, ∆ is the
grid spacing, and c is the speed of light in vacuum. The
excellent agreement of the grid density of states with the
apparent LRDOS calculated by the FDTD method for a
dipole in a homogeneous dielectric in Fig. 2, confirms the
role of the density of states of the numerical discretisa-
tion grid in spontaneous emission rate calculations. We
conclude that an accuracy better than ∼ 5% for sponta-
neous emission rates calculated by the FDTD method,
requires discretisation grids with over 10 grid points per
wavelength at the frequency of interest in the highest
index medium.

 FDTD result
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Fig. 2. Symbols: FDTD approximation to the LRDOS
of a homogeneous medium (ǫ = 11.76) obtained using
the FDTD method and Eq. (1), taking a very broad-
band temporal excitation of the source dipole. The
dashed parabola indicates the exact LRDOS. Agree-
ment to within 5% are only obtained for frequencies
ω < 0.03(2πc)/∆, for which the wavelength in the high-
est index medium remains longer than 10 times the dis-
cretisation grid spacing ∆. Deviations are due to the un-
physical dispersion relation on the grid (Eq. (2)) and the
wave vector cut-off of the grid at k = (π/∆, π/∆, π/∆),
as evident from the excellent agreement of the FDTD
result with the exact grid density of states per volume
obtained by integrating Eq. (2).

Finally we note that accurate results require that the
Fourier transforms of j(r0, t) and E(r0, t) be calculated
without zero-padding of the time series, as done by many
FFT routines that use arrays of length equal to a power
of 2. To find the power spectrum radiated by the dipole,
the complex Fourier transforms Fof the real time series
of j and E are combined according to

j(r0, ω) · E(r0, ω) = Re[Fj] · Re[FE] + Im[Fj] · Im[FE].
(3)

The two terms are nearly equal in magnitude but oppo-
site in sign. The desired sum is approximately 104 times
smaller than either term. Even if time-stepping is contin-
ued till the fields have decayed by several orders of mag-
nitude, zero padding introduces noise that is small com-
pared to either term in Eq. (3), but sizeable compared
to the signal that remains after summing them. Further-
more, strongly resonant features in LRDOS spectra need
to be handled with care. Time series of field and current
are typically limited to total time spans of only 102 to 103

optical cycles, as the 3D FDTD method is very compu-
tationally intensive. For resonances with quality factors
in excess of ∼ 102, time series are truncated before fields
have fully decayed, giving rise to artifacts in the Fourier
transform that can fully dominate the simulated LRDOS
spectra. To remove such artifacts, we have used a seventh
order Daubechies apodization filter.38 We have checked
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Fig. 3. (a) Schematics of the geometry for calculating the
spontaneous emission rate modification in membranes.
We consider dipoles near the center of 2D finite photonic
crystals, consisting of a hexagonal array of air holes (lat-
tice spacing a, radius r) in a semiconductor membrane
(thickness d). The position and orientation of the emis-
sion dipole are specified along cartesian axes, where z
specifies the height above the center of the membrane,
and x and y are in the plane of the membrane. (b) (top
view) The finite crystallites are hexagonally truncated,
such that the central air hole is surrounded by the same
number of holes (indicated by the crystallite radius L
(L = 2a in the sketch)) in all directions. Outside the
truncation boundary (dotted hexagon), the membrane
was either terminated by semiconductor or by air. For
Figure 5, the dipole position was scanned over the tra-
jectory from point A via B, C to A′.

the validity of this approach for FDTD simulations of a
single-mode high-Q photonic crystal cavity,39 which has
a much narrower resonance in the LRDOS than appears
in any of the results presented below. For such a single
mode system, the time series of the field can be extrap-
olated to obtain the true LRDOS from an untruncated
time series.

