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Abstract— Photonic Metamaterials are man-made materials
with “lattice constants” smaller than the wavelength of light.
Tailoring the properties of their functional building blocks
(“atoms”) allows to go beyond the possibilities of usual materials.
For example, magnetic dipole moments at optical frequencies
(µ 6= 1) become possible. This aspect substantially enriches the
possibilities of optics and photonics and forms the basis for
so-called negative-index metamaterials. Here, we describe the
underlying physics and review the recent progress in this rapidly
emerging field.

Index Terms— Metamaterial, split-ring resonator, negative per-
meability.

I. I NTRODUCTION

I N a usual crystal, the atoms are arranged in a periodic fash-
ion with lattice constants on the order of half a nanometer.

This is orders of magnitude smaller than the wavelength of
light. For example, green light has a wavelength of about 500
nanometers. Thus, for a given direction of propagation, the
light field experiences an effective homogeneous medium, that
is, it does not “see” the underlying periodicity but only the
basic symmetries of the crystal. In such materials, the phase
velocity of light c may depend on the propagation direction
and is generally different from the vacuum speed of lightc0

by a factor called the refractive indexn = c0/c (the slowness).
The physical origin are microscopic electric dipoles that are
excited by the electric field component of the incoming light
and that radiate with a certain retardation. Hence, the electric
permittivity is different from unity, i.e.,ǫ 6= 1. In contrast
to this, magnetic dipoles play no role at optical frequencies
in natural substances, i.e., the magnetic permeability is unity,
µ = 1.

Electromagnetic metamaterials are artificial structures with
inter-“atomic” distances (or “lattice constants”) that are still
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smaller than the wavelength of light. Similarly, the light
field “sees” an effective homogeneous material for any given
propagation direction (quite unlike in a Photonic Crystal). The
building blocks (“atoms”), however, are not real atoms but are
rather made of many actual atoms, often metallic ones. It is
this design aspect that allows us to tailor the electromagnetic
material properties, in particular the corresponding dispersion
relation, to a previously unprecedented degree. For example,
it becomes possible to achieve magnetic dipole moments
at optical frequencies, i.e., magnetism at optical frequencies
(µ 6= 1). It turns out that, forǫ < 0 andµ < 0, the refractive
index becomes negative withn = −√

ǫµ < 0 (rather than
n = +

√
ǫµ > 0). This aspect was pointed out by Veselago

many years ago [1], but remained an obscurity until rather
recently.

In this review, we first describe the physics of “magnetic
atoms” (e. g. so called split-ring resonators), which can be
best viewed as the magnetic counterpart of the famous Lorentz
oscillator model for electric dipoles in optical materials. By
simple size scaling, these concepts have recently been brought
towards the optical regime. We also discuss the limits of size
scaling. Alternative “magnetic atom” designs can push the
limits somewhat further and can also ease nanofabrication of
these metamaterials.

II. PHYSICS OF SPLIT-RING RESONATORS

AS “ MAGNETIC ATOMS”

It is well-known from basic magnetostatics that a magnetic
dipole moment can be realized by the circulating ring current
of a microscopic coil, which leads to an individual magnetic
moment given by the product of current and area of the coil.
This dipole moment vector is directed perpendicular to the
plane of the coil. If such a coil is combined with a plate ca-
pacitor, one expects an increased current at a finite-frequency
resonance, hence an increased magnetic dipole moment. Thus,
a popular design for magnetic “atoms” is to mimic a usualLC-
circuit, consisting of a plate capacitor with capacitanceC and
a magnetic coil with inductanceL, on a scale much smaller
than the relevant wavelength of light.

Figure 1 shows the analogy of a conventionalLC circuit and
a metallic split-ring resonator (SRR) on a dielectric surface.
The RHS shows an electron micrograph of a single gold
SRR fabricated by standard electron-beam lithography. The
name “split-ring resonator” goes back to the 1981 work of
Hardy and Whitehead [2] and that of Pendry from 1999 [3].
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Fig. 1. Illustration of the analogy between a usualLC circuit, A, and a
split-ring resonator (SRR), B. The electron micrograph in C shows an actually
fabricated structure, a gold SRR (t = 20 nm) on a glass substrate. Taken from
[6].

