
stress parallel to the Burgers vector in the slip plane
but by other stress components. Thus, the deforma-
tion behavior of materials with nonplanar disloca-
tion cores may be very complex, often displaying
unusual orientation dependencies and breakdown of
the Schmid law. The nonplanar dislocation cores are
the more common the more complex is the crystal
structure, and thus these cores are more prevalent
than planar cores. In this respect, f.c.c. materials (and
also some hexagonal close-packed (h.c.p.) materials
with basal slip) in which the dislocations possess
planar cores and, consequently, the Peierls stress is
very low, are a special case rather than a prototype
for more complex structures.

Additional complex features of the dislocation
core structures arise in covalent crystals where the
breaking and/or readjustment of the bonds in the
core region may be responsible for a high lattice
friction stress, and in ionic solids where the cores can
be charged which then strongly affects the disloca-
tion mobility. Such dislocation cores affect not only
the plastic behavior but also electronic and/or optical
properties of covalently bonded semiconductors and
ionically bonded ceramic materials.

See also: Mechanical Properties: Anelasticity; Mechanical
Properties: Creep; Mechanical Properties: Elastic Beha-
vior; Mechanical Properties: Fatigue; Mechanical Pro-
perties: Plastic Behavior; Mechanical Properties:
Strengthening Mechanisms in Metals; Mechanical Prop-
erties: Tensile Properties; Periodicity and Lattices;

Recovery, Recrystallization, and Grain Growth; Thin
Films, Mechanical Behavior of.

PACS: 61.72.Fp; 61.72.Hh; 61.72.Lk; 72.10.Fk
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Introduction

A plane electronic wave, expðik � rÞ, impinging upon
a local potential, vðjr � rnjÞ, centered at rn, is scat-
tered, thus giving rise to a spherical wave of the form
f ðy;fÞexpðik � rÞ=r as r-N. The scattering ampli-
tude, f, is related to the differential ds=dOð¼
jf ðy;fÞj2Þ, and the total scattering cross section, s.
The total scattering cross section, s ¼

R
jf j2 dO, gives

essentially the part of the area of the incoming wave
front intercepted by the scattering potential. For
transport properties, the relevant cross section is
st ¼

R
ð1 � cos yÞjf j2 dO.

An electron propagating within a solid or liquid is
subject to many local scattering potentials stemming
from the atoms comprising the solid or liquid, and
giving rise to a total scattering potential VðrÞ ¼P

n vðjr � rnjÞ. The response of electrons to VðrÞ is
of central importance in understanding and control-
ling the mechanical, electrical, magnetic, and optical
properties of materials.

Identical and periodically placed scatterers allow a
systematic constructive interference of the scattered
waves, which to a great extent, compensates the ef-
fects of the scattering. As a result, a periodic poten-
tial, VðrÞ, produces plane-wave-like solutions, called
Bloch waves, of the form ukjðrÞexp½iðk � r � okjtÞ�,
associated with bands of allowed values of okj; ukj is
a periodic function of r with the same period as VðrÞ.
Gaps in the spectrum also appear because of sys-
tematic destructive interference (another effect of
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periodicity) and/or well-separated atomic or molec-
ular levels giving rise to nonoverlapping bands.

‘‘Classical’’ Treatment of Disorder

In actual solids, there are always static, chemical
and, structural deviations from periodicity, located
randomly within the solid; in other words, there is
always disorder. The thermal vibrations of atoms (or
ions), although dynamical in nature, can be treated
for fast processes and high temperatures as addi-
tional sources of static disorder. However, at low
temperatures, lattice vibrations and other dynamical
processes lead to inelastic scatterings, which are
clearly distinct from the elastic scatterings considered
up to now; these inelastic scatterings are responsible
for an energy uncertainty, DE, which in turn defines
an inelastic dephasing time tfB_=DE; for t\tf, the
phase is randomized.

