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crystal: coupling efficiency and Q factor
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A finite two-dimensional photonic crystal with a triangular lattice of air columns in a dielectric background is
designed with a waveguide and a resonant cavity. By a time-domain solution of Maxwell’s equations we ob-

serve the existence of impurity modes inside the photonic bandgap.

An electromagnetic wave launched

through the waveguide, with an appropriate frequency, can enhance the field inside the cavity and yield a peak

in the transmission.

Considering a manufactured structure, in which the columns are not perfectly equal, we

repeat our calculations and analyze how the impurity modes are modified. For both cases, periodic and real,
we measure the quality factor of the cavity. © 2000 Optical Society of America [S0740-3224(00)01012-2]

OCIS codes: 230.7370, 230.5750.

1. INTRODUCTION

In recent years it has been proposed that a structure with
a periodic dielectric constant, named a photonic crystal
(PC), can affect the transmission of light and the photonic
density of states.® This property is due to the existence
of the photonic bandgap (PBG), a range of frequencies in
which the propagation of the electromagnetic field is for-
bidden. In fact, the dielectric constant acts as a periodic
scatterer, which, in analogy with the potential felt by an
electron in a crystal, modifies the dispersion relation of
light and builds photonic bands and PBG’s. Further-
more, the insertion of defects in PC’s creates localized
modes inside the PBG.3>7!3 Localization depends on dif-
ferent factors: the periodicity of the dielectric constant,
the defect itself, and the PBG. Considering a two-
dimensional (2D) PC, that is, with the dielectric constant
periodic in a plane and homogeneous in the direction nor-
mal to that plane, for in-plane propagation, a line defect
represents a waveguide (WG), and a point defect is a reso-
nant cavity (RC). Theoretical as well as experimental in-
vestigations have demonstrated the efficiency of 2D PC’s
as WG’s or RC’s. Because of the scaling properties of
PC’s,” the stated performances remain valid for every fre-
quency. These features are fundamental in designing
optical circuits and other photonic devices when light has
to be driven through sharp bends. However, the fact that
PC’s must be artificially manufactured constitutes a tech-
nological challenge, in particular if the PC requires a mi-
crometer lattice constant to operate at infrared and
higher frequencies.'4™17

It is interesting to extend the analysis to more compli-
cated configurations with WG’s and RC’s. In this report
we theoretically study a 2D PC with a WG and a RC that
has been fabricated in Halle for the mid-infrared
region.'®1®  The structure, a triangular lattice of air col-
umns in a silicon background, has some missing columns
that build a WG interrupted in the middle by a RC; see
Fig. 1 and the respective caption for details. The lattice
constant, a, is 1.5 um, and the column’s diameter, d, is
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1.28 um. We consider both an ideal PC, where every col-
umn has exactly the same radius, and the real PC with
columns not perfectly equal. With a finite-difference
time-domain technique we seek impurity modes inside
the PBG and measure the quality () factor'® of the cav-
ity. Monochromatic light, polarized with the magnetic
field along the column’s axis, propagates through the WG
and reaches the RC. The WG is designed to facilitate the
coupling between the incident field and the RC and to
drive the radiation emitted by the impurity mode.

We measure the transmission at the opposite side of
the PC. For certain wavelengths a cavity mode is ex-
cited. This is represented by a narrow peak in the trans-
mission: electromagnetic energy is temporarily stored in
the cavity, and then it is released in every direction, but,
since the wavelength is in the PBG, it is guided through
the WG. We find four impurity modes for the ideal struc-
ture and four impurity modes for the real one. For each
peak a snapshot of the field inside the cavity at the steady
state proves that energy is really stored and that the field
corresponds to a cavity mode, with a specific pattern. We
investigate the differences in the peaks and in the field
patterns between ideal and real PC’s. Finally, we mea-
sure the @ factor by quenching the source and calculating
the rate of decay of the energy stored in the RC.

In Section 2 we explain the numerical method used to
solve Maxwell’s equation, including measurements of the
transmission’s coefficient and the @ factor; in Section 3
we show and discuss the numerical results for the ideal
and the real PC, with field analysis and the @ factor; in
Section 4 we briefly sum up our results.

