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Abstract: We present a computational approach, allowing for a self-
consistent treatment of a split ring resonator (SRR) array with a gain layer
underneath. We apply three different pumping schemes on the gain layer:
(1) homogeneously pumped isotropic gain, (2) homogeneously pumped
isotropic gain with a shadow cast by the SRR and (3) anisotropic gain
pumped in a selected direction only. We show numerically the magnetic
losses of the SRR can be compensated by the gain. The difference on
loss compensations among the three pumping schemes is analyzed by the
electric field distribution. Studies also show the dielectric background of
gain does not affect the loss compensation much for the gain only pumped
in the direction parallel to the SRR plane.
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1. Introduction

The field of metamaterials has seen spectacular experimental progress in recent years [1–7].
However, huge intrinsic losses in the metal-based structures have become the major obstacle
towards real world applications at optical wavelengths. Generally, losses are orders of mag-
nitude too large for the envisioned applications, such as, perfect lenses [8], and invisibility
cloaking [9]. Achieving such reduction of losses by geometric tailoring of the metamaterial
designs [10–13] appears to be out of reach. So far, the most promising and generic approach
is to incorporate gain material into metamaterial designs. One important issue is not to assume
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the metamaterial structure and the gain medium are independent from one another [14–21].
In fact, increasing the gain in the metamaterial changes the metamaterial properties, which, in
turn, changes the coupling to the gain medium until a steady state is reached. So, there is a need
for self-consistent calculations [22–26] for incorporating gain materials into realistic metama-
terials. Instead of simply forcing negative imaginary parts of the local gain material’s response
function, which produces strictly linear gain, the self-consistent approach inherently includes
the nonlinearity and gain saturation of the gain material. When the signal amplitudes are very
weak and in the linear region of gain, the linear model can be obtained in the self-consistent
approach by assuming a constant population inversion in Eq. (1), i.e., a population inversion
given by an ‘average field’. However, for strong signals, it is necessary to have self-consistent
calculations.

Time-domain self-consistent calculations of gain incorporated into 2D magnetic metamateri-
als [23,24] and 3D realistic fishnet structures [25,26] have been recently reported. Results have
shown the magnetic resonances of the 2D split-ring resonators (SRRs) and the fishnet struc-
tures can be substantially undamped by the gain material. Hence, the losses of the magnetic
susceptibility, μ , are compensated. It is demonstrated the gain medium can give an effective
gain much larger than its bulk counterpart due to the strong local-field enhancement inside the
metamaterial designs [23, 27–29]. Recent experimental works also report loss compensations
in metamaterial nanostructures coupled with quantum dots [30], single quantum wells [31] and
organic dyes [32].

In this paper, we apply a detailed 3D self-consistent computational scheme to study the
optical response of a realistic SRR array with a gain layer underneath. In section 2, we present
the semi-classical theory of lasing and describe in detail the computational approach. In section
3, we present the geometric dimensions of the SRR array with gain. In section 4, we study the
loss compensations of the combined SRR-gain system for three different pumping schemes on
the gain layer: (1) the gain is isotropic and pumped with a homogeneous pumping rate, (2) the
gain is isotropic but has a shadow cast by the SRR where the gain is away and (3) the gain
is anisotropic, i.e., it is only pumped in one selected direction. In addition, we investigate the
effect of the gain dielectric background on the loss compensation. In section 5, we present our
conclusions.

2. Theory and model

The gain atoms are embedded in the host medium and described by a generic four-level atomic
system, which tracks fields and occupation numbers at each point in space, taking into account
energy exchange between atoms and fields, electronic pumping, and non-radiative decays [33].
The two-level system is not taken because in reality it can not achieve the population inversion
required for gain and lasing due to the de-exciting processes of spontaneous and stimulated
emssions. The four-level system is more efficient in achieving the population inversion and
most practical gain media can be modeled by the system of this type. An external mechanism
pumps electrons from the ground state level, N0, to the third level, N3, at a certain pumping rate,
Γpump, proportional to the optical pumping intensity in an experiment. After a short lifetime, τ32,
electrons transfer non-radiatively into the metastable second level, N2. The second level (N2)
and the first level (N1) are called the upper and lower lasing levels. Electrons can be transferred
from the upper to the lower lasing level by spontaneous and stimulated emissions. At last,
electrons transfer quickly and non-radiatively from the first level (N1) to the ground state level
(N0). The lifetimes and energies of the upper and lower lasing levels are τ21, E2 and τ10, E1,
respectively. The center frequency of the radiation is ωa = (E2 −E1)/h̄, chosen to equal 2π ×
1014 rad/s. The parameters, τ32, τ21, and τ10, are chosen 5×10−14, 5×10−12, and 5×10−14 s,
respectively. The total electron density, N0(t = 0) = N0(t) +N1(t) +N2(t) +N3(t) = 5.0 ×
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1023 /m3, and the pumping rate, Γpump, is an external parameter. These gain parameters are
chosen to overlap with the resonance of the split-ring resonator. The time-dependent Maxwell
equations are given by ∇×E = −∂B/∂ t and ∇×H = εεo∂E/∂ t +∂P/∂ t, where B = μμoH
and P is the dispersive electric polarization density from which the amplification and gain can
be obtained. Following the single electron case, we can show [33] the polarization density
P(r, t) in the presence of an electric field obeys locally the following equation of motion,