Disorder is crucial in determining important trans-
port properties, such as electrical and thermal con-
ductivities, magnetoresistances, photoconductivities,
and metal–insulator transitions. Under normal con-
ditions, the main role of disorder is to change the
propagation of electrons (or more generally, of what-
ever carriers) from ballistic to diffusive; the latter
involves a new characteristic quantity, the so-called
transport mean free path, l, which is connected to
the diffusion length LD ¼ ðDtÞ1=2 by the relation
LD ¼ l=

ffiffiffi
d

p
. D is the diffusion coefficient, t ¼ l=v; v

is the carrier velocity, and d is the space dimensiona-
lity. The transport mean free path, for low concen-
tration, ns ¼ Ns=V, of scatterers is related to the
transport cross section sti of each scatterer by the
relation

1

l
¼ 1

V

XNs

i¼1

sti ½1�

which means that over a length l, the Ns scatterers
within the volume V ¼ Sl will intercept the whole
cross section, S, of the incoming wave (i.e., S ¼P

i sti).
The summation of stis in eqn [1] implies that in-

terference effects have been omitted; thus the term
‘‘classical’’ in the title of this subsection. Actually, a
scattered wave from one scatterer can be scattered
again by other scatterers; this is especially true when
the stis are large and their concentration, ns, is high.
All these single and multiple scattered waves can, in
principle, interfere with one another, possibly modi-
fying the basic result in eqn [1]. The argument in
support of eqn [1] is that constructive and destruc-
tive interference more or less cancel each other as a
result of the interfering waves having random phase

differences (associated with the random positions
and phase shifts of the scatterers).

Weak Disorder and the Role of
Interferences

Consider an electron initially ðt ¼ 0Þ at the point r.
The probability density amplitude, A(t), to again find
the electron at r, after time t, is given by AðtÞ ¼P

n AnðtÞ, where the sum is over all directed path
integrals, An ¼ exp½ði=_Þ

R t
0 Lðrnðt0ÞÞ dt0�, starting and

ending at r. The probability density, dP(t)/d3r, to find
the electron at r after time t is dP=d3r ¼ jAðtÞj2 ¼P

n jAnðtÞj2 þ
P

nam AnðtÞA�
mðtÞ. Omitting the last

double sum on the basis of random phases is
equivalent to the approximation leading to eqn [1].
However, not all terms with man have random phas-
es; indeed, for each path m ¼ %n, where %n is the same as
path n but run in the opposite direction, Am ¼ A%n ¼
An (the last equality stems from time-reversal sym-
metry), and consequently

P
nam AnA

�
m ¼

P
n AnA

�
%nþP

man;%n AnA
�
m. Thus, making the reasonable assump-

tion that
P

man;%n AnA
�
m is really zero because of ran-

dom phases, one may come to the conclusion that
dP/d3r is twice as big as the classical diffusion would
predict, since

P
n AnA

�
%n ¼

P
n jAnj2. Actually, dP(t)/

d3r is less than twice as large because the equality
A%n ¼ An is not valid for very long paths, whose
length far exceeds the inelastic dephasing length
LfRðDtfÞ1=2; for such long paths, repeated inelas-
tic scattering destroys the phase equality of A%n and
An. In any case, the conclusion is that interference
effects make quantum diffusion slower than classical
diffusion, and lead to a decrease of the diffusion
coefficient and the electrical conductivity. This de-
crease is proportional to the integral

R
dt
P

n AnA
�
%n .

The latter can be estimated by taking into account
that the paths which contribute are inside a tube of
cross section l2 (or ld�1 for a d-dimensional system,
where l is the wavelength) around the classical tra-
jectory. Furthermore, the probability of returning is
directly related to the probability of self-intersection
of this orbital tube. Within time dt, the wave would
move by vdt and would sweep a volume dV ¼
ld�1vdt; hence, the probability of self-intersection
during the time interval dt, after time t has elapsed, is
equal to the ratio of the volume dV ¼ ld�1vdt over
the total volume swept up to t; the latter is of the
order of Ld

D ¼ ðDtÞd=2. Hence, the probability of self-
intersection at any time between t ¼ t and t ¼ tf is
proportional to

R tf
t dtld�1v=ðDtÞd=2. The elastic col-

lision time, t ¼ l=v, has been set as the lower limit
because, for t{t, the motion is ballistic and the
probability of self-intersection is zero; the inelastic
dephasing time tf is the upper limit since for t\tf,
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the phase equality of An and A%n is lost. Notice that
at high temperatures, where tfEt, the quantum cor-
rections are negligible. On the other hand, for low
temperatures, where tfct, there is an appreciable
increase in the probability, p, of returning to the
initial point and consequently an appreciable correc-
tion, ds ¼ s� s0, to the classical conductivity, s0, as
a result of interference effects:

