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Abstract: We demonstrate how the lasing threshold of a two dimensional 
photonic crystal containing a four-level gain medium is modified, as a 
result of the interplay between the group velocity and the modal reflectivity 
at the interface between the cavity and the exterior. Depending on their 
relative strength and the optical density of states, we show how the lasing 
threshold may be dramatically altered inside a band or, most importantly, 
close to the band edge. The idea is realized via self-consistent calculations 
based on a finite-difference time-domain method. The simulations are in 
good agreement with theoretical predictions. 
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1. Introduction 

Lasing action can be achieved with three ingredients: a gain medium, a pump source and a 
feedback mechanism. The most intuitive approach to the feedback mechanism has 
traditionally been a set of mirrors placed outside the gain medium volume, allowing for the 
photon recurrence. This approach has served well up to now for bulk laser systems, but as 
technology has shifted to the nanoscale, the need for miniaturized feedback schemes has 
become crucial. Over the decades alternative ideas have been proposed for the realization of 
high Q cavities with small sizes. The Bragg mirror realized the necessary end reflectors in the 
microscale and the distributed Bragg reflector (DBR) incorporated the feedback mechanism 
within the gain medium (DFB - Distributed Feedback lasers) [1]. 

In 1994 Dowling et. al. proposed a one-dimensional Photonic Crystal (PC) operating at 
the band edge [2], instead of the center of the band gap like the previous DFB lasers. Simply 
put, near the band edge the group velocity approaches zero and the photons undergoing 
multiple reflections in the lattice experience longer interaction with the gain material, thus 
resulting in an enhanced effective gain. This approach allowed for the realization of a laser 
system with only a few layers of alternating material and a large index variation, as opposed 
to the DFB laser of small refractive index modulation that required thousands of periods [3]. 
Since then, the concept of the band edge laser has been generalized to PC structures of higher 
dimensions. Experimentally, the idea has been demonstrated in 2D [4–12] and 3D 
configurations as well [13], and several theoretical works have examined various pertinent 
lasing aspects [14–24]. 

In all previous works, the lasing features (e.g. emitted power, lasing threshold) have been 
analyzed mainly in terms of the cavity Q factor [7,8,14,17,18], which incorporates all effects 
that lead to radiation loss, thus obscuring the separate role of each constituent. Among them 
the group velocity has been investigated [15–18], but its connection with the modal 
reflectivity at the interface of the cavity with the exterior is either missing or considered only 
via effective parameters that do not reveal their separate contribution to the Q factor [14,17]. 

In this work we investigate the lasing threshold in microstructured systems containing a 
four level gain medium and show how it can be modified as a result of the interplay between 
the group velocity and interface reflectivity of the lasing mode. To this end, we establish a 
simple theoretical model that decomposes the contributions of these features to the Q factor. 
In order to demonstrate them in realistic structures we choose a 2D PC of a finite amount of 
layers as testbed. Our simulations show that operation near the band edge can lead to strong 
reduction of the lasing threshold with respect to a uniform gain slab of the same dimensions, 
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in spite of the lower gain density, even for as few as 10 layers. Moreover, with a slight 
structural modification, the PC is surprisingly demonstrated to exhibit lower lasing threshold 
at steeper band edges. Our self-consistent finite-difference time-domain (FDTD) calculations 
are explained in a straightforward manner by the theoretical model, which may also predict 
other counter-intuitive behaviors, such as lower lasing threshold inside a band, rather than the 
band edge. 

2. The two-dimensional photonic crystal system and the self-consistent model 

The 2D PC consists of air columns inside a dielectric background, in a square lattice 
configuration. This makes the structure easy in manufacturing and mechanically robust, as 
compared to the complementary system of dielectric columns embedded in air. For simplicity 
the air holes are chosen to have square cross section with side w. The system is assumed to be 
infinite along the y, z directions and finite along the x direction with a total length of 
L n a= × , where n is the number of layers and a the lattice constant. The permittivity of the 
dielectric background is chosen to be 11.7rε = , as high refractive index contrasts between the 
two materials of the PC (the 2nd material being the air) enhance the band flattening near the 
Brillouin zone edges and lead to lower group velocities [16]. Moreover, the unit cell 
properties are set to a = 840nm and w = 540nm, which give a gain density of 

