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Abstract. We investigate the potential of transformation optics for the
design of novel electromagnetic cavities. First, we determine the dispersion
relation of bound modes in a device performing an arbitrary radial coordinate
transformation and we discuss a number of such cavity structures. Subsequently,
we generalize our study to media that implement azimuthal transformations, and
show that such transformations can manipulate the azimuthal mode number.
Finally, we discuss how the combination of radial and azimuthal coordinate
transformations allows for perfect confinement of subwavelength modes inside
a cavity consisting of right-handed materials only.
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1. Introduction

The confinement of electromagnetic energy is an essential ingredient in studies of the quantum
mechanical properties of light [1–3] as well as in several applications involving the storage and
manipulation of information [4, 5]. In most circumstances, one requires light to be confined in
small volumes over long periods of time. An optical cavity enables confinement of light through
internal reflection on its boundaries [5]. The confinement is, however, only partial because
some energy will always be lost to the surrounding environment. Therefore, the eigenmodes
of these optical cavities—the so-called quasi-normal modes—are characterized by a discrete
set of complex eigenfrequencies, where the real part (ω′) is proportional to the inverse of the
wavelength of the confined light and the imaginary part (ω′′) is a measure of the temporal
confinement of the wave inside the cavity. An important figure of merit is the quality factor Q
of these modes, which is usually defined as the temporal confinement of the energy normalized
to the frequency of oscillation, such that Q−1 represents the fraction of energy lost in a single
optical cycle. The quality factor can be calculated as Q = ω′/(2ω′′). Using specific fabrication
techniques, dielectric resonators that exhibit extremely high quality factors have been realized.
Experimentally, quality factors up to 8 × 109 have been measured in dielectric microsphere
resonators [6] and larger than 108 in dielectric toroid microcavities on a chip [7]. Cavities
with high quality factors in combination with small mode volumes are extremely interesting for
applications involving cavity quantum electrodynamics [8, 9], such as the recent developments
to integrate optical microresonators into atom chips [10]. In these applications, it is important
to have a small vacuum region in which atoms interact with the electromagnetic modes.
Unfortunately, dielectric cavities are fundamentally limited in size because it is impossible to
efficiently store light in volumes with dimensions smaller than the wavelength of the confined
mode [11, 12]. One attempt to overcome this limitation and to miniaturize the mode volume of
the confined light is the development of surface plasmon polariton cavities [13]. Here, however,
the temporal confinement is severely reduced by dissipation in the metals.
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In this paper, we show that—using the formalism of transformation optics—alternative
designs of subwavelength optical cavities exist. This approach is based on the equivalence be-
tween Maxwell’s equations in vacuum, expressed in a curved coordinate system, and Maxwell’s
equations inside a nontrivial material with a specific permittivity ε and permeability µ

[14–16]. Although this mathematical equivalence was known for quite a long time [17–20],
it was only recently proposed to effectively realize such coordinate transformations with the use
of metamaterials [14, 15]. Transformation optics has demonstrated its huge potential through
various proposals for novel optical devices that manipulate electromagnetic beams in un-
conventional ways [21]. Among many other things, transformation optics has already been
used to design perfect lenses [22–25], beam and polarization manipulators [26, 27], super-
scatterers [28], invisibility cloaks [14, 15, 29–31] and devices implementing other optical il-
lusions [32–34]. Moreover, the general four-dimensional (4D) formulation of transformation
optics [35] allows for applications that also involve the time coordinate, such as a frequency
converter [36–38], a laser pulse analogue of Hawking radiation [39–41], an electromagnetic
analogue of Schwarzschild–(anti-)de Sitter spacetime [42] and a spacetime cloak [43].

The specific permittivity and permeability tensors required to implement devices designed
using the techniques of transformation optics usually do not exist in nature and must
therefore be achieved with the aid of metamaterials. These man-made materials derive their
electromagnetic properties from subwavelength, appropriately designed constituents [44]. In
particular, metamaterials can be made with a negative permittivity and permeability at the
same frequency. These so-called left-handed materials exhibit peculiar phenomena such as
negative phase velocity, negative refraction and inversed Doppler effect [45]. Thanks to the
ability to compensate for the phase of electromagnetic waves inside left-handed materials,
they generate the possibility for perfect imaging [46] and miniaturization of optical devices
beyond the diffraction limit [47–49]. More recently, considerable interest has been devoted to
metamaterials with other electromagnetic functionalities such as artificial chirality [50, 51], a
classical analogue of electromagnetically induced transparency [52–54], and the enhancement
of quantum phenomena [55].

