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1. Introduction

Nonlinear imaging microscopy modalities [Two
Photon excitation Fluorescence (TPEF), Second
Harmonic Generation (SHG), Third Harmonic Gen-
eration (THG)] are well-established techniques for
biological applications [1–9]. The investigation of in
vivo cellular and sub-cellular activities, by means of

these non-destructive techniques, can provide valu-
able information related to fundamental biological
problems, leading to the development of innovative
methodologies for the early diagnosis and treatment
of various diseases, including cancer.

THG is a coherent nonlinear scattering phenom-
enon and is sensitive to local differences in third-or-
der nonlinear susceptibility χ(3), refractive index and
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Third Harmonic Generation (THG) microscopy as a non-
invasive, label free imaging methodology, allows linkage
of lipid profiles with various breast cancer cells. The col-
lected THG signal arise mostly from the lipid droplets
and the membrane lipid bilayer. Quantification of THG
signal can accurately distinguish HER2-positive cells.
Further analysis using Fourier transform infrared (FTIR)
spectra reveals cancer-specific profiles, correlating lipid
raft-corresponding spectra to THG signal, associating thus
THG to chemical information.

THG imaging of a cancer cell.
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dispersion. Under tight focusing conditions, the ex-
tent of THG signal increases dramatically when the
beam focus spans an interface between two optically
different materials. In THG microscopy, the contrast
arises from interfaces and optical heterogeneities of
size comparable to the beam focus. No THG signal
is collected when the laser beam is focused inside a
homogeneous, normally dispersive medium [10, 11].

THG microscopy provides high-contrast images
of lipid droplets (LDs), which can be detected with
high specificity in a variety of cells [12]. Previous stu-
dies have shown that THG imaging can distinguish
between activated and non-activated microglia cells
through increased signal detection from LDs [8].
Moreover, THG imaging renders three-dimensional
(3D) spatial resolution of the samples and can be
used to study LDs in a complex environment, such
as intact cells and tissues [12].

Lipid droplets are lipid rich cytoplasmic orga-
nelles formed by a neutral lipid core surrounded by
a monolayer of phospholipids hosting a diverse array
of associated proteins. The increased number of LDs
has been correlated to pathological conditions in-
cluding inflammatory, infectious diseases and tu-
morigenic processes [13–16].

Complementary information can be provided by
Fourier transform infrared (FTIR) spectroscopy,
which is used for the detection and classification of
various types of molecules. FTIR analysis, qualita-
tively and quantitatively characterizes various bio-
molecular features of cancer cells and tissues [17–
19].

The present study concentrated on breast cancer
cell lines. Breast cancer is one of the most frequently
diagnosed types of cancer and the leading cause of
cancer death in women [20]. Using representative
cell lines, the aim of the present study was to evalu-
ate whether THG imaging could detect qualitative
and quantitative differences between the different
subtypes of breast cancer and control cells and relate
those to FTIR spectra. The obtained results suggest
that, THG microscopy could be a new label free di-
agnostic tool for classification of breast cancer cells,
while correlating to specific FTIR spectra, associat-
ing thus THG signal to chemical information.

2. Experimental

2.1 Cell lines and culture condition

Luminal (T47D, MCF7), Her2+ (BT474, SKBR3)
and triple negative (MDA-MB231, Hs578t) human
breast cancer cell lines were purchased from ATCC
(Rockville, Maryland, USA) and maintained at 37 °C
in a humidified atmosphere of 5% CO2 in air.

MDA-MB231 and Hs578t cell lines were cultured in
DMEM medium (GIBCO 61965-026, Grand Island,
NY) supplemented with 10% FBS (GIBCO-BRL)
and 50 mg/mL penicillin/streptomycin (GIBCO-
BRL). For MCF7 and T47D cell cultures, the above
medium was supplemented with 16 ng/mL and
11 ng/mL insulin, respectively. SKBR3 cells were
cultured in McCoy’s medium (GIBCO-BRL) supple-
mented with 10% FBS and 50 mg/mL penicillin/
streptomycin. BT474 cells were cultured in DMEM/
Ham’s F12 medium (GIBCO-BRL) supplemented
with 10% FBS, 2 mM L-glutamine (GIBCO-BRL),
1 mM sodium pyruvate (GIBCO-BRL) and 50 mg/
mL penicillin/streptomycin. For sub-cultivation cells
were detached using 0.25% trypsin and 5 mmol/L
EDTA (GIBCO-BRL). All experiments were car-
ried out during the logarithmic growth phase. The
passage number remained stable for all cell lines.
Non-tumorigenic MCF10a human breast cells were
cultured in DMEM/Ham’s F12 medium supplemen-
ted with 5% horse serum (GIBCO), 50 mg/mL peni-
cillin/streptomycin, 100 μL EGF, 250 μl hydrocorti-
sone, 50 μl cholera toxin, and 16 ng/mL insulin.