dsB� pB1 � tf
t

	 
1=2
E� tf

t

	 
1=2

¼ �Lf

LD
ð1D systemsÞ ½2a�

dsB� pB� l
LD

ln
tf
t

¼ �2l
LD

ln
Lf

LD
ð2D systemsÞ ½2b�

dsB� pB� l2

L2
D

1 � t
tf

� �1=2
" #

¼ � l2

L2
D

1 � LD

Lf

� �
E0 ð3D systemsÞ ½2c�

The above formulas are valid when the disorder is
weak, so that |ds| is considerably smaller than s0,
since otherwise, one could end up with negative con-
ductivity s ¼ s0 þ ds. The condition jdsj{s0 im-
plies that l{LD, which in turn means that under the
present conditions, ds is negligible for 3D systems.
On the other hand, for 1D and 2D systems, ds can
become appreciable when LfcLD; furthermore,
since tf is proportional to T�1 for 2D and T�2=3

for 1D systems, and for very low temperatures, T, it
follows that s for d ¼ 1 and d ¼ 2 decreases with
decreasing T. Such a T-dependence suggests an insu-
lating behavior as T-0K, and consequently, the
nonexistence of one- and two-dimensional metallic
behavior. In other words, the possibility is raised that
in 1D and 2D systems, as Lf-N, the conductivity
may become zero, no matter how weak the disorder
is. The possibility of s-0 as Lf-N may be realized
even in 3D systems when the disorder is strong
enough, so that l\LD. This question is taken up
again in the next subsection, in which formulas
[2a]–[2c] are generalized to the strong disorder case.

This subsection is concluded by pointing out that
the presence of a magnetic field, B, breaks the time-
reversal symmetry, and as a result, breaks the equal-
ity An ¼ A%n, and consequently, reduces the magnitude
of |ds|, and thus, tends to restore the classical
behavior. Actually, the magnetic field adds a term
qA �v to the Lagrangian, where q is the charge
of carriers (� e for electrons), and A is the vector

potential such that B ¼ r� A. So the closed path
integrals, An; A%n, in the presence of B, acquire
an extra phase, that is An ¼ An0 expðifnÞ, A%n ¼
An0 expð�ifnÞ, where fn ¼ qFn=_, and Fn is the
magnetic flux through the closed path. As a result
AnA

�
%n þ A%nA

�
%n ¼ 2jAn0j2 cosð2fnÞ, instead of 2jAn0j2

as in the case B ¼ 0. This implies a periodic variation
of the conductance as a function of the applied
magnetic field if Fn is a constant independent of n.
Indeed, this phenomenon has been observed in cy-
lindrical tubes of cross section S with very thin walls,
and with the magnetic field parallel to the axis of the
tube. The configuration is such that Fn ¼ nBS, where
n ¼ 1; 2;y . Because L2

f is not much larger than S,
the dominant contribution comes from n ¼ 1 and the
conductance, G, varies as dGBcosð2eBS=_Þ; this is
the so-called h/2e Aharonov–Bohm effect. In ring
configurations, such as in Figure 1c, where the
conduction paths are between diametrically opposite
points, the variation of the conductance, dG, is
proportional to cosðeBS=_Þ; this is the so-called h/e
Aharonov–Bohm effect. Notice that the Aharonov–
Bohm effects can provide an operational definition of
the length Lf, since for lengths L\Lf, the charac-
teristic conductance oscillations gradually disappear.
In thin wires, such as in Figures 1d and 1e, the os-
cillatory magnetic field dependence of the conduct-
ance is more complicated as shown in Figure 2. It
must be pointed out that these oscillations are re-
producible (for the same system) and that their size is
universal and Be2=p_. Furthermore, the conduct-
ance in the system of Figure 1d is different from that
in the system of Figure 1e, in spite of the classical
current carrying paths being identical in the two
configurations; this shows the wave nature of elec-
tronic propagation, the non-negligible role of inter-
ference effects associated with the existence of the
ring in Figure 1e, and the nonlocal nature of the
current–electric field relation.