∂ 2P(t)
∂ t2 +Γa

∂P(t)
∂ t

+ω2
a P(t) = −σaΔN(t)E(t), (1)

where Γa is the linewidth of the atomic transition ωa and is equal to 2π ×20×1012 rad/s. The
factor, ΔN(r, t) = N2(r, t)−N1(r, t), is the population inversion that drives the polarization,
and σa is the coupling strength of P to the external electric field and its value is taken to be
10−4 C2/kg. It follows [33] from Eq. 1 that the amplification line shape is Lorentzian and
homogeneously broadened. The occupation numbers at each spatial point vary according to

∂N3

∂ t
= Γpump N0 − N3

τ32
, (2a)

∂N2

∂ t
=

N3

τ32
+

1
h̄ωa

E · ∂P
∂ t

− N2

τ21
, (2b)

∂N1

∂ t
=

N2

τ21
− 1

h̄ωa
E · ∂P

∂ t
− N1

τ10
, (2c)

∂N0

∂ t
=

N1

τ10
−Γpump N0, (2d)

where 1
h̄ωa

E · ∂P
∂ t is the induced radiation rate or excitation rate depending on its sign.

To solve the behavior of the active materials in the electromagnetic fields numerically, the
finite-difference time-domain (FDTD) technique is utilized [34]. In the FDTD calculations,
the discrete time and space steps are chosen to be Δt = 2.0× 10−18 s and Δx = 2.5× 10−9 m.
The initial condition is that all the electrons are in the ground state, so there is no field, no
polarization, and no spontaneous emission. Then, the electrons are pumped from N0 to N3 (then
relaxing to N2) with a constant pump rate, Γpump. The system begins to evolve according to the
system of equations above.

3. Geometric dimensions of the SRR array

As shown in Fig. 1(a), the SRR is fabricated on a GaAs-gain-GaAs sandwich substrate. It is
made from silver with its permittivity given by a Drude model, ε(ω) = 1−ω2

p/(ω2 + iωγ),
where ωp = 1.37× 1016 rad/s and γ = 2.73× 1013 rad/s. The GaAs layer between the SRR
and gain is introduced to avoid the quenching effect. The incident wave propagates along the
y direction parallel to the SRR plane and has the magnetic field perpendicular to that plane.
The unit cell size along the propagation direction is a. In z direction, the unit cell size is h,
which is larger than h1 +h2 +h3 +hs, where h1, h2, h3 and hs are the thicknesses of the bottom
GaAs layer, the gain layer, the GaAs spacing layer, and the SRR, respectively. Along the unit
cell boundaries in x and z directions, periodic boundary conditions are enforced to simulate
the infinite periodic structure. All the dimensions are chosen to have the magnetic resonance
overlap with the emission frequency of 100THz of the gain material. For comparison, we also
introduce another gain configuration (see Fig. 1(b)), where the gain is embedded in the gap of
the SRR instead of a layer underneath. The dimensions are kept the same as Fig. 1(a).
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Fig. 1. (Color online) (a) One unit cell for the silver-based SRR structure (light blue) with
the gain layer underneath. The dielectric constants ε for GaAs (yellow) and gain (red)
are 11 and 2, respectively. The whole structure is in vacuum background (light gray). The
dimensions are a = 250nm, l = 160nm, h = 80nm, h1 = 15nm, h2 = h3 = 10nm, h4 =
45nm, hs = 25nm, w = 40nm and d = 20nm. (b) same as (a) except the gain is embedded
in the SRR gap with ε = 1 and the gain layer in (a) is replaced by a dielectric layer (ε = 2)
(blue).

4. Numerical simulations and discussions

In this section, we apply the three pumping schemes discussed in section 1 on the gain layer.
The linewidths of the magnetic resonances for different pumping rates are investigated to see
if the gain can effectively reduce the magnetic losses. We also do simulations for different gain
background dielectric constants to see how it affects the loss compensation.