2. METHOD

To inspect the existence of impurity modes and to evalu-
ate the @ factor of the cavity, we solve Maxwell’s equa-
tions in the time-domain regime. To simplify the prob-
lem, we assume that the dielectric medium is lossless,
and we fix the magnetic permeability to 1. Furthermore,
since our PC is infinitely extended along the column’s
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Fig. 1. Two-dimensional photonic crystal with a triangular lat-
tice. The missing columns yield a waveguide and a resonant
cavity in the middle. There are 18 X 11 unit cells with lattice
constant @ = 1.5 um; air columns have diameter d = 1.28 um.
The dielectric background is silicon, ¢; = 11.9. The source is
put at the left side of the structure, in front of the WG.

axis, for in-plane propagation the electromagnetic field is
decoupled in TE (TM) modes, when the magnetic (electric)
field is parallel to the columns. Thus the fields are gov-
erned by the following equations:

J
EH(P’ t) = =V X E(r, t), (1)
J

E(!‘)EE(P,L‘) =V X H(r, 1), (2)

where e(r) is the modulated dielectric constant. We
tackle Egs. (1) and (2) with a finite-difference time-
domain technique.?® The real space is discretized in a
fine square grid that stores the dielectric constant and the
fields’ values. Since it is not possible to extend the stor-
age to the whole space, we truncate the grid as soon as it
compasses the PC. By use of a finite time step the fields
are recursively updated on every grid point. At the
edges, to avoid backreflection, the fields are updated with
Liao boundary conditions.?! This algorithm?? numeri-
cally reproduces the propagation of the electromagnetic
field in real space and time through the PC. In our cal-
culations we used a grid with a pitch of 50 nm, which is
1/30 of the lattice constant.

The radiating source is a TE monochromatic wave,
with a Gaussian amplitude along the direction orthogonal
to the WG, and is located at the left side of the PC, in
front of the WG. Having chosen a wavelength, we look
for a steady-state solution to excite possible impurity
modes. We measure the Poynting vector and the ampli-
tude of the electric field at the beginning and at the end of
the WG. To obtain reliable results, we averaged these
values on a small spot of the grid and in time, too. Then,
transmission is given by scaling the square of the trans-
mitted electric field with the square of the incident elec-
tric field, or equally, by the ratio of the outgoing and the
incident Poynting vectors. We did both just to test our
data. We examine a wavelength range that goes from 3
to 6 um, a region in which our structure exhibits a PBG.

In correspondence to an impurity mode we calculate
the field’s patterns to understand how the symmetry of
the RC affects the field’s distribution. Besides, we evalu-
ate the storage of electromagnetic energy inside the RC;
the source pumps energy in the RC. Having reached the
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steady state, the source is switched off and the energy be-
gins to decay exponentially. The decay’s rate is given by

dE 21e
— = —&E,
dt N@

3

where \, is the resonant wavelength, ¢ is the speed of
light, and @ is the quality factor. Thus calculating the
energy’s storage and its decay rate, from Eq. (3) we draw
the @ factor of the RC. The @ factor is also given by
wo/Aw, where w is the resonant frequency and Aw is the
bandwidth at the half-height of the Lorentzian peak.

However, we choose the former method because it is more
accurate.

3. RESULTS

We consider a 2D PC with a triangular lattice of air col-
umns in silicon (e; = 11.9). The structure is made of
18 X 11 unit cells, with lattice constant ¢ = 1.5 um.
The column’s diameter is d = 1.28 um. As depicted in
Fig. 1, in the middle of the sample, some missing columns
model a WG and a RC. We carry out our calculations on
an ideal structure (see Fig. 1) and on a real structure,
manufactured at Halle'® (see Fig. 2). In Fig. 2 the
numbers in the air holes represent the real diameter
expressed in micrometers. These labeled holes have
an average diameter equal to 1.23 um. For the other
holes we assume the diameter of the ideal structure
(d = 1.28 um).?® In the following subsections we com-
pare the results obtained from the two structures, ideal
and real.

A. Transmission

In Fig. 3 we plot the transmission for both the ideal and
the real PC’s. The solid curve refers to the ideal case,
and the dashed curve refers to the real one. A PBG oc-
curs for \ between 3.4 and 5.5 um, as regards the ideal
structure, and for N\ between 3.5 and 5.6 um, as regards
the real structure. The PBG is featured by a drop in the
transmission of more than six orders of magnitude. This
means that despite the presence of the WG, the six col-
umns that shape the RC are enough to completely stop
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Fig. 2. SEM picture of the sample manufactured at Halle. The
numbers inside the holes represent the real diameter in mi-
crometers. The average diameter of the marked holes is
d,, = 1.23 um. For the other holes we chosed = 1.28 um, as it
is in the ideal structure. The depth of column etching is 100
um.,
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Fig. 3. Transmission for A between 3.0 and 6.0 um. The solid
(dashed) curve refers to the ideal (real) structure. Each impu-
rity mode is marked with an italic (Greek) letter for the ideal
(real) case. The corresponding wavelengths are a (3.564 um), b
(3.830 um), ¢ (4.074 um), d (5.147 pum), « (3.585 um), B (3.848
pm), v (4.095 um), and 6(5.198 um).