This name shall be employed below. However, the SRR has
also previously been discussed under the names “slotted-tube
resonator” in 1977 [4] in the context of nuclear magnetic
resonance (NMR) and “loop-gap resonator” in 1996 [5].

The position of the anticipatedLC-resonance frequency
can be estimated by the following crude approach: Sup-
pose that we can describe the capacitance by the usual
textbook formula for a large capacitor with nearby plates
(C ∝ plate area/distance) and the inductance by the formula
for a “long” coil with N windings for N = 1 (L ∝
coil area/length). Using the nomenclature of Fig. 1 B, i.e.,
the width of the metalw, the gap size of the capacitord, the
metal thicknesst, and the width of the coill, we get

C = ǫ0ǫC

w t

d
, (1)

with the relative permittivity of the material in between the
platesǫC , and

L = µ0

l2

t
. (2)

This leads to the eigenfrequency

ωLC =
1√
LC

=
1

l

c0√
ǫC

√

d

w
∝ 1

size
, (3)

and to theLC-resonance wavelength

λLC =
2π c0

ωLC

= l 2π
√

ǫC

√

w

d
∝ size . (4)

Despite its simplicity and the crudeness of our derivation,
this formula contains a lot of correct physics, as confirmed
by numerical calculations (see below): First, it tells us that
the LC-resonance wavelength is proportional to the linear
dimension of the coill, provided that the ratiow/d is fixed.
This scaling is valid as long as the metal actually behaves like
a metal, i.e., as long as theLC resonance frequency is much
smaller than the metal plasma frequencyωpl. We will come
back to this fundamental limitation below. Second, for relevant
parameters (ǫC ≥ 1 andw ≈ d), the prefactor is typically on
the order of ten, i.e.,

λLC ≈ 10 × l . (5)

Thus, it is possible to arrange these SRRs in the form of
an array in thexy-plane such that the lattice constantaxy is
much smaller than the resonance wavelength, i.e.,axy ≪ λLC .
For example: For a telecommunication wavelength ofλLC =
1.5 µm, the linear dimension of the coil would need to be on

the order ofl = 150 nm, implying minimum feature sizes
around 50 nm or yet smaller. Under these conditions, typical
values for the capacitance and the inductance areC ≈ 1 aF
andL ≈ 1 pH, respectively. Third, the dielectric environment
influences the resonance viaǫC , which is, e.g., modified by the
presence of a dielectric substrate. Fourth, if one closes the gap,
i.e., in the limitd → 0 or C → ∞, the resonance wavelength
goes to infinity, or equivalently, the resonance frequencyωLC

becomes zero.
What are the limits of size scaling according to Eq.(3)? This

question has recently been addressed in Ref. [7]: For an ideal
metal, i.e., for an infinite electron densityne, hence an infinite
metal plasma frequency, a finite currentI flowing through
the inductance is connected with zero electron velocity, hence
with a vanishing electron kinetic energy. In contrast, for areal
metal, i.e., for a finite electron density, the current is inherently
connected with a finite electron velocityve. Thus, one must
not only provide the usual magnetic energy1

2
LI2 to support

the currentI, but additionally the total electron kinetic energy
Ne

me

2
v2
e , whereNe = ne V is the number of electrons in the

SRR contributing to the current. To conveniently incorporate
this kinetic energy term into our electromagnetic formulation,
we recast it into the form of an additional magnetic energy.
Using ne eve = I/(wt) and the volume (=cross section times
length) of the SRR wireV = (wt) (4(l − w) − d), we obtain

Ekin = Ne

me

2
v2
e =

1

2
LkinI2 . (6)

Here we have introduced the “kinetic inductance”

Lkin =
me

nee2

4(l − w) − d

wt
∝ 1

size
. (7)