In this paper, we investigate several approaches to designing an optical cavity within the
framework of transformation optics. In section 2, we derive the dispersion relation of a cavity
based on a radial coordinate transformation and apply this dispersion relation to calculate the
bound modes of a cavity in which the radial coordinate is transformed under a hyperbolic
function. In section 3, we introduce a folded coordinate transformation, which results in a
left-handed cavity characterized by a continuum of eigenmodes with an infinite quality factor.
Finally, in section 4, we introduce a combined transformation on the radial and azimuthal
coordinates, which is used in section 5 to show how perfect confinement can be achieved inside
a cavity made of right-handed materials.

2. A hyperbolic cavity

2.1. The dispersion relation of a cylindrical cavity based on a radial coordinate transformation

We start by calculating the bound modes of the system shown in figure 1, which consists of
a hollow cylinder bound by the radii ρ = R1 and ρ = R2. To obtain the eigenmodes of this
system, we solve Maxwell’s equations inside each region and match the solutions using the
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Figure 1. An infinite hollow cylinder (II) with inner radius R1 and outer
radius R2, surrounded by vacuum (III), including an inner region (I) where
electromagnetic fields might be trapped. The medium that performs the
coordinate transformation—called the ‘transformation-optical medium’—is
situated in region (II).

proper boundary conditions. Without loss of generality, we will consider the time-harmonic
solutions that are polarized along the z-axis (TE-polarization): E(r, t) = E(ρ, φ) exp (−iωt) 1z.

Inside the empty regions, Maxwell’s equations combine into the free-space Helmholtz
equation for the electric field. The angular variation of the electric field is a sum of imaginary
exponentials, characterized by the indices νI and νIII, whereas the radial dependence satisfies
the cylindrical Bessel equation. To simplify the boundary conditions in the next step, we will
use the Bessel functions Jν and Yν in region (I) and the Hankel functions H (1)

ν and H (2)
ν in

the surrounding region (III), because the latter can be interpreted as incoming and outgoing
cylindrical solutions of the Bessel equation:

EI(ρ, φ) =
[
AνI JνI(k0ρ) + BνIYνI(k0ρ)

]
exp (iνIφ), (1)

EIII(ρ, φ) =
[
CνIII H

(1)
νIII

(k0ρ) + DνIII H
(2)
νIII

(k0ρ)
]

exp (iνIIIφ), (2)

where AνI , BνI , CνIII and DνIII are complex integration constants and k0 = ω/c represents the
vacuum wavenumber.

In order to calculate the solutions in the transformation-optical region (II), we need to
insert the constitutive parameters for the material in Maxwell’s equations. In transformation
optics, these constitutive equations can be derived from the coordinate transformations required
to impose a specific pathway onto the electromagnetic fields [14–16]. In this section, we
consider the case of an arbitrary radial transformation, leaving the azimuthal angle and the
z-axis unchanged: (ρ, φ, z) is transformed into (ρ ′, φ′, z′) such that

ρ ′
= f (ρ), (3)

φ′
= φ, (4)

z′
= z. (5)
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This distortion of the radial coordinate in vacuum has the same effect on the electromagnetic
radiation as if it were propagating in a medium with the following nonzero components of the
permittivity and permeability tensors:

ερ
ρ = µρ

ρ =
f (ρ)

ρ f ′(ρ)
,

ε
φ

φ = µ
φ

φ =
ρ f ′(ρ)

f (ρ)
, (6)

εz
z = µz

z =
f (ρ) f ′(ρ)

ρ
,

where primes denote differentiation.
Using the constitutive equations B i

= µ0µ
i
j H j and Di

= ε0ε
i
j E j , we can insert these

parameters in Maxwell’s equations and combine them into the following equation for the electric
field in region (II):

f (ρ)

f ′(ρ)