the propagation of the electromagnetic field toward the
other side of the WG. At the same time, inside the PBG,
these columns are able to trap the field in the center of
the structure, inside the RC. Thus when a wave routes
the WG, the issue is if the incident field couples with a
cavity mode. If coupling occurs, it excites a particular
mode depending on the wavelength of the source. Since
the resonant field radiates in every direction, the WG cap-
tures the outgoing power and drives it to the right end of
the PC. This effect increases the transmission orders of
magnitude. Indeed, spanning the PBG by varying the
wavelength of the source, we find some peaks: four for
the ideal structure and four for the other one. For the
first case the resonant peaks are marked with italic let-
ters and occur at these wavelengths: 3.564, 3.830, 4.074,
and 5.147 um. For the second case they are marked with
Greek letters and occur for A equal to 3.585, 3.848, 4.095,
and 5.198 um.

To better understand the role of the WG, we calculate
the transmission for the same structure, but by com-
pletely removing the central row of air cylinders, i.e.,
without the RC. In this case we get information on how
much power is driven through the WG itself. For
N = 3.920 um there is a dip in the transmission, but for
the other wavelengths inside the PBG the transmission is
almost 100%. In Fig. 3 the peaks are positioned where
the WG transmits well and, for A = 3.920 um, the drop is
orders of magnitudes larger than the corresponding dip
for the WG. Therefore we argue that, for this structure,
the WG provides a good feeding for the cavity modes and
that the drop in Fig. 3 derives primarily from the pres-
ence of the six cylinders in the central row.

The transmission peaks are sharp and well separated,
in accordance with the fact that they belong to the dis-
crete spectrum of a microcavity. Comparing the two
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structures, we notice that the peaks of the real PC have a
redshift. The reason relies on the size of the RC. In
fact, a larger cavity can sustain modes with a lower fre-
quency. As a rule of thumb, since for the real case the
columns around the RC are smaller on average
(d4 = 1.23 um) than for the ideal case, the dielectric re-
gion left at the center is larger and increases the size of
the RC. This yields the redshift in the resonances.

Since the impurity mode is inside the PBG, the electric
field is localized in the RC. The excitation of these modes
and the transmission is performed by the WG, which con-
veys electromagnetic energy inward to and outward from
the RC. The inspection of the electric field’s pattern of-
fers a further insight on the coupling efficiency.

B. Field’s Analysis

When an impurity mode is excited, the field is in reso-
nance with the microcavity. The more the electromag-
netic field is enhanced, the larger the transmission is.
The peaks in Fig. 3 have different heights; that is, some of
them are more easily excited than others. The coupling
efficiency stems from several parameters, such as the
wavelength of the source and the presence of PBG’s and
defects (WG and RC). In our investigation we vary only
the incident wavelength.

Figure 4 shows snapshots of the normalized electric
field for the four peaks regarding the ideal structure.
When the source is tuned on a resonant wavelength, it ex-
cites a particular impurity mode. As an example, for
N = 3.564 um the field is a hexapole, which resembles the
whispering-gallery mode observed in microdisk lasers’
cavities. We notice that the shape of the cavity is funda-
mental for the field’s pattern. In fact, a RC made with a
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Fig. 4. Normalized amplitude of the electric field for the impu-
rity modes of the ideal structure: (a) hexapole N\ = 3.564 um,
(b) monopole A = 3.830 um, (c) decapole N\ = 4.074 um, and (d)
so-called pentapole N\ = 5.147 pum.



2040 J. Opt. Soc. Am. B/Vol. 17, No. 12/December 2000

0.10203040506070809 1 0.10.203040506070809 1

Fig. 5. Normalized amplitude of the electric field for the impu-
rity modes of the real structure: () hexapole X = 3.585 um, (B)
monopole X = 3.848 um, (y) decapole X = 4.095 um, and (5) pen-
tapole N = 5.198 um.

Fig. 6. Normalized amplitude of the electric field for the modes
(d) N =5.147 um (top panel) and (&) N = 5.198 um (bottom
panel). The snapshots, which are contour plots in log scale,
cover the whole structure.

square lattice instead of a triangular one shall sustain
different modes.”® The field’s distribution of the deca-
pole [Fig. 4(c)] and the so-called pentapole [Fig. 4(d)] is to-
ward the WG, and for the hexapole and the monopole the
field has a sixfold symmetry. Thus the former modes fa-
vor the coupling between the WG and the RC. On the
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contrary, a mode with sixfold symmetry directs energy to-
ward the six symmetry directions with the same inten-
sity. Now it is clear why the peaks at 4.074 and 5.147
pum give a larger transmission than the other peaks do;
see Fig. 3. Definitively, the coupling efficiency is strongly
correlated to the impurity mode excited in the RC.