3. Comparison with 2D and 3D LRDOS for ver-

tically infinite crystals

We consider spontaneous emission rate modifications in
two-dimensional photonic crystals within semiconduc-
tor membranes, as studied for the dipole-position aver-
aged case by Lee and Yariv.34 We focus on finite struc-
tures consisting of membranes with dielectric constant
ǫ = 11.76 and thickness 250 nm perforated with a hexag-
onal lattice of holes (lattice spacing a = 420 nm) of ra-
dius 0.3a. Such membranes have a wide band gap for TE
guided modes, i.e., modes with electric field in the central
plane of the slab pointing along the membrane, but no
gap for TM modes. The geometrical parameters are typ-
ical for the membrane structures in which high-quality
factor cavities for strong coupling CQED were recently
realized20–22 and for which first evidence of inhibition
of spontaneous emission was recently presented.23, 24 We
simulate finite crystallites of hexagonal shape and vari-
ous sizes ranging from 1 to 12 lattice spacings in radius,
as counted from the central hole (see Fig. 3). The crys-
tals were either terminated by semiconductor or by air
extending into the Liao absorbing boundary conditions.
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Fig. 4. Connected open symbols: modification of the
radiative emission rate compared to vacuum (refer to
left axis) versus normalized frequency a/λ (refer to bot-
tom axis). This result is calculated with the 3D FDTD
method for a dipole in the central air hole of a crystal
of radius L = 6a with r/a = 0.3, a = 420 in a semi-
conductor membrane (ǫ = 11.76, d = 250 (truncated by
semiconductor)), oriented along the x-axis in Fig. 3, in
the plane of the membrane. In the apparent gap, emis-
sion is reduced to about 0.14 times the vacuum emission
rate. Refer to the top- and right-hand axis for frequency
normalized to the midgap frequency, and emission rate
enhancement normalized to the emission rate modifica-
tion at the same position for frequencies far below the
gap. Solid line (refer to top- and right-hand axis): mod-
ification of the 2D LRDOS in an infinite crystal (also
r/a = 0.3, ǫ = 11.76) in the center of an air hole, ac-
cording to the plane wave method. Dashed line: modifi-
cation of the 3D LRDOS in an infinite 2D crystal (again
r/a = 0.3, ǫ = 11.76) that extends infinitely in the ver-
tical direction, calculated with the plane wave method.
The LRDOS modification in the center of the membrane
is much stronger than the weak LRDOS modification in
the vertically unconfined crystal.

We have used 14 or 20 grid points per lattice constant,
with a doubled grid density in the vertical direction.
To reduce staircasing errors due to the discretisation of
the structure, we used volume-averaging of the dielectric
constant in each grid cell.40 In the simulations, mem-
branes were surrounded above and below by up to 1 µm
of air.

First, we consider the spontaneous emission lifetime
for a dipole that is located in the middle of the central
air hole of a structure of L = 6 lattice spacings across.
Figure 4 shows the LRDOS normalized to the vacuum
LRDOS for an in-plane oriented dipole that points along
the x-axis (see Fig. 3), i.e., from air hole to air hole. For
dipole orientations in the plane of the slab, the spon-
taneous emission rate is strongly modulated as a func-

4



tion of normalized frequency a/λ (where λ is the vacuum
wavelength). We find a frequency range from a/λ = 0.25
to a/λ = 0.33 of inhibition of the emission rate that
overlaps with the in-plane photonic band gap for the TE
modes guided by the membrane, as was also observed
in calculations by Lee, Xu and Yariv.34 An inhibition of
the LRDOS by a factor & 7 compared to vacuum is ob-
tained. This value translates to over 30 times inhibition
as compared to the emission modification at frequen-
cies far below the band gap at the same position. Above
and below the range for which the emission is strongly
reduced, which we will call emission gap, the emission
rate is strongly modulated, featuring enhancements of
the emission rate by factors up to 20 times compared
to vacuum, or over 5 times compared to the LRDOS in
the long wavelength limit at the same position. As will
be discussed below, the fringes outside the emission gap
are due to Fabry-Pérot oscillations caused by the finite
lateral size of the crystal.

It is perhaps surprising that significant control over
spontaneous emission dynamics is possible for selected
dipole positions and orientations, despite the fact that
no full band gap exists. It appears that the large ver-
tical index contrast greatly enhances the effect of the
in-plane periodicity on spontaneous emission. To con-
firm this notion, we have used the H-field inverted ma-
trix plane-wave expansion method to calculate the lo-
cal radiative density of states in infinite 2D photonic
crystals that are not confined vertically.26, 28, 29 In ad-
dition to the 3D LRDOS, wee have also calculated the
2D LRDOS, which only counts modes that propagate in
the plane of periodicity. For the two (three)-dimensional
case, we used 8100 (84000) non-equivalent k-points,41, 42

