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Abstract: We present a method for performing time domain simulations
of a microphotonic system containing a four level gain medium based on
the finite element method. This method includes an approximation that
involves expanding the pump and probe electromagnetic fields around their
respective carrier frequencies, providing a dramatic speedup of the time
evolution. Finally, we present a two dimensional example of this model,
simulating a cylindrical spaser array consisting of a four level gain medium
inside of a metal shell.
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1. Introduction

Interestin microphotonic lasing systems has been increasing over the past few years. As a re-
sult, it has become more important to be able to numerically simulate these lasing systems.
Several finite difference time domain (FDTD) simulations of a four level gain medium embed-
ded in a microphotonic system have been presented previously [1-9], but these simulations all
use structured (cubic) grids and consequently accurately model curved geometries. There have
also been methods developed to model spherical gain geometries by expanding electromagnetic
fields as sums of spherical Bessel functions [10, 11]. These methods overcome the limitations
of structured grids for spherical geometries, but in turn are limited to only modelling spherical
geometries. In principle it should be possible to model a microphotonic lasing system with an
FDTD simulation utilizing unstructured grids, but to the best knowledge of the authors this has
not been demonstrated. The finite element method (FEM) can utilize unstructured grids and as
a result can model a wide variety of geometries. In this paper we present a FEM model of a
microphotonic system with gain arising from a four level quantum system. In addition to devel-
oping a FEM microphotonic lasing model, an approximation is introduced whereby the pump
and probe fields are solved for separately, with each field described by the slowly varying com-
plex valued field amplitude of a constant frequency carrier wave. This approximation allows
for much larger time steps and a considerable speedup in simulation time.

In the first section of this paper we will describe the dynamics of the microphotonic lasing
system, the carrier wave approximation, and finally the finite element formulation of the prob-
lem. In the second section we present a two dimensional model of a one dimensional cylindrical
spaser array as an example of this new simulation method.

2. FEM microphotonic lasing simulation
2.1. Field equations of a microphotonic lasing system

The simulation we present of a microphotonic lasing system requires the time domain mod-
elling of several different fields and their mutual interactions. These fields include the electro-
magnetic field, the electric polarization field inside a metal with a Drude response, the electric
polarization field of the gain medium, and the population density fields of the different energy
levels of the gain medium. Each of these fields evolve according a particular differential equa-
tion that must be solved when simulating a microphotonic lasing system. The field equation for
the electromagnetic field is

1 9°A 9P

DX(;J()DXA)+&£OB'£2:0V 1)
whereA is the electromagnetic vector potentiBljs a polarization vector describing either a
Drude response from a metal inclusion or a Lorentzian response from a four level gain system,
andg; is a relative permittivity that is constant with respect to frequency and not included in
Here and for the remainder of the paper we have use Sl units. Also, we have used the tempo-
ral gauge conditio@A/dt = 0 along with the initial condition for the electrostatic potential
Ap(t =0,x) = 0to ensure that the electrostatic potential is zero for all time, eliminating it from
our equations. Given this choice of gauge the electric field and magnetic flux density are defined
as

oA
B=0OxA
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Using this definition foiE, the Drude response of a metal inclusion is determined by the equa-
tion

oP
S TP= —E0W3A ©)

wherewy, is the plasma frequency ayds the damping frequency of the Drude metal.

- 3
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Fig. 1. Simple model of a four level gain medium. The lasing and pump transitions are
assumedo be electric dipole transistions with frequenciesmfand w, respectively. The

decay processes between the i-th and j-th energy levels are described by the decay rates
1/1;.

The gain medium is modelled as simple four level quantum system, described schematically
in Fig. 1. The 1— 2 transition is an electric dipole transition with a frequencydaf Similarly,
the 0— 3 transition is also an electric dipole transition with frequeagy Spontaneous decay
between the i-th level to the j-th level occurs at the decay rate of.1These decay rates
include both radiative (spontaneous photon emission) and non-radiative (spontaneous phonon
emission) decay processes. In the case of spontaneous photon emission, our model does not
produce a photon. Coupling of the gain medium to the electromagnetic field is only allowed for
stimulated photon emission.