Peripheral blood mononuclear cells (PBMCs)
were isolated from healthy blood donors (n = 3).
Peripheral blood (10 ml) was placed on a Ficoll-Hy-
paque density gradient (d = 1,077 g/mol) and upon
centrifugation at 1800 rpm for 30 minutes, PBMCs
were collected from the interface and washed three
times with PBS by centrifugation at 1500 rpm for
10 minutes.

For lipid droplet staining, cells were fixed with
PFA 4% (Sigma-Aldrich Co., MO, USA, 158127),
permeabilized with PBS-Triton X-100 0.025% (Sig-
ma, X100) and stained with Nile Red (10 μg/ml, Sig-
ma, N3013).

2.2 Experimental setup

The experimental apparatus consisted of an Yb-
based femtosecond (fs) laser oscillator emitting at a
central wavelength of 1028 nm (Amplitude Sys-
temes, t-pulse, 200 fs, 50 MHz, 1 Watt) combined
with a modified upright microscope (Nikon Eclipse
ME600D) as previously described [4, 8] (Figure 1
supplementary material).

Briefly, adjustable neutral density filters (New
Focus) were utilized to control the power at the sam-
ple plane. The laser beam passes through mirrors
and directed on a pair of galvanometric mirrors
(Cambridge Technologies). Galvanometric mirrors
were employed in order to perform the fast raster
scanning in the selected xy plane of the sample. The
focal plane was adjusted by using a motorized trans-
lation stage (Standa Ltd. 1 μm minimum step). A
telescope system was used to expand the beam dia-
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meter in order to fill the back aperture of the objec-
tive lens. The beam was tightly focused on the sam-
ple by employing a high Numerical Aperture (NA)
objective lens (Carl Zeiss, C-Achroplan 32×, NA
0.85, water immersion). By employing diffraction
limited focused fs laser beams, nonlinear phenomena
at the sample plane of the biological specimens
could be created. Using such setup it was possible to
collect simultaneously two different nonlinear sig-
nals, one in the transmission (THG) and the other in
the reflection mode (TPEF), providing thus the op-
portunity to perform co-localization measurements.
On the transmission mode THG signal was re-
corded, after passing through a condenser lens (Carl
Zeiss, PlanNeofluar, 40×, 0.75 NA, air immersion)
and a coloured glass filter (U 340-Hoya), from a
photo multiplier tube (PMT, Hamamatsu). On the
reflection mode, TPEF signals were detected by
using a second PMT (Hamamatsu). An appropriate
short pass filter (SPF 700 nm, CVI) was employed in
the case of TPEF measurements (Nile Red staining)
along with a bandpass filter (640 nm/40 nm, Chro-
ma). A computer controlled both scanning and data
acquisition procedures. The samples were placed be-
tween two very thin round glasses (70 μm, Marien-
feld) separated by a copper spacer (100 μm thick-
ness) to avoid damage the cells. A CCD camera
(PixeLINK) was used for the optical observation of
our specimens.

The alignment and the optimization of the system
was performed using the collection of the maximum
THG signals from the air/glass and glass/air inter-
faces of a coverslip. The maximum intensity of the
THG signals emitted from the cells were always one
order of magnitude lower in comparison with the
ones detected from the glass/air interface of the sec-
ond coverslip, which was used to hold the sample.

THG intensity signal is strongly affected by the
size of the sub-cellular structures and the resolution
of the apparatus, specifically the numerical aperture
of the objective and the condenser lenses. The de-
scribed set-up and imaging conditions were em-
ployed in previous studies [8, 21] showing that lipid
rich structures were the predominant sources for
high THG signals obtained from various biological
specimens (microglia cells, Caenorhabditis elegans).