∂

∂ρ

(
f (ρ)

f ′(ρ)

∂ EII

∂ρ

)
+

∂2 EII

∂φ2
+ k2

0 f 2(ρ)EII = 0. (7)

The solutions of equation (7) will of course keep their harmonic azimuthal character. As to the
radial part of this equation, it can be reduced to the same Bessel equation as in regions (I) and
(III), but in the variable ρ ′

= f (ρ). As a result, the solutions inside the transformation-optical
region (II) are given by

EII(ρ, φ) =
[
FνII JνII(k0 f (ρ)) + GνIIYνII(k0 f (ρ))

]
exp (iνIIφ), (8)

where, once again, FνII and GνII are complex integration constants.
This solution can now be matched to the solutions in (I) and (III) (equations (1) and (2)),

using the appropriate boundary conditions. Obviously, both the electric and magnetic fields
should be periodic in φ, or E(ρ, 0) = E(ρ, 2π).5 This condition is fulfilled when νi = mi ,
with mi ∈ Z for all regions i . Furthermore, we consider only those modes whose amplitude
is finite, which implies that we should reject the Bessel function Ym in region (I), because it has
a singularity at the origin. In region (III), on the other hand, we impose Sommerfeld’s radiation
condition, expressing that no energy is flowing in from infinity. We should therefore drop the
second Hankel function H (2)

m , which represents such an incoming wave.
The dispersion relation is now found by imposing the continuity of the tangential

components of the electric (E z) and magnetic fields (Hφ) at the boundaries between regions
(I), (II) and (III). Firstly, since the boundaries ρ = R1 and ρ = R2 do not depend on φ, the
azimuthal mode numbers mi must be the same in each region. Secondly, we find the following
set of four independent equations, in which we have already eliminated the angular parts:

Am Jm(k0 R1) = Fm Jm(k0 f (R1)) + GmYm(k0 f (R1)), (9)

Am J ′

m(k0 R1) = Fm
f (R1)

R1
J ′

m(k0 f (R1)) + Gm
f (R1)

R1
Y ′

m(k0 f (R1)), (10)

Fm Jm(k0 f (R2)) + GmYm(k0 f (R2)) = Cm H (1)
m (k0 R2), (11)

Fm
f (R2)

R2
J ′

m(k0 f (R2)) + Gm
f (R2)

R2
Y ′

m(k0 f (R2)) = Cm H ′(1)
m (k0 R2), (12)

5 This also implies that the magnetic field is periodic in this direction.
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Figure 2. (a) The underlying coordinate transformation of a hyperbolic cavity,
defined by f (ρ) = R1(R1 − R2)/(ρ − R2). The region [R1, R2] in the physical
radial coordinate ρ covers the region [R1, +∞] in the electromagnetic radial
coordinate ρ ′. (b) The material parameters that implement this hyperbolic
transformation. In the limiting case of f (R2) → ∞ the radial components of
ε and µ become zero, while the other parameters grow to infinity at the outer
boundary.

where Am , Fm , Gm and Cm are complex integration constants. The equations involving the
magnetic field were simplified using the relation f ′(ρ)/µ

φ

φ = f (ρ)/ρ, which is derived from
equation (6). Setting the determinant of this set equal to zero generates the dispersion relation
of the system and determines the eigenmodes of the cavity. Note that this relation is valid for any
cavity of the type shown in figure 1, implementing a radial coordinate transformation ρ ′

= f (ρ)

between R1 and R2.