Disorder, Density of States, and Wave
Functions

Three-Dimensional systems

In Figure 3a, the density of states (DOS) of a band
associated with the s-level of identical atoms placed
periodically in a simple cubic lattice is shown; the
bandwidth is 12|V2|, where V2 is the matrix element
transferring electrons between two neighboring
atoms. Disorder is introduced (Figures 3b–3d) by
assuming that the s-levels of atoms are independent
random variables possessing a Gaussian distribution
of standard deviation w. The effects of the disorder
are the following: (1) The analytical singularities
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shown in Figure 3a disappear. (2) The bandwidth
increases as the band edges 7E

ð0Þ
B move to new posi-

tions 7EB, where EB � E
ð0Þ
B ¼ c1w2=jV2j (c1E0:25

in the present case). (3) Besides this widening of the
band, tails in the DOS, r(E), appear which are of
exponential nature, rðEÞBexpð�jEj=E0Þ for EBtjEj,
where E0 ¼ c2w2=jV2j (c2E0:12 in the present case);
these tails give rise to tails in the optical absorption
of semiconductors for _o less than the gap (Urbach
tails). (4) Two characteristic energies, 7Ec, termed

mobility edges, appear at which the nature of the
eigenstates changes from propagating (or extended)
to nonpropagating (or localized, shaded regions in
Figures 3b–3d). The localized eigenstates are trapped
either around a cluster of atoms or around a single
atom whose s-energy level is much different than the
average. For low disorder ðwt2:5jV2jÞ, the mobility
edges follow the band edges closely, jEBj � jEcjBw4=
jV2j3. As the disorder increases, the mobility edges
start moving toward the center of the band, and
eventually they merge together making all eigenstates
of the band localized; this is known as the Anderson
transition (in the present case, this transition occurs
when wC6:2jV2j).

For weak disorders (e.g., Figure 3b), the states near
the center of the band are quasi-Bloch characterized
by the band index, j, the wave vector, k, and the
mean free path, which is connected to the phase
f(r) of the eigenfunction through the relation
/exp½ifðrÞ � ifð0Þ�S ¼ expð�r=2l0Þ, where the sym-
bol /S denotes the average value over all random
variables. The mean free path l0 satisfies eqn [1] with
si instead of sti. As one moves from the center of the
band toward the mobility edges, the amplitude of the
eigenstates develops ever increasing fluctuations,
both in magnitude and spatial extent up to a maxi-
mum length, x; for distances, r, such that a{rtx,
the eigenfunctions exhibit a statistically self-similar,
fractal, behavior (a is the lattice spacing). As
jEj-jEcj; x blows up, x-A=ðjEcj � jEjÞg, where g
has been estimated to be 1.58 (in the absence of a
magnetic field) and 1.43 (in the presence of a magne-
tic field). On the localized sides of the spectrum, the
eigenfunctions, cðrÞ, decay exponentially on the
average, that is, /jcðrÞjSgBexpð�r=LcÞ, as r-N,
where /jcðrÞjSgRexp½/lnjcðrÞjS�, and Lc is the
so-called localization length. For distances, r, such
that a{rtLc, the eigenfunctions exhibit fluctuations
of statistically self-similar, fractal nature. As jEj-
jEcj, Lc blows up: Lc-A0=ðjEj � jEcjÞg.

The contribution of a band to the conductivity,
s(T), is given by sðTÞ ¼

R
dEsðE;TÞð�@f=@EÞ, where

f(E) is the Fermi–Dirac distribution, s(E,T) is pro-
portional to the DOS r(E) and the mobility m(E) at E.
The conductivity s(E,T) for a finite cube of length L
at T ¼ 0 K is given by

sðE; 0Þ ¼ e2

_

0:066

x
þ A1

L

� �
½3�

for E in the extended region (A1 is B0.05),
sðE; 0ÞBexpð�2L=LcÞ in the localized regime, and
for Lc{L. Actually, L, besides the length of the
specimen, can be of any number of upper cut-off
lengths such as Lf or RB ¼ ð_c=eBÞ1=2, the cyclotron
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Figure 1 Various mesoscopic wires. (a) Simple quantum wire.

(b) The gate voltage, VG, creates a restriction which gradually, by

changing VG, leads to the 1D limit. (c) Four probe ring configura-

tion which splits the current to the two semicircular paths. (d, e)

Four probe configurations differing by the presence of the ring in

case (e). The cross sections of the wires are B103 nm2, and their

length Bmm.
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radius in the presence of a magnetic field, or
Lo ¼ ðD=oÞ1=2, the diffusion length in the presence
of an AC field of frequency o, etc. In the presence
of all these upper cut-off lengths, L in the above
formulas should be replaced by an effective length,
L̃, probably of the form L̃�2 ¼ c1L�2 þ c2L�2

f þ

c3L�2
o þ c4R�2

B þ?, where the weights ci are of the
order of unity.