which were distributed over half of the full Brillouin zone
to avoid erroneous results28 due to the reduced sym-
metry of the polarization-resolved LRDOS.31 We have
scaled both the frequency axis and vertical axis to opti-
mally overlap the resulting 2D and 3D LRDOS (nor-
malized by the 2D resp. 3D vacuum LRDOS) for an
x-oriented dipole in the center of an air-hole with the
LRDOS in the membrane (cf. Fig. 4). Naturally, the 2D
(local) density of states of the 2D crystal shows a full
gap for dipole orientations in the plane of periodicity,
corresponding to the TE band gap in the 2D band struc-
ture. The gap is accompanied by characteristic emission
enhancement at the gap edges due to low group veloc-
ity modes.28 For a dipole at the center of an air hole,
this enhancement occurs at the high frequency edge of
the gap, as is also apparent in the membrane. In stark
contrast, the 3D LRDOS is only weakly modulated for
vertically infinite crystals, due to the contributions of
modes with wave vector components along the air cylin-
ders.43, 44 Although the 2D band gap causes a shallow
minimum in the 3D LRDOS for a dipole in the center
of an air-hole, the bandwidth of emission inhibition is
much narrower than the bandwidth of the 2D band gap,
and no sign of emission enhancement at the band gap
edges remains.28, 44 The comparison of plane wave cal-

culations with the FDTD result shows that the vertical
confinement offered by membranes prevents the wash-
ing out of the characteristic features of the 2D LRDOS
that occurs for vertically unconfined crystals: Firstly the
emission gap in the membrane referenced to the long
wavelength LRDOS at the same position in the crystal
amounts to an inhibition by a factor around 30, which is
over five times stronger than the inhibition obtained if
the structure is not truncated in the vertical direction.
Secondly, the relative inhibition gap bandwidth of 24%
offered by the membrane structure is close to the band-
width of 25% in the 2D band-structure. Thirdly, we note
that the emission rate enhancement at the blue edge of
the gap is retrieved in the membrane structure. The en-
hancement of ∼ 6 times compared to the emission rate
in the long wavelength limit is in good agreement with
the enhancement observed in the 2D LRDOS. This is
especially surprising, when considering the finite size of
the crystal, and the effect of its truncation on the exact
spectral position and quality factor of the Fabry-Pérot
oscillations.

4. Dependence on polarization and lateral posi-

tion

To obtain a more complete overview of the spontaneous
emission control offered by membranes, we consider the
LRDOS modification for different positions in the central
unit cell of a crystallite that is again 6a in radius, termi-
nated on the sides by semiconductor material. Figure 5
shows contour plots of the LRDOS normalized to the
vacuum LRDOS as a function of frequency in the range
of the TE-bandgap, for dipoles that are vertically cen-
tered in the membrane and positioned along the path in-
dicated in Fig. 3(b). This trajectory spans the boundary
of the irreducible part of the real space 2D unit cell and
ensures that the cartesian dipole orientations in Fig. 5
are always parallel or perpendicular to the trajectory.
Figure 5 confirms the occurrence of a deep gap in the
spontaneous emission rate for dipole orientations in the
plane of the membrane for all positions close to the cen-
ter of the crystal. Moreover we find that there is no gap
in the emission rate for dipoles oriented perpendicular
to the membrane, but only a weak dependence on fre-
quency, as expected from the absence of a 2D band gap
for the TM guided modes of the membrane.

A detailed inspection of Fig. 5 shows furthermore that
strong emission enhancement at the blue edge of the
emission gap is only predicted to occur for dipoles po-
sitioned inside the air hole . In contrast, emission en-
hancement at the red edge of the gap is only predicted
for dipoles located outside the air-hole, and preferentially
for dipoles oriented perpendicular to the air-hole edges.
This difference between dipole positions inside and out-
side the air holes is confirmed by the 2D LRDOS modifi-
cation predicted by the plane wave method (Fig. 6) and
is consistent with the well-known difference in spatial
distribution of the low group-velocity modes that cause
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Fig. 5. Contour plot of the LRDOS normalized to the
vacuum LRDOS calculated by 3D FDTD as a func-
tion of frequency and as a function of position along
the trajectory in Fig. 3 for dipoles in a finite membrane
crystallite of radius L = 6a. Panels (a–c) refer to the
three orthogonal dipole orientations along x, y resp. z.
Vertically, the dipoles are placed in the middle of the
membrane (z = 0). In-plane dipole orientations show
a large emission gap for 0.25 < ω < 0.33 for all po-
sitions, while no gap occurs for the vertically oriented
dipole. Enhancement of the emission rate for horizon-
tally oriented dipoles occurs on the high frequency edge
when the dipole is located in air (positions indicated by
the vertical white bars in all panels) and on the low fre-
quency edge when the dipole is located in dielectric. The
grayscale (indicated on top) is logarithmic both for in-
hibition and enhancement (regions separated by contour
line at unity, and labelled as ‘Enhanced’ as appropriate).