The electromagnetic response of the four level gain system is given by

0%Py OPai

ci?tzaI +la ataI +wiPs = —0a(Nai —Ny)E,

2 (4)
92Py; OPi

Here B and FP are the i-th components of the gain polarization due to transitions between the
1st and 2nd levels and between the Oth and 3rd levels respectively. Additidnadgdl, are
the linewidths of these transitiong, and gy, are coupling constants, angilNN1;, N and Ny
are the population number densities for oscillators polarized in the i-th direction for the Oth, 1st,
2nd and 3rd energy levels. Note thigt> 1 /157 andlMp > 1 /130 [12].

Finally, the population number densities evolve according the equations [12, 13]
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ONy _ Na 1 0P Nu

ot o1 hwy ot T10’
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Together, this system of equations (Egs. (1), (3)—(5)) completely describes the dynamics of
the microphotonic lasing system. The main disadvantage of solving this system of differen-
tial equations is the small time step required. In practicd,00 time steps per period of the
pumping laser beam are required for an adequate simulation. A typical lasing simulation could
require over 100,000 lasing periods, making the computational requirements of the simulation
prohibitively large.

2.2. Period averaged approximation

There is a simple method for dramatically speeding up the simulation time. The electromag-
netic field as well as the polarization fields oscillates at two frequencies. These two frequencies
are approximately equal to the frequency of the:P transition frequencyw,, and the 0— 3
transition frequencyy,. Much of the computational effort required in this time domain simu-
lation is spent on these simple, approximately harmonic oscillations. A good approximation is
to assume these fields oscillate harmonically, with complex valued amplitudes that are slowly
changing in time. We can ignore the fast oscillations and instead simulate the relatively slower
time dependence of these amplitudes.

Since there are two frequencies, we divide our electromagnetic field into two separate fields

jant j apt
A(t,x):Al(t’X)é +A22(t,x)e' +C.C.7 ©)

with each field oscillating at a different frequency. Hérgis the complex valued amplitude for

an electromagnetic field that oscillates at a frequency close to the Iransition (v ~ ws),

andA; is the complex valued amplitude for an electromagnetic field that oscillates close to the

0 — 3 transition (v, ~ wy). Also, c.c. indicates the complex conjugate of the preceding terms.
By inserting the above equation into Eq. (1), the field equatiosfave derive two new field

equations

1 . 0A1  0°A 0Py
Ox (—=OxA — WAL+ 2y —— + = | = ==
X (uo X l) +5r50< (‘)]_ 1+ 2l ot + dtz > ot )

, )
1 . 0A  0°A 0P,
Ox ( —OxA —W2AL+ 2ip—= + =t | = —=.
X(IJO X 2>+£r£o< WyA2 + 2ty ot + dt2> ot

Here we have also separated the polarization field into two fields

jot j cpt
P(t,x):Pl(t’X)e' +Pzz(t,x)é +C.C' ®)

For Drude metal inclusions the polarization fields obey the equations
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. aP§
]+~ -+ yP = — oA,

) ©)
. P!
l6pP§ + =2 +yPh = —g0wpAa,
while for Lorentzian gain inclusions the polarization fields obey the equations
0P %P , oF;,
—@fPY + 2l + 4T (leP% + dtll> + @EPY, = —0a (N2i — Nui) Exi,
(10)

P
o"’t2I> +@hP5 = —0b (N3 — Noi) Eai

0Py 9% .
— WP + 2wy at2'+ at22'+l'b <|szgi+

Here g; and B; are the i-th components of the electric fields associated with the potehtials
andAy, and are defined &; = —dA1/dt andEy = —dA1/dt respectively.
Finally, the new differential equations for the occupation number densities are

JNg; 1 0P5; 1 1
- B, 2N (=4 = ) Na
ot hay, < 2 ot > <T30 + T32> 3
INy; ﬁ 1 . 0Py - &
1i at T2]_7

ot 132 hwy

ot o1 hwy

Ny Na 1 /_ aPy\ Ny
1i at TlO’

INg; _ & n N1 1 E 0P
ot T30 T10 hwy 2 ot /-’

Here the coupling term between the occupation number density fields and the electromagnetic
and polarization fields has been replaced by a term representing the period averaged value of

these terms
_0P1i _1 . ‘ 0Aq e ‘ 0Py
(2222~ L] (-icoma - 22 (i %),

0P\ 1 . C0ANN\T (. OPy
<E2I(9t>_2Re[(_lwlA2|_ﬁt > (WJLPZH- ot )]7

wherex indicates complex conjugation.

Finally, we mention that while we have developed the preceding approximation using a FEM
model, this approximation is not limited to the FEM. It could potentially be used to speedup
both the FDTD models of microphotonic lasing systems [1-9] as well as the time domain
models of spherical lasing geometries utilizing spherical Bessel functions [10, 11].