While the usual inductanceL is proportional to the SRR
size [see (2)], the kinetic inductance (7) scales inverselywith
size – provided that all SRR dimensions are scaled down si-
multaneously. Thus, the kinetic inductance is totally irrelevant
for macroscopic coils but becomes dominant for microscopic
inductances, i.e., when approaching optical frequencies.The
kinetic inductance adds to the usual inductance,L → L+Lkin

in (3), and we immediately obtain the modified scaling for the
magnetic resonance frequency

ωLC ∝ 1
√

size2 + const.
. (8)

Obviously, the magnetic resonance frequency is inversely
proportional to size for a large SRR, whereas it approaches
a constant for a small SRR. To evaluate this constant and
in order to be simple, we consider the limitsw ≪ l, d ≪
4l and a capacitanceC according to (1) in air. Inserting the
metal plasma frequencyωpl =

√

(nee2)/(ǫ0me), we obtain
the maximum magnetic resonance frequency

ωmax
LC =

√

1

LkinC
= ωpl

√

d

4l
. (9)

This saturation frequency is further reduced by the dielectric
environment and by the skin effect [7], which we have tacitly
neglected in our simple reasoning. Furthermore, we remind
that our results are implicitly based on the Drude model of
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metal intraband transitions. For real metals in the optical
regime, interband transitions often play a significant role as
well. Our results are only meaningful ifωmax

LC is smaller than
the onset frequency of interband transitions. For example,
interband transitions occur for wavelengths below800 nm
(550 nm) in aluminum (gold).

One can even obtain an explicit and simple expression
for the magnetic permeabilityµ(ω) from our simple circuit
reasoning. We start by considering an excitation configuration
where the electric-field component of the light cannot couple
to the SRR (see below) and where the magnetic field is normal
to the SRR plane. Under these conditions, the self-induction
voltage of the inductanceL plus the voltage drop over the
capacitanceC equals the voltageUind induced by theexternal
magnetic field, i.e.,UL + UC = Uind or

L İ +
1

C

∫

I dt = Uind = −φ̇ . (10)

Again assuming a homogeneous magnetic field in the coil,
we obtain the external magnetic fluxφ = l2µ0H, with the
external magnetic fieldH = H0 e−iωt + c.c. Taking the time
derivative of (10) and dividing byL yields

Ï +
1

LC
I =

1

L
U̇ind = +ω2 µ0l

2

L
H0 e−iωt + c.c. (11)

Upon inserting the obvious ansatzI = I0e
−iωt + c.c., we

obtain the currentI, the individual magnetic dipole moment
l2 I, and the magnetizationM = (NLC/V ) l2 I. Here we have
introduced the number ofLC circuits NLC per volumeV .
Suppose that the lattice constant in the SRR plane isaxy ≥ l,
andaz ≥ t in the direction normal to the SRRs. This leads to
NLC/V = 1/(a2

xy az). Finally usingM = χm(ω)H, µ(ω) =
1 + χm(ω), and (2) brings us to

µ(ω) = 1 +
F ω2

ω2
LC − ω2

. (12)

Apart from the∝ ω2 numerator, this represents a Lorentz-
oscillator resonance. Here we have lumped the various pre-
factors into the dimensionless quantityF with

0 ≤ F =
l2 t

a2
xyaz

≤ 1 . (13)

F = 1 corresponds to nearest-neighbor SRRs touching
each other – obviously the ultimate upper bound for the
accessible SRR density. Thus, we can interpretF as a filling
fraction. Ohmic losses, radiation losses and other broadening
mechanisms can be lumped into a dampingγm of the magnetic
resonance.