2.2. The confined modes inside a hyperbolic cavity

A cavity ideally confines the electromagnetic energy in a small (subwavelength) region of space
for a very long time. In terms of electromagnetic and physical space, this could be achieved
by mapping some large domain of the electromagnetic space onto a much smaller region
in physical space. Such a transformation can be constructed with a hyperbolic function that
grows to infinity in a finite point. We will therefore consider a device as shown in figure 1,
in which the following radial coordinate transformation is implemented between R1 and R2:
f : [R1, R2] → [R1, ∞] : ρ 7→ ρ ′, where

f (R1) = R1, (13)

f (R2) = ∞. (14)

The matching at the inner boundary enables a smooth transition of the waves. Since
there cannot be anything ‘beyond infinity’, equation (14) ensures that the electromagnetic
energy cannot escape this device. Such a coordinate transformation is illustrated in figure 2(a),
where we consider the transformation given by f (ρ) = R1(R1 − R2)/(ρ − R2). The Cartesian
coordinate lines in physical space become denser as we approach the outer radius R2.
A similar transformation has been proposed to design a matching layer in order to improve
the efficiency of numerical software algorithms [56]. The values of the material parameters
required to implement this transformation in physical space are shown in figure 2(b).
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Figure 3. The confined modes with azimuthal mode number m = 3 of a
perturbed hyperbolic map, in which we cut out a rim 1R of the outer boundary
R2, such that the outer value Rout = R2 − 1R is not mapped onto infinity, but
instead takes the value f (R2 − 1R) = 20. (a) A contour plot in the complex
frequency plane indicating the solutions of the dispersion relation. (b) The 2D
plot of the electric field corresponding to the first solution of the dispersion
relation.

The determinant of equations (9)–(12) can be calculated in the limit of f (R2) → ∞, using
equation (13). We find that the hyperbolic map does not confine any electromagnetic modes. In
contrast to what is mentioned in [57], we find that, independent of the azimuthal mode number
m, the dispersion relation can only be satisfied if k0 = 0, i.e. the static solution. This result fits
with the intuitive idea that in this configuration an electromagnetic wave travels an infinitely
long time to reach the outer boundary of the cavity. Therefore, no standing wave can be created
in the cavity: its structure does not permit a reflected wave at ρ = R2.

The previous physical interpretation implies that a perturbed version of the hyperbolic
map—in which the material parameters do not grow to infinity—should exhibit confined modes.
This is indeed confirmed by the numerical evaluation of the dispersion relation, whose solutions
are shown in figure 3. The number of solutions increases as 1R decreases, or equivalently as
f (R2 − 1R) approaches ∞. The quality factor Q increases at the same pace. As shown in
figure 3, the cavity enables subwavelength confinement of electromagnetic energy; the first
solution, for example, lies at k0 R2 = 0.51–7.0 × 10−6 i, which corresponds to a free space
wavelength λ0 that is more than ten times as high as the outer radius of the cavity R2. The
quality factor of this mode is Q = 3.6 × 104.

In figure 3(b), we show a 2D plot of this mode inside the cavity. Note how the field is
almost completely located in the transformation-optical medium, which sounds reasonable since
this medium contains the electromagnetic interval [R1, +∞], whereas the inner disc (region I)
only occupies the electromagnetic interval [0, R1]; inside the transformation-optical region
the wavelength of the electric field becomes smaller towards the outer radius R2 due to the
increasing values of the material parameters inside the medium.

Judging from these results, the imperfect hyperbolic design might seem to be the
subwavelength optical cavity we are looking for, having good confinement in arbitrarily small
dimensions. We should, however, look back at the materials with which it is implemented in
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Figure 4. (a) The coordinate lines that are generated by a radial coordinate
transformation implementing a perfect cavity, defined by f (ρ) =

R1
R1−R2

(ρ − R2).
(b) The material parameters required to materialize this coordinate transforma-
tion. (c) The electric field mode profile of a confined mode inside the cavity. The
wavelength of this mode is much larger (a factor of 100) than the outer radius of
the cavity.

figure 2(b). Firstly, we note that a traditional whispering gallery cavity, made entirely from these
high-index materials, also has subwavelength modes. Secondly, the wavelength is becoming
extremely small within the device so that it is practically impossible to use the mean-field
approximation when determining the material parameters. In subsequent sections, we present
subwavelength cavities in which this is no longer the case.