Two-Dimensional Systems

2D systems, such as very thin films or electrons trapped
at the interface of Si/SiO2 or GaAs=AlxGa1�xAs,
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Figure 2 Electrical conductance vs. applied magnetic field for the configuration of Figure 1d (left) and for that of Figure 1e (right).

(Reproduced with permission from Webb RA and Washburn S (1988) Quantum interference fluctuations in disordered metals. Physics

Today 41: 46; & American Institute of Physics.)
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Figure 3 The density of states (DOS) of a band associated with the s-level of atoms placed periodically in a simple cubic lattice. The s-

level of each atom is an independent random variable of Gaussian probability distribution with zero-average value and standard

deviation equal to w, which goes from zero (case (a)) to 6.5|V2| (case (d)). The bandwidth at w ¼ 0 is 12|V2|. Shaded regions correspond

to localized eigenstates.
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are borderline as far as localization properties are
concerned. In the absence of magnetic forces, all
eigenstates are localized, no matter how weak the
disorder is (exceptions do exist). In the presence of
magnetic forces, the situation is qualitatively similar
to that shown in Figure 3b–3d with an extremely
narrow region of extended states at the center of the
band. This picture has been employed to interpret the
so-called integral quantum hall effect (IQHE), where
as the Fermi level moves in the localized regime,
the Hall resistance does not change until it enters the
extended regime and a rather abrupt step is exhibited.

In the absence of magnetic forces, the localization
length at E is related to the mean free path
lðEÞ : LcðEÞC2:7lðEÞexp½SðEÞlðEÞ=4�, where S(E) is
the length of the line in k-space satisfying the equa-
tion Ek ¼ E. The conductivity s(E,0) is given by an
approximate interpolation formula involving L̃ and
Lc as well as a length r0Cc0l. In the limit L̃{Lc,

sEs0 �
e2

p2_
ln

L̃

r0
½4�

while for Lc{L̃; s ¼ ð2s0L̃=LcÞexpð�2L̃=LcÞ. Equa-
tion [4] is similar to eqn [2b] and is known as a weak
localization correction. For L̃CRB, eqn [4] gives
Ds� s(B)�s(0)¼ (e2/2p2_)ln[1þ (eL2

fB/1.78_c)], that
is a negative magnetoresistance, DR=RC� Ds=s, as
shown in Figure 4. For LCLfBT�1=2, the above for-
mulas for the conductivity show that s-0 as T-0 K.
Notice, however, that electron–electron interactions
produce a similar temperature dependence. Neverthe-
less, recent experiments at very low temperatures, in

very clean interfaces GaAs=AlxGa1�xAs or Si/SiO2,
have shown that s(T) stops decreasing and starts
increasing with decreasing temperatures.

One-Dimensional and Quasi-One-Dimensional
Systems

For 1D systems, such as the one shown in Figure 1b,
all eigenstates are localized, no matter how small the
disorder is (exceptions do exist); the localization
length is proportional to the mean free path, Lc ¼ cl,
where the coefficient c equals 4 for not-so-strong
a disorder. The conductivity, s, is given by s ¼
ðe2L̃=p_Þ=½expð2L̃=LcÞ � 1�. Thus in the limit L̃{
Lc, s ¼ ðe2Lc=2p_Þ � ðe2L̃=2p_Þ; the first term gives
the classical result s ¼ 2e2l=p_, since Lc ¼ 4l, while
the second is linear in L̃ as in eqn [2a]. Taking into
account that the conductance G in 1D equals to s=L̃
and that the geometrically averaged transmission co-
efficient, T, equals to expð�2L̃=LcÞ, the formula for s
can be recast as G ¼ ðe2=p_ÞT=ð1 � TÞ. However, a
direct calculation of G gives G ¼ ðe2=p_ÞT. This
discrepancy is due to the fact that the first formula
gives the conductance of the wire per se without
taking into account the two contact resistances
2Rc ¼ p_=e2, and it requires a four-probe measure-
ment for its determination; on the contrary, the result
G ¼ ðe2=p_ÞT is the outcome of a two-probe meas-
urement and it includes the contact resistances, so
that 1/G¼ 2RcþRw¼ (p_/e2)þ (p_/e2)[(1�T)/T]¼
(p_/e2)/T. In the presence of M coupled parallel to
1D channels in the limit where L̃{l and TC1, the
two-probe measurement will give G ¼ ðe2=p_ÞM in
agreement with the experimental results in Figure 5.
The importance of the above formulas lies in their