the spontaneous emission enhancement. These modes are
preferentially concentrated in the air (dielectric) region
for the high (low) frequency edge of the gap. Disregard-
ing the Fabry-Pérot oscillations due to the finite crys-
tal size, we find that the spectral and spatial location
of the enhancements, the relative magnitude of the en-
hancements compared to the LRDOS modifications for
frequencies far below the gap, as well as the band width
of the gap in Fig. 5(a,b) are in good qualitative agree-

Fig. 6. Top three panels: Contour plots of the 2D LR-
DOS normalized to the vacuum 2D LRDOS according
to the plane wave method for a dipole in a 2D photonic
crystal (air holes r/a = 0.30 in a matrix of ǫ = 11.76)
as a function of emission frequency (horizontal axis) and
position of the dipole along the trajectory indicated in
Fig. 3 for three perpendicular dipole orientations as in-
dicated. White bars indicate the extent of the trajectory
inside air. For in plane oriented dipoles (top two pan-
els), the 2D LRDOS shows a full gap (labelled as TE
gap). The bottom panel shows the 2D TE and TM total
density of states per area in units a−1c−1.

ment with the 2D LRDOS modification calculated by the
plane-wave method (Figure 6). It should be noted that
good agreement is limited to dipole orientations paral-
lel to the membrane, as the vertical confinement in the
membrane causes a much larger shift to higher frequen-
cies for the photonic band structure for TM polarization
than for TE polarization.45 The results in Fig. 5 do not
agree for any polarization with the much weaker 3D LR-
DOS modification for a crystal that is infinitely extended
in the vertical direction.
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5. Emission Gap width and the crystal size re-

quired for maximum emission gap depth

Figures 4 and 5 allow us to conclude that large changes
in spontaneous emission rate occur for properly oriented
dipoles located near the center of small crystals in semi-
conductor membranes. In this section we investigate how
large the crystal around the dipole must be to obtain a
significant emission gap. In Fig. 7 the spontaneous emis-
sion modification is shown for a horizontally x-oriented
dipole in the central air holes of semiconductor-truncated
crystals of various sizes. The most striking features in
Fig. 7 are the deepening of the emission gap with increas-
ing size of the crystallite around the source, the steepen-
ing of the emission gap band edges, and the decrease
of the frequency spacing between modulations of the
emission rate outside the emission gap. The decreasing
frequency spacing between these fringes with increasing
crystal size validates their interpretation as Fabry-Pérot
type resonances caused by the impedance mismatch oc-
curring at the outer edges of the crystal. When crystals
are truncated by air rather than semiconductor, the os-
cillations change in amplitude and shift in frequency at
unchanged frequency spacing between fringes, as consis-
tent with an interpretation as Fabry-Pérot resonances.
Unlike the Fabry-Pérot oscillations that occur for trans-
mission through finite crystals,46, 47 however, the oscilla-
tions in the LRDOS depend on all size-dependent reso-
nances in the system, instead of solely those with specific
wave vectors. Independently of the size and nature of the
truncation, the LRDOS at the high frequency edge of the
emission gap exceeds 15 times the vacuum LRDOS, cor-
responding to an enhancement of at least 5 times com-
pared to the emission rate typically observed below the
gap in the range 0.15 ≤ a/λ ≤ 0.22.

The value of the LRDOS for frequencies within the
emission gap saturates with increasing crystal size. In
Fig. 8, we plot the emission inhibition gap minimum for
the frequency a/λ = 0.29 in the middle of the emission
gap as a function of crystal radius. The LRDOS in the
middle of the gap decreases exponentially35, 43, 48 to its
limiting value of 0.14 times the vacuum value, with a 1/e
crystal radius of just Lgap = 0.7a . It is remarkable that
only so few crystal layers are needed to create the emis-
sion gap. This observation suggests that the emission
gap can be expected to be very robust against fabrica-
tion disorder. The 1/e radius for the emission gap can
be compared to the number of layers needed for a cavity
to reach its ultimate quality factor. The inverse quality
factor of low volume microcavities in 2D photonic crys-
tals approaches its limiting value set by the out-of-plane
losses in an exponential manner as the number of crystal
rows surrounding the cavity is increased.45, 49 For unop-
timized and optimized single-hole cavities21, 39, 45 oper-
ating at frequencies in the middle of the band gap, the
same characteristic length of 0.7a is found for the inverse
quality factor.