3. The perfect cavity

In the example of the hyperbolic cavity, the entire electromagnetic space was mapped onto a
finite region of physical space. We can, however, consider a cavity from a cloaking perspective
and design a device that cloaks away the volume surrounding the device, instead of the volume
inside the device [58]. Such a device should smoothly guide the electromagnetic waves in the
cavity so that they never penetrate the outer boundary. The effect of such a transformation
is shown in figure 4(a). Since we want to cloak away region (III), we will use a radial
coordinate transformation that maps the physical coordinates (ρ, φ, z) onto the electromagnetic
coordinates (ρ ′, φ′, z′). To achieve perfect cloaking of region (III) from the viewpoint of region
(I), the radial transformation function has to satisfy the following boundary requirements:

f (R1) = R1, (15)

f (R2) = 0. (16)

As before, the actual shape of the function has no implications for the cavity’s performance.
Transformation functions that satisfy these boundary conditions have also been studied in
combination with traditional invisibility cloaks, giving rise to so-called anti-cloaks [59, 60].

The modes of the present cavity are the solutions of equations (9)–(12), where we now
have to insert f (R1) = R1 and f (R2) = 0. These equations now become

Am Jm(k0 R1) = Fm Jm(k0 R1) + GmYm(k0 R1), (17)

Am J ′

m(k0 R1) = Fm J ′

m(k0 R1) + GmY ′

m(k0 R1), (18)
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Fm lim
x→0

Jm(k0x) + Gm lim
x→0

Ym(k0x) = Cm H (1)
m (k0 R2), (19)

Fm lim
x→0

[
x

R2
J ′

m(k0x)

]
+ Gm lim

x→0

[
x

R2
Y ′

m(k0x)

]
= Cm H ′(1)

m (k0 R2). (20)

These limits should be handled with care, since they contain indefinite expressions like 0 × ∞.
Assuming the azimuthal mode number m 6= 0, these limits can be unambiguously evaluated:

lim
x→0

Jm(k0x) = 0, (21)

lim
x→0

Ym(k0x) = −∞, (22)

lim
x→0

[
x

R2
J ′

m(k0x)

]
= 0, (23)

lim
x→0

[
x

R2
Y ′

m(k0x)

]
= +∞. (24)

We can now reinsert these limits in equations (19)–(20) and we find that this set only has
solutions if Gm = 0 and Cm = 0 for all azimuthal mode numbers m 6= 0, whereas there are no
requirements on Fm . Taking this into account, equations (17) and (18) become

Am Jm(k0 R1) = Fm Jm(k0 R1), (25)

Am J ′

m(k0 R1) = Fm J ′

m(k0 R1); (26)

hence Am = Fm. This set imposes no constraints on k0, which means that the cavity supports
a continuous spectrum of modes, even if the wavelength is larger than the characteristic
dimensions of the cavity. These modes are perfectly confined, since D is equal to zero: there is
no radiation escaping into region (III). The quality factor Q is infinite and, as a consequence,
the complex part of the frequency (ω′′) should be zero.

We are now able to plot the solutions of the perfect cavity. We can choose any real free-
space wave vector k0 and plot the solutions, using equation (8). In figure 4(c), we plot a mode for
which k0 R1 = 0.01. The field’s variation inside the cavity depends on the chosen transformation
function f (ρ). One can make well-considered choices for this function f to enhance the field
distribution inside the transformation-optical medium.

We observe a completely different mechanism of confinement as compared to the
hyperbolic map. Generally, a wave can be confined inside a cavity if one round trip (approxi-
mately the cavity’s circumference) equals an integer number l of the mode’s wavelength inside
the cavity: 2πa ≈ lλ [11]. The perturbed version of the hyperbolic map reduces the wavelength
of an electromagnetic mode to a very small number at the outer boundary, thus fulfilling the
condition. In the perfect cavity, however, the phase shift vanishes completely and l = 0.

The reduction of equations (17)–(20) to the trivial equations (25)–(26) was only possible
when we assumed the azimuthal mode number m 6= 0. A mode without azimuthal momentum
cannot be confined within this cavity. Physically, this can be understood since such a mode has
a purely radial wave vector and in the absence of azimuthal propagation it cannot be deflected
to the left or to the right inside the transformation-optical region.
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The material losses are high due to the fact that the transformation-optical medium is made
of left-handed materials, as shown in figure 4(b). Although the material parameters strongly
depend on the choice of the transformation function f (ρ)—through equations (6)—one can
prove that any transformation-optical medium that satisfies equations (15) and (16) will have
a region in which all components of the permittivity and the permeability tensors are negative.
This is analogous to the perfect lens [46, 61]—another example of a folded map [16]—which
also requires a left-handed response.