59%gain cavityV V ≅ , i.e. 41% lower than that of a uniform slab. This choice ensures that the 1st 

band gap for the TE polarization is full and prominent, while maintaining as much gain 
material as possible (smaller air holes that allow for more gain material reduce the band gap). 
The system for the case of n = 10 layers is shown in Fig. 1, where the respective 
homogeneous gain slab of same length is also depicted. The band structure for the TE 
polarization of the 2D PC is also shown. The shaded zone denotes the full band gap and the 
red line marks the edge of the ΓΧ direction, along which the system is studied. 

 

Fig. 1. (a) Schematic of the 2D PC consisting of 10 layers (top) and the respective slab of 
uniform gain and same length (bottom). The red areas denote the host dielectric of εr = 11.7, 
which is homogeneously embedded with the four level gain material. Both systems are infinite 
in the yz plane and confined in the x direction, along which the emitted wave propagates. (b) 
Unit cell of the 2D PC (c) Calculated band structure for the TE polarization of the infinite 
version of the 2D PC. The shaded zone denotes the full bandgap. 

The gain material is homogeneously embedded in the dielectric host medium and is 
modeled as a simple four level quantum system, as described in our previous works (for 
details, see [23,24]). It is assumed to have a Lorentzian response which is homogeneously 
broadened and centered at aω  (emission frequency) with linewidth aΓ . The gain material is 

characterized by the lifetimes 13

10 10 sτ −= , 10

21 10 sτ −= , 12

32 10 sτ −=  and 11

30 10 sτ −= . The 

coupling constant is 4 210a C kgσ −=  and the linewidth of the corresponding transition is 
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122 2 10a HzπΓ = × × . In our FDTD simulations the total electron density is considered to be 

( ) ( ) ( ) ( ) ( ) 23 3

0 0 1 2 30 5 10N t N t N t N t N t m−= = + + + = × . The initial condition is that all 
electrons are in the ground state and all electric, magnetic and polarization fields are zero. 
The electrons are homogeneously pumped from 0N  to 3N  with a constant pump rate Rp and 
the system of the Maxwell equations coupled with the atomic rate equations is self-
consistently solved. This procedure is repeated for several pump rates and the emitted optical 
power, Pout, is calculated for each input Rp. For high pump rates, far above the lasing 
threshold, Pout varies nonlinearly in terms of Rp, but as the threshold is approached the 
variation becomes linear. This validates the linear extrapolation of the calculated data close to 
the lasing threshold, the determination of which might otherwise demand prohibitively large 
computational times. In all FDTD calculations the discrete time and space steps are set to 

1850 10t s−= ×  and 930 10x m−= × , respectively. The emission frequency aω  is chosen for each 
case separately, as a free design parameter. 

3. Theoretical model for the Q factor 

Let us consider a cavity of length L, formed by a finite amount of layers of the photonic 
crystal, in which a pulse with carrier frequency 0ω  and spectral width ωΔ  recirculates, as 

depicted in Fig. 2. Assuming 0ω ωΔ  , the pulse evolves spatially as a single Bloch mode. 
Let the pulse be written as a product of the optical carrier exp(iω0t) and an envelope function, 

so that ( ) ( )0

0

i t i t

envE t e E e dω Ω= Ω Ω , where 0ω ωΩ = −  and ( )envE Ω  is the Fourier spectrum of 

the baseband envelope. At each round trip each spectral component accumulates 
( ) ( )21 232kL Arg r Arg r+ +  phase shift and decreases in amplitude by a factor of ( )21 23 1r r p− , 

where k is the wavenumber of the Bloch mode, 21 23,r r  the complex modal reflectivities at 
each interface and p  the fractional internal power loss parameter due to possible material 

absorption. After m round-trips the pulse is written as ( ) ( ) ( )0 2i t i ia m L i t

m envE t e E e e dω β− − Ω= Ω Ω , 

where ( ) ( ) ( )( )1

21 232k L Arg r Arg rβ −= + +  and ( ) ( )( )1

21 232 ln 1 0a L r r p
−= − − ≥ , that 

constitute the complex propagation constant. 