The laser power on the sample plane was 40 mW
for all measurements (�0.8 nJ per pulse). The de-
scribed setup scans 500 × 500 pixels THG and TPEF
image in one (1) second. To improve the signal to
noise ratio (SNR), 20 scans were averaged for each
final image. To further improve image quality, a ser-
ies of 2D optical sections were obtained at 1 μm in-
tervals (z stack) and projected (maximum intensity
projection) onto a single plane. Image J software
was used for data viewing and processing (NIH,
http://imagej.nih.gov/ij/).

2.3 THG quantification analysis

2.3.1 Signal’s mean total area calculation

All samples were imaged under constant irradiation
conditions (mean energy per pulse, linear polariza-
tion of the incident beam at the sample plane, di-
mensions of the scanning region, number of pixels,
amplification of the PMT units). THG intensity val-
ues were collected from the photomultipliers’ tubes
(PMTs), stored in 2D 500 by 500 matrices and repre-
sented a single slice image of the sample. Image J
software was used for image processing and thresh-
olding. THG signal quantification was performed by
setting a constant threshold in the obtained normal-
ized 8-bit slice images, so that regions generating
high levels of nonlinear signal were solely detected
and isolated. The threshold was set to allow only
30% of the THG signal of the cell area to be ana-
lyzed and measured. The obtained calculated area
corresponded to the cellular membrane, the nucleus
membrane and the lipid droplets of each cell. During
data calculations, whole (Figure 2 supplementary
material) or compartmentalized cells (Figure 3 sup-
plementary material), were investigated.

The quantification of mean THG area was calcu-
lated from the 10 central sequential z slices of each
cell. Forty cells were tested for each case [8].

For cell compartmental quantification, cellular,
nuclear membrane and intracellular signalling were
isolated manually and measured using Image J soft-
ware.

2.3.2 Signal’s intensity calculation

For the quantification of the mean THG intensity,
the values of a number of N cells, were firstly nor-
malized to a standard THG intensity value. Then
the values were quantified by setting again a con-
stant threshold, so that only the regions that provide
high THG signals could be examined (mainly intra
cellular lipid droplets, cellular and nucleus mem-
branes). An algorithm designed and programmed in
MATLAB environment was employed for the man-
ual selection of representative cell areas of each slice
and estimation of their mean pixel value. The inte-
grated THG intensity over the total pixel area for
each slice of a cell was calculated by multiplying the
representative area with the mean intensity value of
the corresponding pixels. The weighted mean pixel
value of each cell was obtained by repeating this
procedure for the 10 central slices of the sample.
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2.4 FTIR spectra analysis

Cells were deposited on IR transparent KBr win-
dows (approximately 20 μl with 104–105 cells). FTIR
experiments were carried out using a Bruker Vertex
70v spectrometer equipped with a KBr beamsplitter
and a room temperature broad band triglycine sul-
fate (DTGS) detector in absorption mode. Interfero-
grams were collected at 4 cm–1 resolution (8 scans),
apodized with a Blackman-Harris function, and
Fourier transformed with two levels of zero filling in
order to yield spectra encoded at 2 cm–1 intervals.
Before scanning, KBr background was recorded and
each sample spectrum was obtained by automatic
subtraction of the background. It has be noted that
FTIR spectra values provided information for the
slight changes of absorption of the cellular compart-
ments and averaged over the entire cell area, so that
FTIR measurements could be considered as cell size
dependent.

The spectra were processed by using the software
supplied by the instrument manufacturer (OPUS
software package; Bruker Optics, Germany). The
FTIR spectra along with their first and second deri-
vative curves were used to highlight the components
of different spectral regions and to determine the ap-
proximate values of the peak positions of the com-
ponents. The integrated area of the recorded FTIR
peaks and their second derivative were determined
using OPUS software in order to estimate the con-
centration of the corresponding bonds.

2.5 Statistical analysis

For multi group comparisons, one-way analysis of
variance (ANOVA) with a post hoc Tukey test was
used. The level of significance was set at p < 0.05.
Data were analyzed with SPSS 16.0 software.