The bottom line is that the split-ring resonator is the
magnetic analogue of the usual (electric) Lorentz oscillator
model. The permeability of a closed ring, i.e., the special case
of d → 0 ⇒ C → ∞ ⇒ ωLC → 0 in (12), reduces to

µ(ω) = const. = 1 −F ≥ 0 . (14)

In other words: The split in the ring isessential for obtaining
µ(ω) < 0. For example, for 30% lateral spacing (axy = 1.3×l)

and for a spacing in the vertical direction equal to the SRR
thickness (az = 2× t), we obtainF = 0.30 andµ = 0.70 for
closed rings. Note, however, that we have tacitly neglectedthe
interaction among the rings in our considerations leading to
this conclusion. The assumption of noninteracting rings isjus-
tified for F ≪ 1, but becomes questionable forF → 1. What
qualitative modifications are expected from the interaction of
rings? The fringing field of any particular ring at the location
of its in-plane neighbors is opposite to its own magnetic dipole
moment, hence parallel to the external magnetic field of the
light. Thus, in-plane interaction tends to effectively increase
the value ofF in (14). In contrast, interaction with rings
from adjacent parallel planes tends to suppressF in (14).
It is presently unclear, whether a particular arrangement of
rings could allow for an increase ofF sufficient to obtain
µ(ω) < 0 (also see Ref. [3]). Interaction similarly influences
the behavior of split rings.

We note in passing that the description of an isotropic
(meta)material in terms ofǫ(ω) and µ(ω) may be valid, but
it is not unique. Indeed, it has already been pointed out in
Ref. [8] that, alternatively, one can setµ̃ = 1 and describe the
(meta)material response in terms ofspatial dispersion, i.e., via
a wave-vector dependence of the electric permittivityǫ̃(ω, k).
One must be aware, however, that the resulting “refractive
index” ñ(ω, k) looses its usual meaning. A more detailed
discussion of this aspect can be found in Ref. [9].

Historically, the first demonstration of negative-index meta-
materials was in 2001 at around10GHz frequency or3 cm
wavelength [10], a regime in which SRR “magnetic atoms” can
easily be fabricated on electronic circuit boards. The negative
permittivity was achieved by additional metal stripes. In 2004
[11], µ(ω) < 0 has been demonstrated at about1THz fre-
quency (300µm wavelength) using standard microfabrication
techniques for the SRR, Ref. [12] reviews this early work.

III. T OWARDS MAGNETISM AT OPTICAL FREQUENCIES

At this point, our experimental team entered this field –
partly driven by the scepticism that similar materials would
not be possible at optical frequencies. In our first set of
experiments, we scaled down the lateral size of the SRR
by two more orders of magnitude, leading to the following
parameters:l = 320 nm, w = 90nm, t = 20nm, and
d = 70nm. On this basis, we anticipated a magnetic resonance
at aboutλLC = 3 µm wavelength. These “magnetic atoms”
were arranged on a square lattice withaxy = 450 nm ≈
7 ×λLC (and larger ones) and a total sample area of(25 µm)2.
For normal incidence conditions, however, the light has zero
magnetic-field component perpendicular to the SRR plane.
Thus, excitation via the magnetic field is not possible. Al-
ternatively, the magnetic resonance can also be excited via
the electric-field component of the light if it has a component
normal to the plates of the capacitor, i.e., if the incident light
polarization is horizontal. In contrast, for normal incidence
and vertical incident polarization, neither the electric nor the
magnetic field can couple to the SRR. This “selection rule” can
be used to unambiguously identify the magnetic resonance.

Corresponding measured transmittance and reflectance spec-
tra are shown in Fig. 2. Independent of the lattice constant,axy,
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two distinct resonances are clearly visible. With increasing
axy, these resonances narrow to some extent because of
the reduced interaction between the SRRs, but their spectral
position remains essentially unchanged as expected for the
electric and magnetic resonant responses of SRRs. This also
clearly shows that Bragg diffraction plays no major role. The
long-wavelength resonance around 3 µm wavelength is present
for horizontal incident polarization and absent for vertical
polarization – as expected from the above reasoning. Further-
more, as expected from the previous section, this resonance
disappears for closed rings (Fig. 2 G and H), i.e., ford → 0,
henceωLC → 0. The additional short-wavelength resonance
between 1 and 2 µm wavelength is due to the particle plasmon
or Mie resonance, mainly exhibiting an electric permittivity,
which follows a Lorentz oscillator form according to

ǫ(ω) = 1 +
F ω2

pl

ω2
Mie − ω2 − iγω

, (15)

with the metal Drude model dampingγ. The constantF
depends on the SRR volume filling fraction. We will come
back to the Mie resonance in more detail below.