Another important issue to consider is the difference
between ideal and real PC’s. The height of the peaks in
the real case is smaller than that of the ideal case. This
suggests that an irregularity in the structure degrades
the RC and the coupling efficiency. In fact, as shown in
Fig. 2, variations in the holes’ diameters break the sixfold
symmetry of the RC, in particular because of the mis-
match 1.306 um versus the nearest cylinders. Figure 5
is the correspondent of Fig. 4 for the real structure. The
modes are classified by use of the same nomenclature:
() hexapole, (B8) monopole, (y) decapole, and () penta-
pole. Comparing the pentapole mode with the same one
in the ideal case, we observe that the intensity is not so
well oriented toward the WG as previously. The differ-
ence among the pentapole patterns is shown in Fig. 6,
where the snapshots are extended to the whole structure.
We notice also that the secondary lobes of the cavity
modes are rotated with respect the WG. This feature
stems mainly from the mismatches 1.306 um versus near-
est columns, or primary lobes, and 1.302 um again versus
nearest columns, or secondary lobes. Consequently, the
coupling decreases and the transmission is lower, as is
shown in Fig. 3 for the peaks around A = 5.1 um. For
the other modes the coupling efficiency is not much de-
graded, since the patterns are almost unchanged, also as
regards the secondary lobes. Indeed, the transmission
peaks have a comparable height. However, the large dif-
ference between a and « is due to the shift of the gap’s
edge, but the relative heights are more or less equal.

The study of the impurity modes shows the tight corre-
lation between coupling and field distribution. This
gives the reason of the peaks’ heights, but not of their
widths, since the broadening of a peak is related to the @
factor.

C. Quality Factor

The @ factor is an estimate of the capability to sustain
free cavity modes lasting in time. In this subsection we
evaluate the @ factor for each cavity mode found in the
ideal and real structures.

Using the technique discussed in Section 2, we calcu-
late the amount of energy inside the RC as a function of
time, when the source is turned off.?* Plotting the re-
sults in a linear-log scale, we find that the rate of the en-
ergy’s decay is exponential, as predicted by Eq. (3). The
values of the @ factors, calculated for every peak and for
both ideal and real cases, are shown in Table 1. We note
that the @ factor is not constant when the wavelength is
varied. In fact, the peaks are spectrally scattered within
the PBG. As a consequence, the field’s attenuation can
be different at different frequencies within the PBG. The
peak « has the lowest @ factor since it is very close to the
PBG’s edge. This does not happen for peak a because the
edge is shifted and the transmission has already dropped.
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Table 1. Quality Factor for the Impurity Modes

Case @ Factor®

Ideal a b c d
27000 18500 37500 11300

Real a B Y 6
7500 12500 20600 29700

“The Greek and italic letters mark the peaks as assumed in Fig. 3.

There is a large difference between the @ factors of the
d peak and of the Speak. Moreover, in this case only, the
real structure exhibits a higher @ factor than the ideal
one. Referring to Fig. 6, we argue that the small overlap
between the WG and the intensity’s lobes of the electric
field degrades the coupling efficiency. Therefore the
losses through the WG are reduced, and, consequently,
the mode of the real structure gains a higher @ factor.

In general for both ideal and real structures, the @ fac-
tor is very high, > 10%*. Despite only three columns
separating the WG from the RC, the energy storage is
very effective, and the power radiated by the resonant
modes is collected and guided by the WG.

4. CONCLUSIONS

We investigate the coupling between a WG and a RC de-
signed in a 2D PC with triangular lattice. By use of a
source, harmonic waves are launched through the WG,
which conveys electromagnetic power toward the RC.
When a cavity mode is excited inside the PBG, a trans-
mission peak occurs. By a field analysis of the four
peaks, we find a connection between coupling efficiency
and mode patterns. A strong coupling gives a large in-
crease in transmission. We calculate high @ factors, de-
spite the RC having only three columns per part along the
WG. The @ factor is different for each cavity mode, de-
pending on the peak’s position inside the PBG. We also
consider two structures, ideal and real. They give almost
the same results, but a comparison shows how irregulari-
ties may affect the coupling efficiency and the @ factor.
In conclusion, a WG is useful to force oscillations in a RC
because at the same time it carries and drains power, im-
proving the performances of the RC.

The next step is to better understand how to tune the
impurity modes by changing parameters such as the di-
electric contrast, the columns’ radii, and the lattice itself.
To find the optimized structure it would also be interest-
ing to add or remove the columns that connect the WG to
the RC. Then, to be more realistic, it would be worth
taking into account the finite height of the columns to
know how much energy is lost by diffraction and if this
degrades the @ factor.
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