3. Results

THG imaging provides unique structural, anatomical
and morphological information in various biological
samples at cellular and sub-cellular level. Previous
studies have shown that THG imaging could distin-
guish between resting and activated microglia, where
lipid bodies were shown to be the major signal emit-
ting organelles [8]. Furthermore, infrared spectra de-
monstrate significant differences between cancer and
control cells [22, 23]. Taking into consideration the
activation state of cancer cells, the present work con-
centrated on breast cancer and inquired whether
THG imaging and infrared spectra could distinguish
between malignant and healthy cells.

3.1 Specific features of THG signalling
in breast cancer cell line classification

Six different breast cancer cell lines, classified as lu-
minal, HER2 positive and triple negative [24], were
cultured and submitted to THG imaging. Each cell
line presented a specific THG signalling pattern.
Thus, luminal cell lines (MCF7 and T47D) showed
both intracellular and membrane THG signal,
HER2+ (BT474 and SKBR3) showed mainly intra-
cellular signal, while triple negative (MDA-MB231

Figure 1 THG images (z-projection) of breast cancer cell
lines and control cells. Luminal (MCF7 and T47D), HER2
positive (BT474 and SKBR3), triple negative (MDA-
MB231 and Hs578T) cancer cell lines as well as non-tu-
morigenic MCF10a breast cells and control PBMCs were
submitted to THG imaging as described in Section 2.2. The
yellow arrows depict the amorphous nucleus and the en-
closed nucleolus of cells. Characteristic THG imaging from
three different cells of the same cell type are presented for
each case. Scale bar depicts 5 μm.
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and Hs578T) cells showed mainly nuclear and cellu-
lar membrane signal. Non-tumorigenic MCF10a cells
displayed both membrane and intracellular signal,
while PBMCs displayed essentially intracellular
THG signalling (Figure 1). In contrast to PBMCs,
where nuclei were visualized as regular black areas
in the cell due to the dense chromatin structure, can-
cer cells showed irregular nuclear shapes with en-
larged nucleoli (Figure 1, arrows).

In order to evaluate the lipid droplet origin of
the intracellular THG signal, the cells were stained

with Nile red (lipid droplet staining) and THG and
TPEF signals were recorded simultaneously (Figure 2).
The multimodal merged images revealed significant
co-localization of THG signal and lipid droplet stain-
ing, confirming that lipid droplets were the main sub-
cellular structures generating high THG signals.

3.2 Quantification of THG signalling
in breast cancer cell lines

In an attempt to quantify the THG signalling, THG
intensity values were collected, stored and processed
using the Image J software (see Section 2.3). The
mean total area (mean number of pixels above an
intensity threshold) of THG values of PBMCs was
significantly lower (p < 0.05) than those of cancer
cells (Figure 3a), while both HER2-positive BT474
and SKBR3 breast cancer cells exhibited statistically
significant higher values as compared to all other
cells.

Taking into consideration the cell size (normali-
zation by dividing the mean total area by the surface
cell area of each cell type), HER2 positive cell lines,
still demonstrated significantly increased levels of
THG signal (p < 0.05; Figure 3b). These results indi-
cated that THG signal quantification could distin-
guish HER2+ cells from the other types of breast
cancer. However, one should not normalize the re-
sults as to cell area, because size is an important fea-
ture of cancerous versus physiological cells.

Dissecting THG signal quantification into the dif-
ferent cellular compartments, while maintaining the

Figure 2 2D THG images of MCF-7, SKBR3 and MCF10a
cells (cyan) and 2D TPEF images of the same cells stained
with Nile-Red (red). In the merged images (third column),
the co-localization of THG-TPEF signals is presented in
white colour. The scale bar depicts 5 μm.

Figure 3 THG signal quantification
depicted as (a) mean total area, (b)
mean THG area divided by the sur-
face cell area. Surface cell area re-
presents the image area enclosed by
the signal of the outer cellular mem-
brane. (c) THG area of the different
cellular compartments (intracellu-
lar, cellular membrane, nucleus) di-
vided by the total area of each cell
and (d) Mean THG intensity. Data
represent mean values ± S.E.M.
(n = 40 each case). The *** denotes
p < 0.005 statistical significance.
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same threshold, there was an attempt to isolate the
THG signal acquired from the cell surface mem-
brane, the intracellular compartments as well as the
nuclear membrane. Such quantification revealed that
THG signal arose mostly from the intracellular area
in BT474 cells and the cellular membrane in MDA-
MB231 cells. In PBMCs, THG signal mostly origi-
nated from nuclear membranes, whereas in SKBR3
cells, THG signal was emitted by surface membrane,
intracellular area as well as the nuclear membrane
(Figure 3c).