 

Fig. 2. Schematic of the recirculating pulse approach. The pulse travels with group velocity 
g

v  

inside the cavity and bounces back and forth at the boundary with each semi-infinite exterior 

space. 
ij

r  is the reflectivity of the electric field travelling in area i that bounces at the interface 

with area j. 

Expansion of iaβ −  around 0ω  yields ( ) ( )
2

0 0 1 1 2 2
2

ia ia ia iaβ β β β
Ω

− = − + Ω − + − + , 

with 
0

n n

n d d
ω ω

β β ω
=

  and 
0

n n

na d a d
ω ω

ω
=

  (n = 0,1,2…). Assuming a high Q cavity, the 

term 
0

1k dk d
ω ω

ω
=

  –located in 1β – dominates over the higher order terms, especially close 

to the band edge where 1k → ∞ , and the expansion can be truncated to 1st order. Thus, after a 

few calculations, ( ) ( ) ( )0 0 02 2

0

a m L i t m L

m rtE t e e E t mω β τ− −= − , where 1 2rt k Lτ =  is the round-trip time. 

#210218 - $15.00 USD Received 15 Apr 2014; revised 29 Jun 2014; accepted 2 Jul 2014; published 1 Aug 2014
(C) 2014 OSA 11 August 2014 | Vol. 22,  No. 16 | DOI:10.1364/OE.22.01914119242 | OPTICS EXPRESS  19245



The respective intensity can be written as ( ) ( ) ( )0expm rt cI t m I tτ τ= −  with 

( )( )1 21 23ln 1c k L r r pτ = − −  and ( ) ( )0 0

2

rtI t E t mτ= − , expressing the decay in small bursts 

every rtτ  with rate 1 cτ . If c rtτ τ  the radiation bursts become smooth function of time and 

the intensity is simply ( ) ( ) ( )0expm cI t t I tτ= − . The energy stored in the cavity sU , follows 
the same temporal decay and, in the absence of power supply, the power dissipated is simply 

( )1d s c sP U t Uτ= −∂ ∂ = . Hence, ( )s d cQ U Pω ωτ× =  or 

 
( )( )21 23ln 1g

L
Q

v r r p

ω
= −

−
 (1) 

where 11gv k=  is the group velocity. This expression summarizes the fact that, if the 

boundaries become more reflective or if the energy can be made bounce back and forth at a 
slower pace, the rate at which energy escapes from the cavity can be reduced. In essence, less 
pumping is needed for the same emitted power to be achieved and the lasing threshold, which 
is the minimum pump rate at which the gain compensates for optical losses at the boundaries 
and for possible material absorption at each round-trip, is accordingly reduced. In general, 
since the group velocity is a property of the infinite system, separate modification of the 
reflectivity, which is a boundary effect, can offer flexibility in the tuning of the Q factor. Last, 
for pulses beyond the quasi-monochromatic limit and/or highly lossy/dispersive cavities, Eq. 
(1) will be modified, as higher order terms in the expansion need to be retained [26], thus 
deviating from this simple form which is adequate for the high Q systems we are interested 
in. 

4. Lasing in dielectric slab with gain 

Let us first consider the simple homogeneous slab as cavity. In this case the Q factor may cast 
a purely analytical form. The reflectivity at the interface between two semi-infinite 

homogeneous media labeled i, j is given by ( ) ( )ij j i j ir z z z z= − + , where i i iz μ ε=  and 

j j jz μ ε=  are the relative impedances of the two media. In our case the slab of relative 

permittivity rε  is surrounded by air and, as such, 1 2 3 1μ μ μ= = = , 1 3 1ε ε= =  and 2 rε ε= . 
Assuming negligible material dispersion, the group velocity equals the phase velocity, i.e. 

g rv c ε= , where c is the light velocity in vacuum. Ignoring internal losses, Eq. (1) now 

yields ( ) ( ) ( )( ) 1

2 ln 1 1r r rQ L cω ε ε ε
−

= × + −  (2). This simple linear relation between Q 

and Lω  states that – within the range of its validity – less pumping is needed for the same 
output power either if the operating frequency is increased or if the system is elongated. Both 
situations translate into the possibility for lower lasing thresholds. 