Figure 8 also shows the gap minimum as a function
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Fig. 7. Lines with symbols: LRDOS normalized to vac-
uum LRDOS versus frequency, depending on crystallite
size (crystal radii L = 1 to 12 as indicated, curves shifted
vertically, and different symbols as labelled) for an x-
oriented dipole in the central air hole of hexagonal crys-
tallites (truncated with semiconductor). With increas-
ing number of layers, the gap deepens, the gap edges
become steeper and the spacing decreases for the Fabry-
Pérot fringes that occur for frequencies below the gap
a/λ < 0.25 and above the gap a/λ > 0.32. For a single
air hole in a semiconductor (line, no symbols) no gap
or resonance is observed, while for a single crystal layer
(small dots) a resonance at frequencies above the gap
is already evident. The vertical dashed line marks the
mid-gap frequency for which the inhibition is reported
in Fig. 8.

of crystal size for photonic crystal membranes of dif-
ferent dielectric constants ǫ = 6.25 (titanium dioxide,
a = 250 nm), ǫ = 4.0 (silicon nitride, a = 250 nm) and
ǫ = 2.55 (polystyrene, a = 250 nm). As expected, the
maximum achievable inhibition decreases with reduced
index contrast, and the characteristic number of layers
Lgap needed to achieve the inhibition increases with de-
creasing refractive index contrast. The inset in Fig. 8
shows the inverse characteristic length Lgap as a func-
tion of the relative band width ∆ω/ω of the emission
gap. We observe that Lgap is inversely proportional to
the width of the band gap. This inverse dependence is
well known for the penetration depth of light in dielec-
tric mirrors, and for simple two-band models of Bragg
diffraction from photonic crystal lattice planes.46 In such
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Fig. 8. Solid squares: Spontaneous emission rate com-
pared to vacuum for the mid-gap frequency labelled in
Fig. 7 versus crystallite radius. Circles, diamonds and
triangles: emission gap depth in the middle of the emis-
sion gap for membranes (thickness 250 nm, a = 250 nm,
r/a = 0.3) of TiO2 (ǫ = 6.25), Si3N4 (ǫ = 4), and latex
(ǫ = 2.25). Lines are exponential fits to the points. The
inset shows the inverse fitted exponential decay lengths
(symbols, in units of a) versus the relative bandwidth
of the emission gap. The line corresponds to a/Lgap =
2π∆ω/ω.

a model the field intensity decays exponentially into the
crystal, with intensity decay length D/(π∆ω/ω) where
D is the separation between lattice planes. The same be-
havior is found for Lgap, as shown by quantitative com-
parison of Lgap taken from the FDTD simulations with
a/(2π∆ω/ω). This observation highlights the universal
role of the gap width as a measure for the interaction
strength of the photonic structure with light, as pro-
posed in Ref. 48, 50. A more thorough investigation of
this hypothesis should include calculations for 2D and
3D photonic crystal geometries and is outside the scope
of this paper.

6. Different contributions to the emission rate

derived from a simple homogeneous slab

model

Figure 8 not only shows that the emission gap in mem-
brane photonic crystals deepens exponentially with lat-
eral crystal size, but also that the inhibition that is ul-
timately achieved for sufficiently large crystals depends
on the membrane index. Similarly, we expect the emis-
sion gap depth to depend on the thickness of the mem-
brane. We have calculated the spontaneous emission rate
for a dipole in the central air hole of photonic crys-
tal membranes as considered in Fig. 4 (a = 420 nm,
r/a = 0.3, ǫ = 11.76, L = 6) for membrane thicknesses
between 50 and 800 nm. Figure 9 shows the emission rate
normalized to the vacuum rate at the center frequency

of the emission gap, which shifts from a/λ = 0.45 at
d = 50 nm to lower frequencies as the membrane thick-
ness increases. The center frequency of the gap saturates
at around a/λ = 0.26 for thicknesses around 400 nm.
For membrane thicknesses above 600 nm contributions
of higher order slab guided modes compromise the defi-
nition of the gap edges that allows us to find the center
frequency. For these thicknesses the Fabry-Pérot oscilla-
tions for frequencies just below the red edge of the gap
merge with Fabry-Pérot oscillations for in-gap frequen-
cies. The enhancement at the blue edge of the gap re-
mains clearly visible and remains above 10 times the vac-
uum LRDOS. For thicknesses above 700 nm the emission
rate modulation in the frequency range around the gap
approaches an asymmetric sawtooth like shape, similar
to the 3D LRDOS in a vertically infinite crystal (Fig-
ure. 4).