In the last sections of this paper, we derive a method to overcome this limitation and
demonstrate how it is possible to design a cavity with right-handed material parameters only.
But let us first introduce the idea of cavities based on azimuthal coordinate transformations.

4. Azimuthal coordinate transformations

4.1. The dispersion relation in the case of an azimuthal coordinate transformation

In this section, we investigate transformation-optical cavities, as shown in figure 1, in which
the transformation also involves the azimuthal coordinate φ. We will consider a transformation
defined by

ρ ′
= f (ρ), (27)

φ′
= g(φ), (28)

z′
= z (29)

and, once again, look at solutions of the Helmholtz equation with linear polarization along the
z-axis. It can be shown that such a transformation can be implemented with materials whose
components are

ερ
ρ = µρ

ρ =
f (ρ)

ρ f ′(ρ)
g′(φ),

ε
φ

φ = µ
φ

φ =
ρ f ′(ρ)

f (ρ)

1

g′(φ)
, (30)

εz
z = µz

z =
f (ρ) f ′(ρ)

ρ
g′(φ),

in which f ′(ρ) denotes differentiation of f (ρ) with respect to ρ and g′(φ) denotes
differentiation of g(φ) with respect to φ. The wave equation of such a medium is

f (ρ)

f ′(ρ)

∂

∂ρ

(
f (ρ)

f ′(ρ)

∂ E

∂ρ

)
+

1

g′(φ)

∂

∂φ

(
1

g′(φ)

∂ E

∂φ

)
+ k2

0 f 2(ρ)E = 0, (31)

whose solutions are given by

EII(ρ, φ) =
[
Fν JνII(k0 f (ρ)) + GνYνII(k0 f (ρ))

]
exp (iνIIg(φ)). (32)

Here again, the cylindrical symmetry leads to the quantization of the azimuthal mode number
νII = mII:

mII(k) =
2πk

g(2π) − g(0)
, (33)
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with k ∈ Z. However, unlike the dispersion relation derived in previous sections where the
mode numbers in the different regions were identical, a general azimuthal transformation will
scramble the azimuthal momenta of the solutions in the different regions. One single azimuthal
mode exp (imIIg(φ)) in the transformation-optical region (II) will excite multiple modes in the
vacuum region, and vice versa:

exp (imIIg(φ)) =

∑
mI

CmI exp (imIφ), (34)

where the coefficients CmI are given by

CmI =
1

2π

∫ 2π

0
exp (i (mIIg(φ) − mIφ))dφ. (35)

The Fourier series expansion in equations (34) and (35) is possible since exp (imIIg(φ)) is a
periodic function of the azimuthal coordinate φ with period 2π , as can be seen by substituting
equation (33) into (32). In the surrounding vacuum region (III), the same condition on the
azimuthal coordinate applies, CmI = CmIII .

We now calculate the dispersion relation and restrict the analysis to linear azimuthal
transformations g(φ) = aφ, where a is a real number. Using equation (35), it can be shown
that in this case a single azimuthal mode number mI = mIII = m1 in the vacuum regions will
match a single mode number mII = m2 in the transformation-optical region, where these mode
numbers are related by

m2 =
m1

a
. (36)

In general, the angular mode number m2 will not be an integral number. The dispersion relation
is then similar to the one that corresponds to a single radial coordinate transformation (9)–(12)
and is generated by the following set of equations:

Am1 Jm1(k0 R1) = Fm2 Jm2(k0 f (R1)) + Gm2Ym2(k0 f (R1)), (37)

Am1 J ′

m1
(k0 R1) = Fm2

f (R1)a

R1
J ′

m2
(k0 f (R1))

+ Gm2

f (R1)a

R1
Y ′

m2
(k0 f (R1)), (38)

Fm2 Jm2(k0 f (R2)) + Gm2Ym2(k0 f (R2)) = Cm1 H (1)
m1

(k0 R2), (39)