Typically, when the system is pumped, if the pump rate is sufficient for population 
inversion the system will start to lase at a frequency, which is determined by the gain material 

emission frequency ωa and the Fabry-Perot resonances FP rq c Lω π ε= ( )1, 2,3...q =  of the 

cavity – ωFP referring to the unpumped system. When lasing starts, the overall permittivity, 
which is nonlinearly dependent on the pump, is slightly changed within a frequency range of 
Γa, around the frequency ωa. This change alone, when countable, is sufficient to invalidate the 
conclusions drawn by the simple form of Eq. (2). Moreover, if ωa does not coincide with a 
certain ωFP, then the cavity resonance will shift, rendering lasing more power demanding. 
Fortunately, as the lasing threshold is approached, the overall permittivity approaches the host 
material permittivity and the resonances converge to those of the unpumped system: the 
lasing system lases approximately at ωa. Given the experimental feasibility, tuning ωa = ωFP 
should thus be a good starting point. 
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To illustrate these conclusions, let us examine the performance of three gain slabs of 
length L1 = 10a, L2 = 20a and L3 = 30a. In the simulations we pump the system, let it radiate 
and, after the lasing amplitude is stabilized, we measure the output EM field at a certain 
distance from the cavity and extract the output lasing power for this specific pump rate. The 
output lasing power versus the input pump rate for the examined cases is presented in Fig. 3. 

 

Fig. 3. (a) Lasing power of a gain slab with L = 10a at successive Fabry-Perot resonances and 
for different pump rates. Each set of connected points is an iso-pump line. The red points 
inside the dotted box are reproduced partly in (b) on the red line. (b) Lasing power at ω = ωFP 
= ωa = 2π 99.19THz for different pump rates. Three gain slabs are analyzed, all with the same 
material properties, but with different lengths, namely L1 = 10a (red), L2 = 20a (green) and L3 
= 30a (blue), where a = 840nm. The lasing threshold is reduced with increasing slab length, as 
expected. 

First, the slab of length L1 = 10a is examined at successive Fabry-Perot resonances, as 
shown in Fig. 3(a), where, for each case, the emission peak of the gain material is set to 
coincide with the respective FPω . Due to the negligible change of the Q factor among these 
operating frequencies, the lasing threshold changes only slightly. On the other hand it is clear 
that as the operating frequency increases less pumping is needed in order to achieve the same 
output power. In Fig. 3(b) the three systems are compared at a common FPω . This is set to 

99.19THz , which is close to the operation frequency of the PC above the 1st bandgap, to be 
examined later. In essence, we assume that the slabs are all embedded with the same gain 
material, which has an emission peak exactly at 99.19THz. It is evident that the lasing 
threshold is reduced with increasing slab length, as expected. The Q factor in these 
configurations is rather low due to the poor reflectivity ( 21 23 0.55r r= ≅ ) and the lasing 
threshold is reduced within the same order of magnitude, i.e. no severe lowering is achieved, 
unless the slab is extremely elongated. Both gv  and r  are constant, except perhaps a 

negligible frequency dispersion induced by εr = εr (ω), and their contributions to Q do not 
exhibit anything dramatic as the operating frequency changes. 

5. Lasing in dielectric 2D photonic crystal with gain 

In the case of the finite 2DPC system, Eq. (1) is calculated semi-analytically. The group 
velocity is a property of the infinite system and is derived directly from the dispersion curve 
(Fig. 4(a)) by differentiation along the ΓX direction, as gv kω= ∂ ∂  (black line in Fig. 4(b)). 

The reflectivity of the Bloch modes inside the semi-infinite PC is calculated with a finite 
element (FEM) simulation (grey lines in Fig. 4(b)) [25]. Due to the symmetry of the unit cell 
the cavity is terminated in the same way at both ends and consequently 21 23r r r=  . 
Internal losses are assumed absent and all data are inserted into Eq. (1) to give a Q factor 
envelope, as depicted with a white line in Fig. 4(c). This envelope serves as the locus of the Q 
points for any system of arbitrary length, regardless of the exact frequency position of the 
resonances. This fact is verified with another set of FEM eigenfrequency simulations, where 
the complex frequency ω of the field (simulation eigenvalue) expresses the radiative losses. 
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The results of the simulations are interpreted as Q = Re(ω)/2Im(ω), consistently with the 
definition in section 3, i.e. Im(ω) = 1/2τc. They are depicted in Figs. 4(d)–4(f) for three 
(unpumped) systems of length L1 = 10a, L2 = 20a and L3 = 30a, respectively. These results, 
normalized to each system’s number of layers n = L/a and mapped on the same scale, 
coincide with the semi-analytical Q/n envelope (Fig. 4(c)). 