Figure 9 shows that significant inhibition of emission
occurs for membrane thicknesses below 400 nm, with an
optimum thickness for inhibition around 250 nm. For
larger thicknesses, the emission rate is significantly less
inhibited, and even enhanced for d ≥ 600 nm. As a sim-
ple model to explain the thickness dependence of the
emission rate, we consider the emission rate of dipoles
in homogeneous dielectric slabs. We have used the ap-
proach of Urbach and Rikken51 that allows to separate
the contributions to the LRDOS of modes that propa-
gate outside the dielectric slab from the contributions of
the slab guided modes to the lifetime of in-plane oriented
dipoles. In a high index dielectric slab, such as a silicon
membrane in air (Fig. 9, inset) the LRDOS contribution
of propagating modes is strongly reduced to only ∼ 0.08
times the vacuum LRDOS. However, the LRDOS contri-
bution of the guided modes causes the overall LRDOS,
and hence the spontaneous emission rate for an embed-
ded dipole to exceed the vacuum LRDOS significantly.

For a photonic crystal membrane that has a full band
gap for the first TE slab-guided mode, one expects the
LRDOS contribution of the first TE guided mode to van-
ish completely. To assess the validity of this hypothesis,
we plot the mid-gap emission rate in Fig. 9 as a func-
tion of normalized thickness d/λ in the inset of Fig. 9 and
compare it to the LRDOS in a homogeneous silicon slab,
without the contribution of the first TE guided mode.
The comparison reveals that the emission rate in the
emission gap of Si photonic crystal membranes indeed
follows qualitatively the same dependence on slab thick-
ness as the LRDOS in a homogeneous silicon membrane
without the contribution of the first TE guided mode, yet
shifted towards larger thicknesses. The sharp increase of
the emission rate with thickness around d/λ = 0.3 allows
us to fit an effective refractive index of neff ∼ 2.9 for
which the LRDOS at gap frequencies of the membranes
most resembles the LRDOS without the first TE guided
mode contribution in unpatterned dielectric slabs. This
value is higher than the effective index of ∼ 2.8 de-
rived from the volume averaged dielectric constant of
the membrane. It is important to note, however, that the
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Fig. 9. Solid circles: emission rate normalized to the vac-
uum rate at the center frequency of the emission gap for
an x-oriented dipole in the center of a photonic crystal
membrane as a function of membrane thickness d. For
membranes above 500 nm thickness (around one third
of the emission wavelength) no inhibition of emission re-
mains. Inset: (symbols) the same data plotted as a func-
tion of thickness normalized to the gap center wavelength
(which shifts with thickness). Solid lines: LRDOS for an
in-plane oriented dipole in the center of a homogeneous
membrane of refractive index 3.45 (black) and of index
2.9 (gray). Dashed lines: same as solid lines but without
the contribution of the first TE-polarized slab guided
mode that is suppressed by the 2D photonic band gap.

sharp increase of the emission rate is due to the combined
contributions of the second order TM and the third or-
der TE slab guided mode, for which the derivation of an
effective index is highly nontrivial.

The interpretation of lifetimes in photonic crystal
membranes in terms of the propagating and guided mode
LRDOS contributions in a dielectric slab is also relevant
for the dependence of the LRDOS on the separation of
the dipole from the center of the photonic crystal mem-
brane. In Fig. 10 we plot the emission rate at two key fre-
quencies for an x-oriented dipole in the central air hole of
a membrane of 250 nm thickness that is shifted vertically
above the center of the slab. For a frequency a/λ = 0.28
in the emission gap (Fig. 10(a)) we find that the inhibi-
tion of emission quickly vanishes as the dipole is moved
away from the center of the slab. No traces of inhibition
remain for dipoles that are further than ∼ 100 nm away
from the slab center. In contrast, we find that the en-
hancement at a/λ = 0.33 at the blue edge of the gap is
not restricted to dipole positions within 100 nm of the
slab center. Emission enhancement by a factor 5 persists
even 50 nm above the slab, as we proposed recently52

The differences in persistence of the inhibition and of
the enhancement of spontaneous emission with increas-
ing separation of the emitter to the slab can also be