(12)

2.3. Finite element formulation

Now that we have derived the period averaged field equations (Egs. (7), (9)—(12)) for the mi-
crophotonic lasing system, we can convert these differential equations into weak forms that can
be solved in a finite element simulation.
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The weak forms for the field equations of the electromagnetic fields (Eq. (7)) are

~ B ~ 1 ~ 2 . dAl dzAl
FA]_(A]_,A]_) = (D X Al) . m (D X Al)—‘y-ErEoAl- (—QJ]_Al—I-ZI(L)]_at—i— a2
- 0P
At
1 at ’
(13)
. B .1 . ’ . 0A,  9%A,
FAz(Az,Az)— (DXAz)-m(DXAz)-‘rErEoAz- <—0)2A2+2lo.)zat—|— o2 >
- 0P,
“A,. 2,
2ot

Here~ indicates a test function [14, 15]. These weak forms enforce both the electromagnetic
field equations as well as a natural boundary condition [14, 15]. The finite element method
requires that the integral of the weak form over the simulation domain be set to zero. As an
example, if we apply this requirement to the weak form,Fve find that by integrating by
parts we obtain a volume integral enforcing the electromagnetic field equation as well as a
second boundary integral enforcing a boundary condition on the field,

0 = /d3X Fa1
Q

0A,  9%A, 0Py
ot ot2

= / d3x A [D X <1D ><A1> + &8 (—a;fAl+2ia>l+ —
Q Ho ot

—¢ dAA;. {ﬁx <1D xAlﬂ :
Q Ho
(14)

Here Q is the simulation domaingQ is the boundary of that domaidA is a infinitesimal
differential area on that boundary, afids the direction normal to the boundary. In the absence
of any extra boundary terms, the boundary integral in Eq. (14) forces the tangential component
of the magnetic fieldH; to zero. Thisperfect magnetic conductdroundary condition is not
desirable for our simulation, so we will modify it to allow for a boundary that absorbs and
emits plane waves at normal incidence to the boundary.

For a flat boundary at a large enough distance from the inclusions in the simulation domain
that evanescent waves are negligibly small, if the remaining propagating fields are normal to this
flat boundary then the vector potential can be represented as the sum of two vector potentials,

Al(t,x):a(t—ﬁ(;x> +b(t+ﬁ:(>. (15)

Herea is the vector potential of a plane wave propagating toward the boundarp &the
vector potential of a plane wave propagating away from the boundary. The boundary condition
we desire is one that absorbsand emits an arbitrarily defindaol If we take the part of the
surface integrand from Eq. (14) that is within the brackets and substitute Eq. (¥5) ¥og get
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== (AxAx (EM - ETC)) (16)

whereE" = —da/dt is the part of the electric field associated the plane veepeopagating
toward the boundary, anl]'® = —db/dt is the part of the electric field associated with the
plane waveb propagating away from the boundary, the sum of whicE§¥ +E® = E; =
—0dA1/0t. Also, 2o = +/o/ & is the impedance of free space. Multiplying Eg. (16) by a test
functionA; and integrating over the domain boundary gives us a new boundary weak term

A 14 P JA1 inc
Bat(A1, A1) = ngdA Ay [n «fi x ( L 2E] )} (17)
Adding this additional boundary weak term to specific boundaries enforoasched boundary
condition(referred to as aabsorbing boundary conditioim Ref. [15]) which allows for plane
waves normal to the boundary to be absorbed and for the incident plan&ffat@be emitted
into the domain normal to the boundary. A matched boundary conditiohfean be enforced
in the same manner.
The weak forms for the remaining field equations are simpler since these differential equa-
tions only involve derivatives with respect to time. The weak form for the polarization of Drude
metal inclusions is

d

~d =d |. 0P
Fep1(Py,P{) = P1 - ["Uﬂ:’clj + Ttl +yPi+ €0wSA1] ;
(18)
~d ~d [ oPY
Fppa(Pa, P9) = P5 - [wong + d—tz +yPd+ Eongz] ’
where again a- indicates a test function. Similarly, the weak form for the polarization fields
of the gain medium are

0P, 0%
ot ot2

Feca(P3,PY) = PY- { — PP 4 2 1Ta (iwlP% i M)

ot

+2P, + 02 (Ngi — Nyj) Eli] ,
(19)