Furthermore, THG intensity quantification
showed that all cell lines tested, displayed signifi-
cantly higher values as compared to PBMCs
(p < 0.005, Figure 3d). The mean THG values repre-
sent the weighted mean values of the integrated in-
tensity over the total pixel area of 10 central slices
of the cell.

3.3 THG imaging correlation
to FTIR spectra analysis

Except from lipid bodies which have been consid-
ered to play an important role in the tumorigenic

process, lipid rafts have also been shown to be in-
volved in cell adhesion and migration of tumor cells
[25]. To evaluate whether membrane acquired THG
signal could correspond to lipid rafts, FTIR analysis
was performed and correlated to THG signalling.

Focusing on MCF7, MDA-MB231, BT474 cells
and PBMCs, FTIR spectra analysis could clearly dis-
tinguish between cancer cells and control PBMCs,
which were always showing lower absorbance levels
(Figure 4). However, except from the absorbance
amplitude, the obtained FTIR spectra and the 1st de-
rivative analysis could not reveal any specific wave-
lengths differentiating PBMCs from cancer cells.

Upon acquisition of 2nd derivative as described in
Section 2.4, the calculation of the 2nd derivative
mean area of FTIR spectra, unwrapped some signifi-
cant differences. Among the absorption wavelengths
the ones that correspond to cholesterol, phospholi-
pids and C=O stretching modes mostly define lipid
rafts [26]. Thus, focusing on wavelengths 1737 cm–1

(lipids) [27, 28], 1746 cm–1 (lipids) [29], 2845 cm–1 (li-
pids, cholesterol/phospholipids) [19, 30], 2853–
2858 cm–1 (lipids) [19, 31] and 2910 cm–1 (cholester-
ol/phospholipids) [30], it could be observed that
BT474 cells displayed higher mean spectrum areas
as compared to MCF7, MDA-MB231 cancer cells

Figure 4 (a) FTIR spectra of cancer
cell lines (BT474, MCF7, MDA-
MB231) and control cells (PBMCs)
and their lipid regions (b) 2800–
3000 cm–1 and (c) 900–1800 cm–1 re-
spectively. One representative ex-
periment out of three is shown here.
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and PBMCs (Figure 5). These results correlated to
the mean THG area divided by the surface cell area
(R2

1737 = 0.9958, R2
1746 = 0.9592, R2

2845 = 0.9675,
R2

2853 = 0.9198, R2
2845 = 0.9954, Figure 6a1, a2, a3, a4,

a5) and to mean THG intensity values
(R2

1737 = 0.7264, R2
1746 = 0.8017, R2

2845 = 0.7436,
R2

2910 = 0.8922, Figure 6b1, b2, b3, b5). With exception
of the mean THG intensity at 2853 cm–1

(R2
2853 = 0.4474, Figure 6b4), in all other cases, satis-

factory fitting values were obtained.

4. Discussion and conclusion

Nonlinear optical imaging techniques shed new light
in the delineation of various biological and biomedi-
cal processes while providing a strong impact on
early detection of diseases [8, 9, 32–36]. In this study,
THG microscopy was used as a new, label free, non-
destructive imaging technique for the classification
of different subtypes of breast cancer cell lines and
their distinction from non-cancer cells. The discrimi-
nation between the different types of cells was based
on the quantification of collected THG signals and
their correlation to FTIR spectra. It was observed
that breast cancer cells displayed an increased lipid
content compared to normal cells, which correlated
to FTIR 2nd derivative mean spectra area of choles-
terol/spingomyelin rich areas that possibly corre-
spond to lipid rafts.