 

Fig. 4. Calculations for the passive photonic crystal pictured in Fig. 1. (a) Dispersion curve 

along the ΓX direction of the infinite system. (b) Normalized group velocity 
g

v c  and 

interface reflectivities 
21 23

r r=  of the Bloch modes. (c) Q envelope (white line) from semi-

analytical Eq. (1) normalized with number of layers n = L/a and overlapped with simulated 
Q/n for the three finite systems of length L1 = 10a (red), L2 = 20a (green) and L3 = 30a (blue). 
For clarity these are shown unnormalized separately in (d), (e) and (f). 

A simple inspection of Fig. 4 shows that, as in the homogeneous slab, Q is improved in 
longer systems, simply because the optical power traveling at gv  stays longer in the system 

before losing a fraction of 2
1 r−  at the interface. The picture, though, is far richer. A longer 

PC now offers a higher number of optical density of states (DOS), allowing for a resonance to 
be situated closer to a band edge, where Q can grow dramatically. In essence, as a band edge 
is approached, 0gv →  and 1r → . These conditions boost Q, although not arbitrarily high, 

since in a finite system the band edge cannot be approached arbitrarily close. The contribution 
from both gv  and r is depicted in Fig. 4(b) and verifies the fact that for points of the same 

gv , Q is higher at those with the higher r . A cross section at e.g. 0.25gv c =  finds one point 

in band 1 and two points in band 2 of clearly higher r , which are characterized by higher Q. 

Inversely, for points of the same r , Q is indeed higher at those with lower gv . 

To correlate the lasing threshold with these conclusions we performed FDTD simulations 
on the three systems of length L1 = 10a, L2 = 20a and L3 = 30a. The results are separated into 
two sets and summarized in Fig. 5. One set of simulations regards the examination of the 
lasing threshold in a certain system (we chose L1 = 10a) as the frequency is swept throughout 
the resonances (Figs. 5(a) and 5(b)). A second set regards comparison among different 
systems, at frequencies close to the band edges of the 1st band gap (Figs. 5(c) and 5(d)), 
namely at ~60THz (below the gap) and ~100THz (above). As mentioned, for the finite 
systems these frequencies are better approached with increasing cavity length. As with the 
slab, the gain material emission frequency ωa was tuned for each case exactly at the examined 
cavity resonance. 
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Fig. 5. (a) Lasing threshold for the system of length L1 = 10a. (b) Simulated Q factor (open 
circles) overlapped with the semi-analytical Q factor envelope (solid line). (c) Lasing power 
for different pump rates above and (d) below the 1st bandgap, for the three 2DPC’s of length 
L1 = 10a (red), L2 = 20a (green) and L3 = 30a (blue). Notice that the thresholds in (c) are 1 
order of magnitude lower than in (d). In all cases the lasing threshold varies consistently with 
Q. 

In Fig. 5(b) the simulated Q factor for the system of length L1 = 10a already presented in 
Fig. 4 is shown again for easier comparison with the lasing threshold depicted in Fig. 5(a). It 
is evident that the lasing threshold varies consistently with the Q factor. The same observation 
holds for the 2nd set of simulations among the three systems. The lasing threshold reduces as 
the cavity is elongated, both above the band gap (Fig. 5(c)) and below (Fig. 5(d)). Moreover, 
it drops one order of magnitude when going from lower to upper band edge. The PC performs 
better than the slab, despite the lower gain density, except at some frequencies deep in the 1st 
band. This is not a surprise, because the PC reflectivity in the 1st band is lower than that of 
the slab (except close to the band edge) and, also, below ~50THz the group velocity in the PC 
becomes greater than in the slab. On the other hand a PC is more likely to operate at the band 
edges, where the dramatic increase of the DOS offers a unique design versatility. Since the 
exact emission frequency ωa of the gain material may have a countable frequency tolerance 
due to experimental limitations during manufacturing, a system with dense resonances ωR 
increases the probability of ωa, ωR matching and consequently of lower lasing threshold. 