- ~ . 0Py 9%P _ Py
Fpgz(Pg,Pg) = Pg- { —(A)fpgi + 21t dtZI + atZZI +Iy (I(L)ngi +0t2|>

+wEPg + 0p (N3 _NOi)EZi],

and the weak forms for the population density rate equations are
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~ ~  [JNg 1 dPy; 1 1
Fnsi(N3i,N3i) = Ngzj- |—— — — ( Eoj—— — + — | N3
N3|( 3, 3|) 3i i at A < 2i ot >+ <T30+ T32> 3|:|7

Frnzi(N2i,Nzi) = Ny

| ot 32 howy

" - [Ny Ny 1 oP;\ Ny
Fnti(Nai,N1i) = Ngj- (T[ll_rz21|+PTcLJa<Eli dtl|>+r1ﬂ’

where the period averaged values for the coupling term are given in Eq. (12). Also, we can
avoid solving for N by taking advantage of the fact thatiN= Njn; — N3j — N2j — N3j where
Nint is the initial value of Ny when N;j = Ny = Ngj = 0.

[ONy  Ns 1 0Py Noi
o (eaTt)+ 58] (20)

3. Cylindrical spaser array

As an example of a microphotonic lasing system simulation we present a two dimensional
model of a spaser (surface plasmon amplification by stimulated emission of radiation [16, 17]).
The time domain FEM simulation was performed using the commercial software COMSOL
Multiphysics 3.5. For time stepping, the Generalizearnethod was used with the damping
parametemins = 1. A copy of the model can be obtained by contacting the corresponding
author by email.

The spaser is a one dimensional array of cylinders, each cylinder being infinite in extent in
their axial direction. Each cylinder has a core consisting of a four level gain medium with a
radius ofr; = 30nm and an outer shell composed of Ag with an outer radius ef35nm. A
diagram of the simulation domain is provided in Fig. 2. The artificial gain medium is character-
ized by the lifetimeg1g = 10 1%s, 1o1 = 1015, 135 = 10 13s andrzg = 10 12s. The coupling
constants in Eq. (10) am, = 10-%C?/kg andop, = 5- 1076C? /kg, and the linewidths of their
corresponding transitions afe, = 2-10%s™1 and I, = 1/130 = 10'%s™ L. Finally, the initial
population density parameter is\N=5-10°3m~3. The population densities of the four level
gain medium obeys the rate equations given in Eq. (11), and the gain medium interacts with the
electromagnetic field through the gain polarization which obeys Eq. (10). The Ag layer inter-
acts with the electromagnetic field through the Drude polarization which evolves according to
Eq. (9).

Since the cylinder array is a single layer, it can be characterized as a metasurface [18]. As a
metasurface, the electromagnetic response is given by the surface polarizability

age  ag" 2i
a= < )rlr%/e )r%zm > =
Ozy~ Oz Ot)/C(]- +Si2+S1— det(S))

( [1+det(S) — (Si1+S2)e0  [(S12— S1) — (S11—S2)] /C>
[ .

(S12— 1) + (S11—S2)] /¢ [1+det(S) + (Si1+ S2)] Ho

Equation (21) is adapted from Ref. [19], modified to be consistent with Sl units and taking for
granted that the metasurface is embedded in vacuum. The surface polarizaldigefined
from the scattering matri®. The S matrix is defined from the amplitude of the electric field
of the scattered waves and is adjusted so that the effective thickness of the characterized array
is zero [19]. For a symmetric and reciprocal array, such as the cylindrical spaser array, the S
matrix component§;; = S, are the reflection amplitude of a scattered wave@nd- $; are
the transmitted amplitude of the scattered wave.

The surface polarizability of the cylindrical array is plotted in Fig. 2. The reflection and
transmission amplitudes used to calculate the surface polarizability were calculated from a

X

(21)
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Fig. 2. (a) Diagram of the simulation domain for the one dimensional cylindrical spaser
arraywith a core gain medium (blue) and outer Ag shell (gray). A periodic boundary con-
dition is imposed on the top and bottom boundaries, and a matched boundary condition
(Sec. 2.3) is imposed on the left and right boundaries. Real and imaginary parts of the
electric surface polarizabilitgyy (b) and magnetic surface polarizabiliy;™ (c) are plot-

ted, clearly indicating separate electric and magnetic resonnaces. Inset are the field profiles
for the two resonances and their corresponding wavelengths and Q factors. Color indicates
magnetic field H, and arrows indicate the electric polarizatiés= D — E.