All features of the measured spectra (Fig. 2) are reproduced
by numerical calculations using a three-dimensional finite-
difference time-domain approach [6] (not shown here). The
corresponding calculated field distributions [6] (not shown
here) support the simplistic reasoning on SRRs in the previous
section. Retrieving [13] the effective permittivityǫ(ω) and
magnetic permeabilityµ(ω) from the calculated spectra, in-
deed revealsµ < 0 associated with theλLC = 3 µm resonance
for appropriate polarization conditions [6].

Two questions immediately arise: (i) Can the magnetic
resonance frequency be further increased by miniaturization
of the SRRs and (ii) can one also experimentally demon-
strate coupling to the magnetic (orLC) resonance via the
magnetic-field component of the light at optical frequencies?
Both aspects have been addressed in our Ref. [14]. Electron
micrographs of miniaturized structures are shown in Fig. 3 (a).
(i) The corresponding measured spectra for horizontal incident
polarization in Fig. 3 (b) reveal the same (but blue-shifted)
resonances as in Fig. 2 A. For vertical incident polarization,
compare Fig. 3 (c) and Fig. 2 B. (ii) In Fig. 4(a), the electric
component of the incident light can not couple to theLC circuit
resonance for any angle [in (b) it can]. With increasing angle,
however, the magnetic field acquires a component normal
to the SRR plane. This component can induce a circulating
electric current in the SRR coil via the induction law. This
current again leads to a magnetic dipole moment normal to
the SRR plane, which can counteract the external magnetic
field. The magnitude of this resonance (highlighted by the
gray area around 1.5 µm wavelength) is indeed consistent
with theory [14] (not depicted here) and leads to an effective
negative magnetic permeability for propagation in the SRR
plane and for a stack of SRR layers rather than just one layer
as considered here. This aspect has been verified explicitlyby
retrieving the effective permittivity and permeability from the
calculated transmittance and reflectance spectra [13], [15].

An unexpected feature of the spectra in Fig. 4 (a) is that
the 950-nm wavelength Mie resonance at normal incidence

Fig. 2. Measured transmittance and reflectance spectra (normal incidence). In
each row of this “matrix”, an electron micrograph of the corresponding sample
is shown on the RHS. The two polarization configurations are shown on top of
the two columns. A, B (lattice constanta = 450 nm), C, D (a = 600 nm) and
E, F (a = 900 nm) correspond to nominally identical split-ring resonators,G
and H (a = 600 nm) to corresponding closed rings. The combination of these
spectra unambiguously shows that the resonance at about 3 µm wavelength
(highlighted by the gray areas) is theLC resonance of the individual split-
ring resonators. Taken from [6].

splits into two resonances for oblique incidence. This aspect
is reproduced by numerical calculations [14], [16]. Intuitively,
it can be understood as follows: For normal incidence and
vertical polarization, the two similarly shaped vertical SRR
arms contribute. These arms are coupled via the SRR’s bottom
arm (and via the radiation field). As usual, the coupling of
two degenerate modes leads to an avoided crossing with two
new effective oscillation modes, a symmetric and an anti-
symmetric one, which are frequency down-shifted and up-
shifted as compared to the uncoupled resonances, respectively.
The anti-symmetric mode cannot be excited at all for normal
incidence as it has zero effective electric dipole moment. The
red-shifted symmetric mode can be excited. It even has a larger
effective electric dipole moment than a single arm. Indeed,the
Mie resonance for vertical polarization is deeper and spectrally
broader than for horizontal polarization in Fig. 2, and red-
shifted with respect to it. For finite angles of incidence, the
phase fronts of the electric field are tilted with respect to the
SRR plane. Thus, the vertical SRR arms are excited with
a small but finite time delay, equivalent to a finite phase
shift. This shift allows coupling to the anti-symmetric mode
of the coupled system of the two vertical arms as well. In
one half cycle of light, one gets a positive charge at the
lower LHS corner of the SRR and a negative charge at the
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lower RHS corner, resulting in a compensating current in the
horizontal bottom arm. Characteristic snapshots of the current
distributions in the SRR have been shown schematically in
[14].