Fm2

f (R2)a

R2
J ′

m2
(k0 f (R2)) + Gm2

f (R2)a

R2
Y ′

m2
(k0 f (R2)) = Cm1 H ′(1)

m1
(k0 R2). (40)

The additional factors a = g′(φ) in equations (38) and (40) originate from the fact that

f ′(ρ)

µ
φ

φ

=
f ′(ρ) f (ρ)

ρ f ′(ρ)
g′(φ) =

f (ρ)a

ρ
. (41)
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Figure 5. (a) Contour plot of the dispersion relation of the confined modes whose
azimuthal mode number in region (I) is equal to m1 = 5. The cavity is defined
by equation (42). (b) A density plot of the electric field distribution inside the
cavity, corresponding to the fourth solution in (a), at k0 = 13–5.7 × 10−2 i.

4.2. Cavities based on a single azimuthal transformation

It is instructive to have a look at the modes of a cavity defined by an exclusively azimuthal
transformation, for instance,

g(φ) = 15φ, (42)

f (r) = r. (43)

As shown in figure 5(a), there are several confined modes within these cavities. A corresponding
mode profile is shown in figure 5(b). Very much in agreement with the hyperbolic map on the
radial coordinate in section 2, we find that the quality factor of the solutions increases as the
optical path length inside the cavity increases. In contrast to the hyperbolic map, however, the
number of subwavelength solutions does not drastically increase as we increase the optical path
length.

Another intriguing example is the collapse of the azimuthal coordinate, i.e. all angles
are transformed on one and the same angle (g(φ) = φ0), inside a full cylinder (no vacuum
region). Although the corresponding material parameters are extremely exotic (zero and infinity)
and thus not useful for practical applications, this setup is interesting for theoretical reasons.
Obviously, there will be no quantization of the azimuthal mode number m, and the continuity
relations imply that∫ +∞

−∞

F(m)Jm(k0 R)dm = C H (1)

0 (k0 R), (44)

0 ×

∫ +∞

−∞

F(m)J ′

m(k0 R)dm = C H ′(1)

0 (k0 R), (45)
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which immediately translates into∫ +∞

−∞

F(m)Jm(k0 R)dm = 0. (46)

This equation has a solution for any k0. The cavity thus confines light at every wavelength. These
two examples clearly show the difference between a radial and an azimuthal transformation.
The former changes the radial coordinate ρ, which automatically alters the quantization of k0,
whereas the latter manipulates φ, which changes the azimuthal mode number m and thus only
indirectly influences the quantization of k0 through the dispersion relation.

5. Perfect confinement in a right-handed cavity

Azimuthal transformation optics can be very valuable when used in combination with a
nontrivial radial transformation. To demonstrate this, we show here how the addition of an
azimuthal transformation can be used to generate a cavity with right-handed material parameters
in which there are no radiation losses. Let us consider the radial transformation of a perfect
cavity, in combination with an azimuthal transformation that inverts φ:

f (ρ) =
R1√

R2
1 − R2

2

√
ρ2 − R2

2, (47)

g(φ) = −φ, (48)

implemented between the radii ρ = R1 and ρ = R2.
The material parameters will be the same as those of a perfect cavity. However, due to

the inversion of φ an additional sign reversal will make all material parameters positive. The
dispersion relation of this cavity is then given by the following set of equations:

Am Jm(k0 R1) = F−m J−m(k0 R1) + G−mY−m(k0 R1), (49)

Am J ′

m(k0 R1) = F−m(−1)J ′

−m(k0 R1) + G−m(−1)Y ′

−m(k0 R1), (50)

F−m lim
x→0

J−m(k0x) + G−m lim
x→0

Y−m(k0x) = Cm H (1)
m (k0 R2), (51)

F−m lim
x→0

[
(−x)

R2
J ′

−m(k0x)

]
+ G−m lim

x→0

[
(−x)

R2
Y ′

−m(k0x)

]
= Cm H ′(1)

m (k0 R2). (52)