frequency domain FEM simulation (COMSOL Multiphysics) where the Ag had a relative per-
mittivity of eag=1— w,%/(w(w— iy)) and the gain medium is simply a dielectric with permit-
tivity g = 9. We see from the surface polarizabilities that there is an electric resonance near
Ao = 1220nm and a magnetic resonance ngar 830nm. Figure 2 also show fields profiles

for each of these resonances calculated using a FEM eigenfrequency simulation. Also shown
are the wavelengths of the corresponding resonakces2ric/Re(w ), and a resonance qual-

ity factor Q= 2rRe(wr ) /Im(wy ), wherewy is a complex eigenfrequency returned by the same
FEM eigenfrequency simulation.

We are interested in using both resonances to achieve lasing, one resonance for enhanc-
ing the pumping of the gain medium and the other resonance for enhancing the lasing tran-
sition. Therefore we choose the energy levels of the artificial four level gain medium so
that the 0— 3 transition approximately matches the higher frequency magnetic resonance
wy, = 21c/830nm, and the 4 2 transition approximately matches the lower frequency electric
resonancey, = 21c/1221nm. The presence of a electronic transition will modify the spectrum
of the cylindrical array for frequencies near that transition. Figure 3 plots the surface polar-
izability near the magnetic resonanceAgt= 831nm for the cylindrical array where the gain
medium now has the relative permittivigg = 9 — 0pNint /(w? — o — iFpw). Figure 3 also
plots the total absorption of the cylindrical array, as well as separately plotting the absorption
in the Ag and in the gain medium. Like Fig. 2, the data for these plots were calculated from a
frequency domain FEM simulation.
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Fig. 3. (a) Electric surface polarizabilityyy’ and (b) magnetic sufrace polarizabilisf;™

for the cylindrical array with gain medium relative permittivity & = 9 — oNiny /(w? —

wg —ilpw). (c) Total, absorption as well as absorption in Ag and absorption in the gain
medium. Itis clear that the presence of the electronic transition in the gain medium strongly
modifies the spectrum of the cylindrical array.

We can see from Fig. 3 that the interaction of the electronic transition with the magnetic shape
resonance shown in Fig. 2(c) causes these resonances to hybridize. As a result the response
of the cylindrical array for frequencies near that transition is strongly modified. Instead of a
single magnetic resonance we see now see multiple resonances, both electric and magnetic.
Examining the absorption plotted in Fig. 3(c) we see that the gain medium strongly absorbs
at the magnetic resonance ndgr= 826nm. For our lasing simulations this will be the pump
frequency. There is no way to know exactly what the lasing frequency will be without first
running the time domain lasing simulation, except to say that it will be approximately equal
to the frequency of the & 2 transitioncw,. A good initial guess is to seb; = wy, but after
running the lasing simulation this can be adjusted to better match true lasing frequency. In what
follows, we have usedy = 27rc/12193nm.

Figure 4 shows data from a time domain simulation of the cylindrical spaser array using
the parameters defined above. The initial state of the simulation is prepared with a previous
simulation where the system is pumped with the figjd with an intensity of 8W/mrf, while
the incident probe field is set #h; = 0. The pump beam is turned on slowly wi#ty having

the profile
t—571
1+erf U (22)
< V2Tpu )]

L1
Az =Apéy;
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Fig. 4. (a) Lasing intensity defined as the power emitted outward from the array in either
directionand (b) population inversion measuredjgsizx(Nyz —Nyz1), whereQ is the do-

main of the simulation, and as a function of time normalized to lasing periods. The time
domain simulation begins at= 0 with a steady state solution where the pump has been
on for a very long timet(>> 121) and the system has population inversion without lasing
due to the lack of spontaneous emmision. (c) Plot of steady state lasing intensity vs. pump
intensity. A linear fit indicates a pump threshold intensity of 7.15W Awmd a slope of
0.145.

where Ay, is the amplitude of the pump beasr,f(x) = (2/y/T) Jo etdt is the error function,
andty, = 1.0- 10 1%s is the pump rise time. The pump beam excites oscillators in the gain
medium to the third energy level, which decays to the second energy level at the ratg.of 1/
Aftert > 11, the system is in steady state population inversion, but cannot lase since our model
does not allow for generation of light due to spontaneous emission. The time is then reset, and
the simulation shown in Fig. 4 begins in this steady state population inversion. Shortly after t=0,
a short probe pulse is emitted into the simulation domain. This excites the polarizatidpdfield
which in turn begins the lasing process. The intensity of the resulting lasing field plotted in
Fig. 4(a) spikes initially, but after about 30000 lasing periods it settles into steady state lasing.
Figure 4 also plots the difference between the integral of the population densitisdN\;
for the system beginning in population inversion.