4.1. Isotropic gain

We first let a wide band Gaussian pulse of a given amplitude go through one layer of the
SRR structure shown in Fig. 1(a) and calculate the transmission T , the reflection R, and the
absorption A = 1− T −R, as a function of frequency in the propagation direction. With the
introduction of gain, the absorption near the resonance frequency f = 100THz decreases and
the transmission increases. To investigate the loss reduction of the magnetic resonators, we
plot the retrieved effective permeabilities, μ , without and with gain by inverting the scattering
amplitudes [35, 36] in Fig. 2(a). One can see the gain undamps the magnetic resonance of the
SRR and the resonant effective permeability μ of the SRR becomes much stronger and narrower
compared to the case without gain. In Fig. 2(b), we plot the effective permeabilities, μ , without
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Fig. 2. (Color online) The retrieved results for the real and imaginary parts of the effective
permeability μ , without and with gain, for two different gain configurations. (a) the gain is
underneath the SRR as shown in Fig. 1(a). The pumping rate is Γpump = 1.0×109 s−1. (b)
the gain is in the SRR gap as shown in Fig. 1(b). The pumping rate is Γpump = 7.0×108 s−1.
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Fig. 3. (Color online) The real (solid) and imaginary (dashed) parts of I/(ηω2E) as a
function of frequency for different pumping rates. (a) For the structure with a gain layer
below the SRR, shown in Fig. 1(a). (b) For the structure with the gain in the SRR gap
as shown in Fig. 1(b). Notice that the resonance is getting stronger and narrower as the
pumping rate increases.

and with gain for the case the gain is in the SRR gap. Similar to the results for 2D SRR in Ref.
23, the weak and broad resonant μ becomes strong and narrow with the introduction of gain in
the SRR gap. Note that a lower pumping rate (Γpump = 7.0×108 s−1) leads to a sharper magnetic
resonance comparing with the case the gain is underneath the SRR (Γpump = 1.0×109 s−1) due
to the local electric field concentration in the gap. However, the strong magnetic resonances in
Figs. 2(a) and 2(b) are not symmetric due to the periodicity effect [36]. This asymmetry causes
the difficulty in obtaining the linewidth of the magnetic resonance. The periodicity effect itself
is inherent in the retrieval procedure. To distinguish the magnetic resonance of the SRR from the
periodicity effect of the structure, we directly calculate the resonant current (i.e., the magnetic
moment) flowing around the split ring, without going through the retrieval procedure. Consider
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the SRR as a simple LCR circuit model, we can have the following equation,

L
dI
dt

+

∫
Idt
C

+ IR = εemf, (3)

where L, C and R are the effective inductance, capacitance and resistance of the SRR, respec-
tively, and I is the current flowing in the SRR and εemf is the induced electromotive force. From
Faraday’s law, εemf =−dΦ/dt = iAμ0ωH = iA ω

c E. (Φ is the magnetic flux through the SRR,
A is the area enclosed by SRR, and c is the speed of light in vacuum.) Then we can obtain the
expression with Lorentz resonance shape,

I
ηω2E

=− 1

ω2 −ω2
0 + iγω

, (4)

where η , ω0, and γ are A/(cL), 1/
√

LC, and R/L, respectively. The detailed results are plotted
in Fig. 3(a) for the structure with the gain layer underneath. One can see the current resonances
have very nice Lorentz line shapes. As the pumping rate increases, the resonance is getting
stronger and narrower. The full width at half maximum (FWHM) reaches 2.5THz when the
pumping rate Γpump = 2.8× 109 s−1, which is a significant loss reduction compared with the
FWHM without gain (FWHM = 6.4THz). So the gain compensates the losses. In addition, we
also calculate I/(ηω2E) vs. frequency for the structure with gain in the SRR gap to compare
the efficiency of the loss compensation for these two different gain configurations. The results
are shown in Fig. 3(b). One can see the structure with gain in the SRR gap needs less gain (i.e.,
smaller pumping rate 1.5×109 s−1) to reach the same FWHM, 2.5THz, of the resonance than
the case with gain underneath the SRR with the pumping rate Γpump = 2.8×109 s−1. It is easy
to understand the difference in pumping rates in the two designs because of the strong local
electric field enhancement in the SRR gap. Though the loss compensation for the structure with
a gain layer underneath is not so efficient as the case with the gain in the SRR gap, the results in
Fig. 3(a) still show that the magnetic losses can be substantially reduced, especially if we push
the pumping rate to a high value.
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Fig. 4. (Color online) (a) Schematic of the excitation of the magnetic resonance by the
incident electric field E parallel to the gap bearing side of the SRR. A circular current
appears due to the different configuration of surface charges on both sides of the SRR.
(b) The retrieved results for the real (solid) and imaginary (dashed) parts of the effective
permittivity ε , with and without gain, for the normal incidence in Fig. 1(a). For the case
with gain, the pumping rate Γpump = 1.0×109 s−1.