Following the same argumentation as for equations (19) and (20), we find that equations (50)
and (52) can be solved if G−m = 0 and Cm = 0 for all azimuthal mode numbers m 6= 0, without
any restrictions on the values of F−m and k0. We can reinsert this in the boundary conditions at
ρ = R1:

Am Jm(k0 R1) = F−m J−m(k0 R1), (53)

Am J ′

m(k0 R1) = F−m(−1)J ′

−m(k0 R1). (54)

Using the identity J−m(x) = (−1)m Jm(x), it is clear that the set can be solved for all frequencies
for which Jm(k0 R1) = 0 or J ′

m(k0 R1) = 0. Depending on the angular mode number m, Am then
is equal to F−m or −F−m .
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Figure 6. (a) The grid lines of a right-handed cavity in which subwavelength
modes can be confined in the absence of radiation losses. These grid lines
correspond to a transformation defined by equations (61)–(63). (b) The material
parameters required to materialize this coordinate transformation. These material
parameters were considerably simplified by choosing R1 = 0.7R2. (c) The
electric field mode profile of a perfectly confined mode inside the cavity (m = 1,
λ0 ≈ 3.4R2).

The eigenfrequencies of this cavity are defined by the zeros of Bessel’s function or its
derivative:

k0 = jm,n/R1, (55)

k0 = j ′

m,n/R1, (56)

where jm,n and j ′

m,n are the nth solution of Jm(x) = 0 and J ′

m(x) = 0, respectively. The
eigenfrequencies, therefore, cannot be chosen at will. To overcome this limitation, we modify
the design by replacing the vacuum in the inner region (I) by a transformation-optical material
that maps the radial coordinate onto a larger one, i.e. f (R1) = fR1 > R1. Inside the inner region
we implement the transformation given by f (ρ) = fR1ρ/R1. Obviously, the transformation in
region (II) should also map R1 onto fR1 . This modification allows us to design the cavity to
have perfectly confined modes at arbitrary frequencies, since the resulting dispersion relation is
given by

Am Jm(k0 fR1) = F−m J−m(k0 fR1), (57)

Am J ′

m(k0 fR1) = F−m(−1)J ′

−m(k0 fR1). (58)

This cavity has solutions for k0 fR1 = j ′

m,n or k0 fR1 = jm,n. Equivalently, we can write

R2

λ0
=

R2

fR1

jm,n

2π
, (59)

R2

λ0
=

R2

fR1

j ′

m,n

2π
. (60)

In figure 6(a), we plot the grid lines of such a cavity in which the inner radius is mapped
onto a larger value: fR1 = R2. The underlying coordinate transformations are

f (ρ) =
R2

R1
ρ (61)
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in region (I) and

f (ρ) =
R2√

R2
1 − R2

2

√
ρ2 − R2

2, (62)

g(φ) = −φ (63)

in region (II). The thick red line clearly indicates that the coordinates in the inner region are not
continuously guided into region (II). The necessary condition for reflectionless transformation
media is not valid since at the interface ρ = R1 the coordinates of region (II) cannot be
matched with those of region (I) through a combination of rotation and displacement [62].
This cavity, therefore, only confines light at discrete resonance frequencies. This gives a
geometrical explanation of the discreteness of the solutions as given by equations (59) and (60).
Figure 6(b) shows the material parameters of this cavity. Three elements of the material tensors
are simplified to the vacuum values thanks to the particular choice of R1 = 0.7R2. Finally, in
figure 6(c), we plot the electric field of a perfectly confined mode inside this cavity. There are
no fields outside the cavity and the cavity is subwavelength (λ0 = 3.4R2).

6. Conclusion

In this paper, we have discussed the design of electromagnetic cavities based on transformation
optics. We derived the dispersion relations of cavity structures based on radial and azimuthal
coordinate transformations and applied those to calculate their bound modes. Some of these
transformations enlarge the optical path length inside the cavity, whereas others are based
on a folding of the electromagnetic space. Finally, we have shown how the combination of
radial and azimuthal transformations can eliminate the left-handedness of the perfect cavity,
while preserving its most important characteristics: confinement of electromagnetic modes
with unlimited quality factor due to radiation losses, even if the wavelength is larger than the
dimensions of the cavity.
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