understood by analyzing the various guided mode con-
tributions to the LRDOS of a homogeneous slab. For the
frequency a/λ in the gap, no contribution to the LR-
DOS of the first TE guided mode exists, due to the TE
band gap. In this frequency range, the only other modes
that contribute to the LRDOS in a dielectric slab are
the propagating modes and the first TM guided mode.
The electric field component parallel to the membrane
of the first TM guided mode is zero in the center of
the slab, but increases monotonically towards the edge
of the slab. Indeed, we find excellent agreement of the
LRDOS calculated by FDTD for x-oriented dipoles in
the membrane, and the sum of LRDOS contributions of
propagating modes and the first TM guided mode in a
dielectric slab of index 2.8, equal to the volume average
refractive index of the photonic crystal. In essence, the
range of dipole heights over which inhibition occurs is
limited by the parallel electric field profile of the first TM
slab mode. In contrast, the enhancement of emission at
the blue edge of the gap is due to the photonic crystal in-
duced enhanced density of first order TE guided modes.
The emission enhancement as a function of dipole height
therefore traces the vertical mode profile of the first TE
guided mode. This notion is confirmed by the fact that
the enhancement in Figure 10(b) for a PC membrane,
can be excellently described as the sum of the propa-
gating mode LRDOS contribution in the effective index
slab, augmented by a scaled contribution of the first TE
guided mode. Quantitatively, we find that the contribu-
tion of the first TE guided mode is enhanced by ∼ 9
times over the contribution of the same mode in a ho-
mogeneous slab of the same effective index.

7. Orientational dipole ensembles

Single quantum emitters that are controlled in position
and dipole orientation are required to experimentally
confirm the strong dependence on position and polar-
ization of the spontaneous emission rate predicted by
the simulations. However, the preparation, manipulation
and detection of high-quantum efficiency single emitters
face many experimental challenges in the near-infrared
range where most photonic crystals operate best. In such
experiments, we therefore expect that ensembles of emit-
ters are likely to be used.53 In this section we evalu-
ate the emission rate modification that is observable for
a subwavelength-sized orientationally isotropic ensemble
of dipoles located in the central air hole of the pho-
tonic crystal membrane considered in Figs. 4 and 5. To
obtain an angle-averaged modification of the emission
rate for an isotropic ensemble of dipole orientations, one
often uses a simple average of the LRDOS over three
perpendicular dipole orientations.51 However, because of
the angle-dependence of the luminescence extraction ef-
ficiency54 η, such a simple average is not suited for re-
constructing the ensemble-averaged emission rate modi-
fication that is observable with far-field collection optics.
The fraction of light emitted into propagating waves in-
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Fig. 10. (A): Symbols: Emission rate normalized to vac-
uum emission rate as a function of the vertical separa-
tion between dipole and the center of the membrane for
an x-oriented dipole in the central hole of the structure
considered in Fig. 4, emitting at a frequency a/λ = 0.28
inside the emission gap. At the inside edge of the mem-
brane and outside the membrane, no trace of inhibition
remains. Solid line: LRDOS contribution of propagating
modes for an in-plane oriented dipole in the center of a
homogeneous dielectric slab (index 2.8) with the same
thickness as the membrane. Dashes: same as solid line,
augmented with the contribution of the first TM guided
mode to the LRDOS. (B) Symbols: as in (A) but for a
frequency a/λ = 0.33 at the blue edge of the gap. Solid
line: propagating mode LRDOS contribution as in (A).
Dotted line: same as solid line, augmented with the con-
tribution of the first TE guided mode to the LRDOS
of a homogeneous slab. Dashed line: same as solid line,
augmented with a nine times enhanced contribution of
the first TE guided mode. The extent of the membrane
is shaded in gray in (A) and (B).

stead of the guided mode of the slab depends strongly
on dipole orientation. For example, a dramatic increase
of the emission extraction efficiency from ∼ 20% for fre-
quencies below the gap to above 80% in the gap occurs
for in-plane dipoles. This increase counteracts the re-
duction in visibility of the emission gap that is naively
expected due to the contribution of vertically oriented
dipoles.

To assess the changes in the emission dynamics ob-
servable in time-resolved fluorescence measurements, we
have calculated the LRDOS and η for differently ori-
ented dipoles in the central air hole. We obtained η from
the frequency-dependent Poynting vector using on-the-
fly discrete Fourier transform of the time-dependent tan-
gential E and H-fields on the surface of a box enclos-
ing the crystal structure.36 To synthesize the observable
ensemble-averaged decay dynamics, one needs to aver-
age exponential time traces with decay rate set by the
LRDOS and weighting factor proportional to η over all
possible dipole orientations (described by polar angles φ

and θ):

〈I(t)〉 =
I0

2π

∫ 2π

0

∫ π/2

0

η(θ, φ)γ(θ, φ)e−γ(θ,φ)t sin(θ)dθdφ.