It is experimentally difficult to have the parallel incidence for such a planar structure like the
SRR array. In experiments, the SRR plane is oriented perpendicular to the incidenct wave and
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its gap bearing side is parallel to the incident electric field. Hence, the electric field can couple
to the electric dipole in the gap and induce the magnetic resonance [37, 38] (see Fig. 4(a)).
Simulations are done for this case to see if the losses can be compensated by the gain layer
underneath. With this incidence direction, the unit cell size in the propagation direction is h,
which is much smaller than the wavelength λ (λ/h = 37.5), so the resonance is far below
the Brillouin zone edge and we can ignore periodicity effect. Figure 4(b) plots the retrieved
effective permittivity ε , with and without gain. Both of them have a very nice Lorentz line
shape. Without gain, the resonance is broad and weak, and the FWMH is 3THz. With the
introduction of gain, the resonance becomes stronger and narrower, and the FWHM reduces to a
much smaller value, 0.92THz. So the gain compensates the losses of the SRR for perpendicular
incidence.

4.2. Isotropic gain with a shadow of the SRR

z x

y

HE

k

Fig. 5. Top view of the gain layer in Fig. 1(a) when a shadow (blue) is cast by the SRR struc-
ture. The gain does not exist in the shadow, while in other area (red) it is homogeneously
pumped.

So far, the gain material in our simulations is isotropic and pumped by a homogeneous pumping
rate Γpump. This is an ideal case. Consider the case in experiments that we incident an external
optical pumping wave on the structure (Fig. 1(a)) from the top to optically pump the electrons
from level 0 to level 3, there will be a shadow on the gain layer cast by the SRR structure, where
the gain is pumped by a much lower rate. As a simplified model, we turn off the gain in the area
which lies directly under the SRR to simply emulate the shadow of the SRR structure, while we
still keep a homogeneous pumping rate Γpump in other gain area (see Fig. 5). In Fig. 6(a), we plot
I/(ηω2E) as a function of frequency in this case. Compared with the case without the shadow
on the gain layer (Fig. 3(a)), the resonance gets much weaker and broader (FWHM = 5.7THz
and 5.4THz for the pumping rates Γpump = 1.0×109 s−1 and 1.5×109 s−1, respectively). This
shows the gain in the shadow area plays an important part in the loss compensation.

4.3. Anisotropic gain

The gain in our simulations discussed above is isotropic, which is equally pumped in all direc-
tions. The realistic gain, such as semiconductor quantum dots/wells, can be anisotropic, i.e., it
can only couple to the external field in a certain direction. Since the electric fields in the SRR
structure are mainly distributed across the gap, we have the active direction of the gain mate-
rial parallel to y direction in Fig. 1(a), i.e., the gap bearing side of the SRR. So, the gain only
couples to the electric field in y direction. The corresponding I/(ηω2E) vs. frequency curves
for different pumping rates are plotted in Fig. 6(b). One can see the resonances are also much
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Fig. 6. (Color online) The real (solid) and imaginary (dashed) parts of I/(ηω2E) as a
function of frequency for different pumping rates. (a) For the structure with a shadow on
the gain layer cast by the SRR. (b) For the structure where the gain is pumped in y direction
only.

broader than the case with homogeneously pumped isotropic gain. So the loss compensation is
less efficient.

4.4. Explanation of the differences among the loss compensations by the three pumping
schemes

x

y

(a) (b) (c)

V/m

Fig. 7. (Color online) The electric field amplitude distribution at the resonance frequency in
the cross-section of the gain layer (z = 20nm from the bottom of the structure) for different
components: (a) Ex, (b) Ey and (c) Ez. The area enclosed by the white line is the projection
of the SRR on the gain layer. The electric fields are calculated without gain.