Previous studies had shown that THG imaging
could distinguish between activated and non-acti-
vated microglia cells [8]. Breast cancer cell lines,
which are expected to display a constantly metaboli-
cally activated profile, were shown to provide higher
levels of THG signal in terms of both intensity and
mean signal area, as compared to controls. In this
study, PBMCs from healthy blood donors and the
breast epithelial MCF10a cell line were used as con-
trols. However, none of these two cell types can
readily be considered as control of the malignant
cancer cells. PBMCs have a different cell origin,
while MCF10a, which represent non-tumorigenic
breast epithelial cells, have been isolated from a
Caucasian female with fibrocystic disease. Therefore,
these cells were only used as benchmarks for com-
parison reasons. Interestingly, depending on the cell
type studied, THG signal was not evenly distributed
in the cells, localized either at the level of mem-
branes and/or specific cytoplasmic structures. Thus,
luminal type cell lines, characterized by the expres-
sion of estrogen and/or progesterone receptors and
represented by MCF7 and T4TD cells showed intra-
cellular and membrane THG signal. The HER2 po-
sitive breast cancer cells, characterized by HER2 ex-
pression and represented by BT474 and SKBR3 cell
lines showed mainly intracellular THG signal, while
the triple negative cell lines, MDA-MB-231 and
Hs5787, showed mainly nuclear and cellular mem-
brane signal.

The cytoplasmic structures were demonstrated to
co-localize with LDs, which is in agreement with
previous observations [8, 12, 15, 37]. Indeed, in-
creased numbers of LDs have been correlated to
various pathologic conditions. Thus, increased cyto-
plasmic lipid accumulation in leukocytes and other
cells has been observed in a number of clinical and
experimental inflammatory and infectious diseases
[13, 38–40].

Membrane signalling was specifically observed in
the most aggressive MDA-MB-231 and Hs5787 cells.
Indeed, previous studies have indicated that mem-
branes play a crucial role in tumor cell dissemination
and metastasis [41–43]. Similarly to the cell mem-
brane, nuclear envelope also consists of a lipid bi-
layer and it has been shown that alterations in the
nuclear membrane affect the behaviour and pheno-
type of tumor cells [44]. Membrane constitution has
been considered to play an important role in breast
cancer cell function. During cell activation, microdo-
mains to the cell membrane cluster together proteins
and specific lipids involved in the regulation of var-
ious cellular processes, many of which are altered in
cancer cells. In addition, lipid rafts are influenced by
nutrition [45]. It has been shown that fatty acid sup-
plementation sensitises human mammary tumor cells
to the cytotoxic effects of anti-cancer agents [46].
Thus, lipid rafts have been considered to have a role

Figure 5 Fractions of FTIR 2nd derivative spectrum area
for the wavelengths 1737, 1746, 2845, 2853 and 2910 cm–1

respectively. Fractions represent the calculated 2nd deriva-
tive area of each cell type divided by the sum of the 2nd de-
rivative area of all cells for each characteristic peak. Data
represents mean values of three independent experiments
for the five different peaks, which mainly correspond to li-
pid rafts. BT474 cells appear higher values as compared to
MCF7, MDA-MB231 breast cancer cells and PBMCs. SEM
is in the order of 25% of the values (not shown) due to the
limited number of FTIR measurements (n = 3 in each
case).
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in cancer initiation, progression and cell migration
[47].

Quantification of the THG signal in the different
sub-cellular regions demonstrated that BT474 cells
mostly displayed intracellular localization of the sig-
nal, while in MDA-MB231 cells the cellular mem-
brane was the major source of THG signal. In nor-
mal PBMCs, signal mostly originated from nuclear
membranes, whereas SKBR3 cells displayed surface

membrane, intracellular area and nuclear membrane
staining.

Additional information as to the breast cancer
cells studied here was provided by the nuclear
shape. In THG imaging, nucleus is generally pre-
sented as a black area in the cell, due to the dense
chromatin structure, which does not allow the non-
linear light scattering. All cancer cells studied here
were characterized by irregular size and shape, en-

Figure 6 Correlation of FTIR 2nd de-
rivative spectra with THG (a, left col-
umn) mean area divided by the sur-
face cell area and (b, right column)
mean THG intensity values for speci-
fic peaks of spectrum of lipid regions.
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larged nucleus and nucleolus, which are in agree-
ment with previous studies [48–52].