6. Discussion 

The group velocity is a property of the infinite system and cannot be modified simply by 
truncating the 2DPC at a certain finite length. On the other hand, the reflectivity is a boundary 
effect and can be tuned either by changing the termination plane within the unit cell or by 
extending the interface with another system, homogeneous or not. To illustrate this we 
investigated two systems which bear all the properties of the examined 2DPC system, but the 
air hole is shifted along the x-axis, thus maintaining the periodicity. In the 1st system the hole 
has been shifted 420nm (half unit cell) and in the 2nd system 150nm, touching the edge of the 
unit cell, as shown in the insets of Figs. 6(b) and 6(c). Both systems are L = 10a long and 
their schematics together with the simulations are shown in Fig. 6. 
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Fig. 6. Calculated reflectivities 
21 23

,r r  and their product that determines Q for (a) the original 

system of n = 10 layers and (b), (c) its modified versions (see inset for unit cell). (d) Calculated 
lasing threshold and (e) Q factor at the edges of the 1st and 2nd band in log scale. In (e) the 
semi-analytical Q envelope as calculated with the data from (a), (b) and (c) is also shown as 
solid line. The dotted lines in (d) are shown for easier comparison among calculated points and 
do not imply a piece-wise monotonic change in the pump rate threshold. Also, the color code 
denotes the unit cell structure and should not be confused with the previous figures. 

The 1st system (Fig. 6(b)) preserves both periodicity and symmetry and hence 21 23r r= . 
The 2nd system (Fig. 6(c)) preserves the periodicity, but breaks the symmetry when finite in 
length and 21 23r r≠ . In both cases though, their product which determines Q improves in the 
1st band and drops significantly in the 2nd band (compare with Fig. 6(a) which corresponds 
to the original system). This has the expected impact on the Q envelope and is reflected 
accordingly in the lasing threshold, which now drops below the band gap (~60THz) but 
becomes higher at the bottom and top of the 2nd band (~100THz and ~136THz respectively), 
as shown in Fig. 6(d). The great increase of the threshold in band #2 is a result of the great 
change in Q (by a factor of 5~12), as compared to the change in the 1st band, where Q is 
enhanced by a factor of 3~4. The 1st system, in particular, manifests a huge dip towards the 
bottom of the 2nd band. As a result, the lasing threshold at those frequencies increases to 
levels even higher than those of the 1st band. On the other hand, for the 2nd system the dip is 
situated towards the top of the band, where the lasing threshold is pushed to a level higher 
than that of the bottom of the same band. These results express a more general remark: a dip 
in the reflectivity may affect the overall performance of a system severely, even if the group 
velocity is very low, as for example close to a band edge. Hence, lower lasing thresholds at 
sharper band edges or even inside some band should not be a surprise, especially in narrow 
bands with sparse resonances. Of course, longer systems with enhanced DOS will gradually 
eliminate this paradox, as more resonances will shift closer to the band edges. The results 
from Figs. 5(a) and 5(b) regarding the lasing threshold and Q factor at the edges of the 1st and 
2nd band are reproduced in Figs. 6(d) and 6(e) respectively, for easier comparison. 

7. Conclusion 

In this work we have studied the lasing threshold of a two dimensional photonic crystal 
containing a four-level gain medium in terms of the Q factor and the optical density of states. 
The contributions from the group velocity and the interface reflectivity to the Q factor, 
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although related, were decomposed and it was shown that, depending on their relative 
strength, the lasing threshold may dramatically be altered. Within this context we 
demonstrated that the lasing threshold of a 2DPC operating at the band edge can, in principle, 
be lower than that of the same system inside some band or of other homogeneous media of 
the same dimensions but of higher gain densities. Nevertheless, it was shown that the picture 
may be counter-intuitively changed and even reversed, especially for systems of low DOS. 
The calculations were based on a finite-difference time-domain method and were in good 
agreement with predictions, based on a simple theoretical model. 
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