To see why these three gain pumping schemes are so different on the loss compensation, we
have calculated the electric field amplitude distribution in the cross-section of the gain layer
(xy plane in Fig. 1(a)). The detailed results are plotted in Figs. 7(a)–7(c). One can see the x
component of electric field, Ex, is very weak while the other two components, Ey and Ez, are
relatively strong. So we can ignore the gain contribution by Ex and focus on the gain from
the coupling with Ey and Ez. Notice that Ey is bounded in the area right below the SRR gap
(Fig. 7(b)) while Ez mainly has a significant value in the projection of the SRR on the gain layer
(Fig. 7(c)). This characteristic of the field amplitude distribution leads to almost no contribution
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by Ez when we have a shadow in the gain layer since there is no gain in that area. Similarly,
the gain contribution by Ez goes away for the anisotropic gain because the gain only couples
with the y component of the electric field, Ey. This fact explains the big difference between the
homogeneously pumped isotropic gain and the other two gain pumping schemes.

4.5. The effect of the dielectric background of gain
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Fig. 8. (Color online) The imaginary parts of I/(ηω2E) as a function of frequency for
different background dielectric constants of the gain material, which is only pumped in
y direction. For the case with gain, the pumping rate is Γpump = 1.5× 109 s−1. Note the
resonance enhancements by the gain are almost the same.

Since there is a high contrast between the dielectric constants of the GaAs (ε = 11) and gain
(ε = 2) layers, the electromagnetic fields may be bounded in the high dielectric layer. In this
section, we will discuss the effect of the dielectric background of gain on the loss compensa-
tion. In Fig. 8, we plot the detailed results for the imaginary parts of I/(ηω2E) as a function
of frequency, with and without gain, for the background dielectric constants of the gain layer
εg = 2, 5 and 11. The gain is anisotropic and only couples to the electric field in y direction.
We can see the resonance frequency shifts down as the dielectric constant increases. This is
expected since the effective capacitance increases with the increment of the dielectric constant.
To effectively compensate the losses, we scale the emission frequency to overlap with the cor-
responding resonance frequencies and then pump with the same rate Γpump = 1.5×109 s−1. We
can see from Fig. 8 the resonance enhancements are almost the same for different background
dielectric constants of the gain.

To explain this phenomenon, we plot the electric field amplitude distributions in a plane
crossing the middle of the gap bearing side of the SRR (Fig. 9), for εg = 2, 5 and 11, respec-
tively. The Ex component is ignored since it is very weak as shown in Fig. 7(a). From Fig. 9(a),
we can see the field amplitude distribution of Ey, the only component which couples to the gain,
does not change much in the gain layer as the gain background dielectric constant changes. Al-
though there is a bounding effect on the fields, the y component of the electric field, Ey, does not
substantially decay in such a very narrow gain layer (10nm) neighboring to the high dielectric
GaAs layer. The main change in the electric field is the z component of the electric field, Ez,
decreases in the gain layer as the gain background dielectric constant, εg, increases, as shown
in Fig. 9(b). This is due to the continuity of the normal component of the electric displacement
across the interface since there is no free charge accumulation. Hence the normal component of
the electric field is inversely proportional to the dielectric constant. The change of Ez does not
affect the loss compensation due to no coupling between the gain and Ez. If the gain can couple
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Fig. 9. (Color online) The electric field amplitude distributions for different background
dielectric constants of the gain material (εg = 2,5 and 11) at their corresponding resonance
frequencies, in a yz plane crossing the middle of the gap bearing side of the SRR. (a) Ey

and (b) Ez. The area enclosed by the dashed green line indicates the position of the gain
layer. The electric fields are calculated without gain.

to Ez, such as the isotropic gain, the background dielectric constant of the gain will significantly
affect the loss compensation.

5. Conclusions

We have numerically studied the loss compensation of the silver-based SRR structure with
a gain layer underneath. Numerical results show that the losses of the SRR can be compen-
sated by the gain layer for both the parallel and perpendicular incidences. Three different gain
pumping schemes are applied in the simulations and the efficiencies of their corresponding loss
compensations are studied by investigating the linewidth of the resonant current. The homoge-
neously pumped isotropic gain can significantly reduce the magnetic losses, though it is less
efficient in the loss compensation compared to the case with the gain in the SRR gap. The other
two schemes, (1) a homogeneously pumped isotropic gain with a shadow cast by the SRR and
(2) anisotropic gain only coupled to Ey, the electric field component parallel to the gap bearing
side of the SRR, are much less efficient in the loss compensation compared to the isotropic gain
case, due to no interactions between the electric field perpendicular to the SRR plane, Ez, and
the gain in these two schemes. We have also studied the effect of the background dielectric of
gain. In a very narrow gain layer, the gain dielectric background mainly affects the electric field
perpendicular to the GaAs-gain interface due to the continuity of the normal component of the
electric displacement across the interface. So, the dielectric background of gain does not make
much difference for the gain pumped in the parallel direction only.
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