According to this reasoning for oblique incidence (e.g.,
60◦), we expect a circulating current component for wave-
lengths near the two magnetic resonances at 1.5 µm and
800 nm, respectively. Any circulating current is evidently
connected with a current in the horizontal bottom arm of
the SRR. According to the usual laws of a Hertz dipole, the
corresponding charge oscillation in the bottom arm can radiate
into the forward direction with an electric field component
orthogonal to the incident polarization. In other words: For
oblique incidence, the fingerprint of the magnetic resonances
is a rotation of polarization. Such rotation is indeed unam-
biguously observed in the numerical simulations (not shown
here, see [14]) and in the experiments [see grey area in Fig. 4
(a)].

Further down-scaling of the SRR size is eventually limited
by the fact that the resonances stop shifting with decreasing
SRR size (see discussion in section II). The shortest magnetic
resonance wavelengths that we have achieved are around 900
nm using gold SRR (not shown, unpublished).

We note in passing that there is a continuous transition
between the two-fold degenerate Mie resonance of a metallic
square-shaped “particle” and a SRR, exhibiting a magnetic
resonance and a Mie resonance. This transition has been
investigated by us in Ref. [17] using the rapid prototyping
capabilities of focused-ion-beam writing.

The above discussion on the antisymmetric and symmetric
eigenmodes of the two coupled vertical SRR arms makes one
wonder whether the SRR bottom arm is necessary at all.
Indeed, it is not. This has basically been explained above
and can alternatively be discussed as follows: Eliminating
the bottom arm can be viewed as introducing a second
capacitance into theLC-circuit. This effectively reduces the
total capacitance in the circuit, hence it increases the magnetic
resonance frequency for a given minimum feature size. On
the one hand, this eases access to the (near-)visible regimeat
reduced fabricational effort. On the other hand, this increased
resonance frequency at fixed lattice constant decreases theratio
between (resonance) wavelength,λLC , and lattice constant,
axy, to aboutλLC/axy ≈ 2−3. In the true metamaterial limit,
one aims atλLC/axy ≫ 1. Recall that the Bragg condition
corresponds toλLC/axy = 2. Another significant difference
between the original planar SRR design and the resulting cut-
wire pairs is that the latter can be rotated by 90 degrees
with respect to the substrate. This not only further eases
nanofabrication but also allows for a magnetic permeability
µ(ω) for normal incidence conditions (i.e., the magnetic field
can be perpendicular to the plane spanned by the two wire
pieces, i.e., parallel to the magnetic dipole moment vector).
Corresponding theoretical [18]–[20] and experimental [21]–
[23] work has been published.

Figure 5 (a)-(c) shows our results for cut-wire pairs of
different length but fixed magnesium fluoride (MgF2) spacer
thickness and fixed gold wire width. The dotted curves in (a)
correspond to a nominally identical sample, however,without

Fig. 3. (a) Electron micrograph of a split-ring array with a total area of
(100 µm)2. The lower RHS inset shows the dimensions of an individual
split ring. The corresponding measured normal-incidence transmittance and
reflectance spectra for horizontal and vertical polarization are shown in (b)
and (c), respectively. Taken from [14].