The time step used for the simulations in Fig. 4 varies throughout the simulation. When the
pump is initially turned on the time step must be less then the pump riserfimé©nce the
pump is at a maximum the time step can be increased while the gain system approaches steady
state. When the time is reset and a probe pulse is introduced the time step must be made smaller
than the width of the probe pulse, and must remain small to resolve the resulting oscillations
of the interaction between the probe pulse and the resonators as well as the initial exponen-
tial growth of the lasing beam. As the laser approaches steady state the time step can again be
increased. At all times the time step must be smaller than the inverse rate of change of any tran-
sient beams (pump, probe or lasing beamsjuIfs not close to the resulting lasing frequency
the phase oA will rapidly change and will require a correspondingly small time step. Once
the system begins lasing, the actual lasing frequency can be inferred from this oscillation in the
phase ofA1, andw, can be changed in the middle of the simulation. This causes the phase of
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Fig. 5. Real (solid lines) and imaginary (dashed lines) parts of the electric surface polar-
izability a)?;?for the lasing electric resonance shown in Fig. 2 for various pump intensities
(shown in legend). In Fig. 5(a) we see that at higher pump intensities the linewidth of the
resonance narrows. In Fig. 5(b) we see that at even higher pump intensities the imaginary

part of the surface polarizability flips (indicating gain) and the linewidth of the resonance
begins to broaden.

A to slowly change allowing for a larger time step.

There is a minimum pump intensity required for the light generated due to stimulated emis-
sion to overcome the internal losses in the cylindrical array. Figure 4(c) plots the steady state
lasing intensity vs. the pump intensity. A linear fit to the lasing data points indicates a thresh-
old pump intensity of ZL5W/mn¥. This threshold intensity depends on a number of variables,
including all of the parameters of the gain medium, as well as the cylinder plasmon resonances
used to enhance both the pump and lasing transition (Figs. 2 and 3). These resonances in turn
depend on the geometry and material parameters of the cylindrical array.

While there is a minimum threshold intensity for the array to exhibit lasing, we can observe
interesting changes in the spectrum of the array at lower pump intensities. We saw by compar-
ing Figs. 2 and 3 that the spectrum of the cylindrical array was changed by the presence of the
0 — 3 transition. As we pump the array at increasing intensities we observe a similar change
in the spectrum due to the-% 2 transition. Figure 5 plots the surface polarizability (Eq. (21))
of the electric resonance for different pump intensities. These plots were created by pumping
the cylindrical array with the field\, for a long period of timet(>> 121), and then injecting
a Gaussian probe fieldl; with a much weaker intensity. Applying a Fourier transform to the
resulting time domain reflected and transmitted probe fields gives us the reflection and trans-
mission amplitudes in the frequency domain, allowing us to calculate the surface polarizability
according to Eq. (21).

From Fig. 5, we see that for increasing values of the pump intensity, the lineshagjg of
resembles a Lorentzian

Qo

ee

all= dipf — ——F0——.
W W2 — WE —iygw

We see in Fig. 5(a) that as we increase the pump intensity, itis as if the positive valued scattering

(23)
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frequencyy, is made smaller, narrowing the lineshape. We see in Fig. 2(b) that at even higher
pump intensitiesy, continues to shrink, passing through zero, and the imaginary pat@j’of
changes sign, indicating gain. As the pump intensity continues to incigasentinues to grow
more negative and the lineshape begins to broaden.

Even though we have gain at the pump intensities in Fig. 5(b), we still do not have lasing
because the gain is not large enough to overcome radiative losses.

4, Conclusion

We have presented a finite element method simulation for a microphotonic lasing system. We
have shown how to achieve a massive speedup in the simulation by separating the various fields
into fields that oscillate at the carrier frequenaigsor wy,, with slowly changing complex val-

ued amplitudes. A demonstration of this simulation was provided with a two dimensional model
of a one dimensional cylindrical spaser array as an example. The threshold pump intensity for
this array was determined. Finally, we have shown how the linewidth of the lasing transition
changes for various pump intensities.
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