Here, time t is in units of the vacuum decay time, and
γ(θ, φ) is the orientation-dependent emission rate nor-
malized to the vacuum emission rate. We have approx-
imated this integral by averaging over more than 300
orientations in 2π solid angle, corresponding to over 25
inequivalent dipole orientations. In general, we obtain
strongly non-single exponential time traces for the en-
semble decay. Fig. 11(a) presents the fluorescence decay
for three key frequencies a/λ = 0.22, 0.26 and 0.33 just
below, in, and just above the emission gap. At the red
edge of the gap the non-exponential decay reveals both
an enhanced and an inhibited decay component. For fre-
quencies inside the gap, we predict that the ensemble-
averaged decay exhibits a clear slowing of the decay dy-
namics, while a substantial acceleration is predicted to
be observable for frequencies at the blue edge of the gap.
The non-exponential nature of the time traces, which for
some frequencies is more pronounced than for the three
traces shown in Fig. 11(a), requires that experiments be
performed with sources for which the decay dynamics
in a medium of unmodulated LRDOS is completely un-
derstood. Furthermore an analysis method to quantify
the overall emission rate modification will be necessary.
Here, we consider the first moment τ̄

τ̄ =

∫

∞

0 t〈I(t)〉dt
∫

∞

0 〈I(t)〉dt

of the synthesized fluorescence decay to quantify the
overall emission rate modification evident in the nonex-
ponential time traces. In Fig. 11(b) we plot the inverse
τ̄−1 of the first moment in units of the vacuum decay
rate for different emission frequencies. We see that even
the dipole orientation-averaged emission will reveal inhi-
bition (enhancement) of the mean lifetime by a factor 3
(5) compared to vacuum.

8. Conclusions

We have used the three-dimensional Finite Difference
Time Domain method to systematically investigate the
spontaneous emission rate modifications that occur for
emitters inside photonic crystal membranes. The sponta-
neous emission rate depends strongly on dipole position
and orientation relative to the crystal lattice. In the cen-
tral plane of the slab and for in-plane oriented dipoles,
the full gap for the first TE guided mode of the vertical
structure causes an inhibition of emission by more than
seven times compared to vacuum over a large frequency
window. In addition, large enhancements of the emis-
sion rate occur at the band edges. In the middle of the
membrane, vertical index confinement causes the emis-
sion rate modifications to be much stronger than in ver-
tically unconfined 2D crystals. The true 3D LRDOS in a
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Fig. 11. (A) Simulated fluorescence decay curves (taking
extraction efficiency into account) versus time (in units
of the vacuum decay time Γ−1

vac) for an isotropically ori-
ented ensemble of dipoles in the center of the photonic
crystal membrane crystal for three frequencies (below
the gap, a/λ = 0.23 (dash-dotted), in the gap a/λ = 0.28
(solid), above the gap a/λ = 0.33 (dashed)). The dotted
line shows the decay of the same ensemble in vacuum.
(B) Dots: first moment of simulated decay curves versus
emission frequency, in units of the vacuum decay rate.
Line: spontaneous emission rate over vacuum rate for a
single dipole in the center of the membrane reproduced
from Fig. 4.

photonic crystal membrane mimics the hypothetical 2D
LRDOS of a 2D crystal in terms of the frequency band
width of the gap, the magnitude of the enhancement
(with respect to vacuum) at the band edges, and the
variations of the LRDOS spectrum with lateral position
of the dipole in the unit cell. While the LRDOS in the
central plane of the membrane can be understood from
the 2D band structure, the variation of the LRDOS with
the height of the dipole from the center of the slab can be
explained by considering the electric field mode profiles
of the lowest few TE and TM guided modes supported
by the thin membrane. This is especially relevant for ap-
plications that aim at enhancing spontaneous emission.
Due to the vertical extent of the first TE guided mode of
the membrane, sizeable emission rate enhancements due
to the photonic crystal remain even outside the mem-
brane. For various PC structures of different index con-
trasts, we have found that the emission rate inside the
emission gap reduces exponentially with the system ra-
dius to a residual value that can be understood as the
LRDOS contribution of modes propagating in air for a
homogeneous dielectric slab of proper effective index. We
have furthermore presented evidence that the 1/e crystal
radius associated with the deepening of the emission gap
scales inversely with the relative frequency band width
of the gap in the 2D dispersion relation. Finally, we have
also considered the role of ensemble averaging in exper-
iments that use localized collections of emitters. A re-
alization of such an experiment involves, for instance,

a sub-wavelength ensemble of emitters53 attached to the
end of a sharp glass tip and positioned by using scanning
probe techniques, acting as a controllable local probe of
the emission modification. Such a sub-wavelength source
averages over an isotropic random distribution of dipole
orientations. Despite the presence of dipole orientations
that do not match the gap for TE modes, we predict
the first moment of the expected non-exponential times
traces to show sizeable inhibition and enhancement of
the mean emission rate.
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