In an attempt to correlate THG signalling to
chemistry, one cell line from each breast cancer sub-
type was submitted to FTIR analysis. Although each
cell line showed a specific FTIR spectrum, specific
spectra present in cancer cells only, could not be de-
tected. Concentrating on spectra characterizing cho-
lesterol/sphingomyelin rich regions, as a simulation
to lipid rafts, it was shown that the mean area of 2nd
derivative spectra correlated with THG signal mean
area and intensity. Therefore, the results presented
here showed for the first time a correlation between
THG imaging and FTIR analysis, relating thus THG
imaging to chemistry. Although Coherent Anti –

stokes Raman Scattering (CARS) microscopy has
been proposed as a promising tool in chemical im-
aging, this technique requires more complex laser
systems [53–55].

Correlating THG imaging to organelle chemistry
would be a quite important feature to the analysis of
biological samples. Since THG signal is generated
from the refractive index changes and dispersion, it
can be hypothesized that chemical changes to the
membranes could affect THG signalling. Indeed,
aromatic hydrocarbons cause dilation of the intracel-
lular space, altering thus intra-cytoplasmic vacuoles
[56]. The correlation of THG signal area and inten-
sity to C–H, C=O stretching, cholesterol and phos-
pholipid spectra indicates that THG signal could re-
flect the presence of aromatic hydrocarbons and
cholesterol. In addition, cholesterol and the carbonyl
group of sphingomyelin is obscured by the complex-
ity of different possible hydrogen bonding and cou-
pling between the N–H and the C=O group vibra-
tions, apparent in lipid rafts [26]. Thus, the increased
THG signal observed in activated cells could be ex-
trapolated to increased lipid raft content of the
membranes. Further studies using artificial mem-
branes with variable hydrocarbon, shingomyelin and
cholesterol constitution are needed to definitely de-
monstrate such correlation.

In conclusion, THG microscopy can discriminate
between breast cancer cells of different subtypes and
could be used for the label-free detection of breast
cancer cells among PBMCs (Figure 4 supplementary
material). Thus, quantification of the THG signal
provides an objective classification pattern. The cor-
relation of THG signalling to chemistry could open
new areas of research and technology, where fast la-
bel free imaging could provide valuable information
on the malignant area of the cells or tissues.

The presented work has a significant clinical po-
tential, since it perceives quantitative changes in
healthy and malignant human cells. Understanding
the intracellular lipid droplet distribution and mem-
brane morphology could provide information on li-
pid metabolism in tumour cells for exploitation as

therapeutic targets [13–16]. Although more research
is needed to understand the correlation between li-
pids and cancer pathology and automate the seg-
mentation analysis, the nonlinear imaging modality
of THG has the potential to discriminate among the
different cancer cell types [9]. THG microscopy as-
sesses lipid and membrane changes in healthy, can-
cer cells and tissues ex vivo by absolute parameters
that quantify inflammatory damage. This paves the
way for novel, label free methods to quantify thera-
peutic response in cancer and computerize histologi-
cal examinations in terms of digital pathology. Final-
ly, the development of an “imaging pen” that will
quickly analyze human tissues for disease and infec-
tion and help surgeons to determine cancer limits
during surgery is within the future goals of our la-
boratories.

Supporting Information

Supplement Figure 1. Experimental apparatus of the
nonlinear microscope. GM galvanometric mirrors, L,
L1,L2 lenses, M mirrors, DM dichroic mirror,
PMT1,2 photomultiplier tubes, fs femtosecond laser

Supplement Figure 2. Quantification of THG signals
using thresholded images: (a) z projection THG im-
age of a cancer cell and (b) its thresholded image
respectively. Scale bar depicts 5 μm.

Supplement Figure 3. z projection THG images of
cancer cell’s parts (a) whole cell (b) cellular mem-
brane (c) nucleus area and (d) intracellular area.
Lower their thresholded images are shown respec-
tively. Scale bar depicts 5 μm.

Supplement Figure 4. 3D graph for the distinction
between cancer and PBMCs cells via THG signals
quantification. THG area/ surface area of the cell in
x-axis, THG intensity values in y-axis and cell sur-
face area in z-axis. The Her2 positive cancer cells
(BT474 and SKBR3) and the PBMCs normal cells
appeared clearly as separable sub populations of
spots in the scatter plot (N = 20 for each cell type).
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