the upmost gold layer. This single cut-wire sample shows only
one pronounced resonance – the Mie resonance – for each
polarization. For an incident polarization along the long axis
of the cut-wire pairs, however,two resonances are observed
which essentially disappear for orthogonal polarization.A
comparison of Fig. 5 (b) and (d) shows the dependence on
the MgF2 spacer thicknessd. As expected from the above
picture of two coupled oscillators, the splitting between the
two effective resonances depends on their coupling: For thin
(thick) spacers, the coupling is strong (weak), hence the two
resonances are split by a large (small) amount in the spectrum.
The obvious polarization dependence of the cut-wire pairs
may be undesired in certain cases. Thus, it is interesting to
also investigate samples for which the wire width equals the
wire length, i.e., wherew = l. In this case, the cut-wire
pairs turn into nanoscopic plate pairs. Their measured optical
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Fig. 4. Measured transmittance spectra taken for oblique incidence for the
configurations shown as insets (whereα = 60◦). In (a), coupling to the
fundamental magnetic mode at 1.5 µm wavelength is only possiblevia the
magnetic-field component of the incident light, for (b), both electric and
magnetic field can couple. Note the small but significant feature in (a) for
60◦ around 1.5 µm wavelength. The lower gray area in (a) is the transmittance
into the linear polarization orthogonal to the incident onefor α = 60◦. This
observable can be viewed as a fingerprint of magnetic resonances under these
conditions. Taken from [14].

properties (shown in Ref. [22]) are qualitatively similar,yet
even more pronounced than in the case of cut-wire pairs.
Reducing the value ofw = l, allows for tuning of the
resulting resonance positions. The retrieval ofǫ(ω) andµ(ω)
from the calculated spectra corresponding to these parameters
yields a negativeµ(ω) around one micrometer wavelength [22]
(not shown). Other groups have even reported a negative real
part of the refractive index around 1.5 µm wavelength for the
above cut-wire pair structures [23], as deduced from measured
interferometric transmittance and reflectance spectra.

IV. CONCLUSION

In contrast to “conventional textbook wisdom,” the magnetic
permeability µ is no longer unity for alloptical materials.
While µ = 1 holds indeed for all knownnatural materials
at optical frequencies, for metamaterialsµ 6= 1 and even
µ < 0 can result. In this class of tailored (mostly periodic)
structures, split-ring resonators (and variations thereof) play
the role of “magnetic atoms” and can lead to local magnetic
dipole moments. Thus, split-ring resonators can be viewed
as the magnetic counterpart of the famous Lorentz oscillator
model for electric dipole moments. For split-ring resonators
made from gold,µ < 0 can be achieved at telecommunication
wavelengths but not in the visible. Other metals and/or other

Fig. 5. Measured spectra of transmittance (solid lines) and reflectance (dashed
lines) for cut-wire pairs with vertical incident polarization (LHS column) and
horizontal polarization (RHS column). Parameters varied: (a) l = 500 nm, (b)
l = 400 nm, and (c)l = 300 nm. Fixed parameters for (a)–(c):w = 150 nm,
t = 20 nm, d = 80nm, ax = 500 nm, anday = 1050 nm. The dash-dotted
curves in (a) are spectra from a nominally identical structure, but without the
upmost gold wire. (d) as (b), butd = 60nm rather than 80 nm. The insets
in (a)-(d) show corresponding electron micrographs (top view). Taken from
[22].

designs might allow for resonances withµ < 0 even in
the visible range. Ultimately, the constituent metal plasma
frequency sets a fundamental limit.

Where does this field go? Many researchers in the field
are driven by the perspective to obtain a negative refractive
index n at near-infrared or optical frequencies by combining
“magnetic atoms” withµ < 0 and “electric atoms” withǫ < 0.
Indeed, corresponding experiments have been presented very
recently [24]. Their figure-of-merit (i.e., the ratio between
real and imaginary part ofn at frequencies where the real
part of n is negative), however, is still below unity, hence
not really satisfactory. Improved designs have been proposed
theoretically [25]. The search for a negative real part ofn
itself is driven by the fascinating possibility of a “perfect lens”
[26] providing sub-wavelength resolution. Accounting forthe
“granularity” of metamaterials and deviations from the strict
case ofn = −1 due to the real [27] and/or the imaginary [28]
part of n, however, appear to limit “perfect lenses” to very
specialized near-field optical configurations.

Possibly, the real potential of photonic metamaterials lies
in other unexplored areas, for example in chiral metamaterials
or in nonlinear metamaterials. In any case, given today’s
possibilities regarding the nanofabrication of tailored “atoms,”
only our own imagination and creativity set the limits.
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