6

3

0
0 35 70 105 140

B(G)

−∆
R

/R
(%

)

L = 2100 µm
W = 300 µm

T = 0.30 K

0.49 K

0.88 K

1.39 K

4.20 K

Figure 4 Experimental data (solid squares) and theoretical re-
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capability to be generalized to a multiterminal sys-
tem; each terminal, i, is in contact with a reservoir at
electrochemical potential mi ¼ � ej jVi, and feeds the
system with a net current Ii

Ii ¼
e2

p_

X
i

Ti’jðVi � VjÞ ½5�

Equation [5] is very useful in treating many me-
soscopic systems, such as quantum dots exhibiting
the phenomenon Coulomb blockade.

Justifying the Localization Picture

Several theoretical/numerical methods have been
employed to obtain the various localization quanti-
ties such as Lc, x, Ec, ds, etc.

Level Statistics

Localized eigenstates belonging to neighboring en-
ergy levels of a very large system are, in general, far
away from one another and hence, they have negligible
overlap and as a result, negligible level repulsion. On
the contrary, extended eigenstates always overlap, and
thus always exhibit level repulsion. Hence, the prob-
ability distribution of the separation of two consecutive
energy levels (which can be obtained numerically) is
quite different for localized and extended eigenstates.
This difference is an efficient way for determining
regions of localized and extended states.

Transfer Matrix Techniques

A transfer matrix, t12, propagates the general solution
of the wave equation from point x1 to point x2 along
1D and quasi-1D systems. By multiplying transfer
matrices, t0L ¼ t12t23ytNL, the solution at one end
ðx ¼ 0Þ can be connected to the solution at the other
end ðx ¼ LÞ. For disordered quasi-1D systems, the
eigenvalues of t0L come in pairs (mi, %mi), such that
mi-expðL=LciÞ and %mi-expð�L=LciÞ as L-N,
where 7L�1

ci are the so-called Lyapunov exponents.
The longest Lci, Lc, determines the transmission co-
efficient, T, of the quasi-1D system of length L as
T ¼ ð�2L=LcÞ. By considering quasi-1D strips of M
coupled channels arranged in a plane, or wires of
square cross section with M2 channels, Lc(M) can be
determined numerically; by employing a scaling prop-
erty, the limit M-N can be taken, which determines
Lc for the 2D case ðLc ¼ lim LcðMÞ as M-NÞ, and
both Lc (when Lc(M) converges as M-N) and x
(when LcðMÞBM2=x) for the 3D case.

Scaling Approach

In the model considered in Figure 3, the only relevant
parameter is the dimensionless ratio w/|V2|. Then a

cluster of p neighboring atoms of length L1 ¼ p1=da
(where a is the lattice spacing) is examined and one
may attempt to define a single dimensionless ratio,
Q1, which would play for the cluster the same role as
w/|V2| plays for each atom. By repeating the rescaling
n times, where n eventually approaches infinity, one
finds that Qn ¼ ð_=e2ÞG, where G is the conductance
of a d-dimensional ‘‘cube’’ of linear dimension
L ¼ pn=da. Since QnRQðLÞ is the only relevant
parameter, the occurrence or not of localization
depends on whether Q(L) tends to infinity or to zero
respectively, as L-N. To find this limit, the logarit-
hmic derivative b ¼ d ln Q=d ln L, which depends on
the parameter Q, is defined. In the limit Q-N, the
classical behavior is approached, which gives that
QBGBLd�2; hence b-d � 2, that is, negative for
do2 and positive for d42. Assuming that b is a
monotonically increasing function of Q, one can
conclude that in the limit L-N, G-0 for do2. For
d42, G-N as L-N (in the region b40), and
G-0 as L-N (in the region bo0).

Potential Well Analogy

More sophisticated approximate analytical appro-
aches for the calculation of s permit one, under cer-
tain conditions, to map the localization question to
that of an effective d-dimensional potential well
(in the absence of magnetic forces) of depth
V0ðEÞB½s0ðEÞ��1½lðEÞ��d and linear extent a BlðEÞ.
If this effective potential well sustains a bound state
of decay length Lc(E), then the states at E are local-
ized with localization length equal to Lc(E). If the
effective potential well exhibits a resonance in the
cross section at Er(E), then the eigenstates at E
are extended with a length x given by ErðEÞ ¼
_2=2mx2ðEÞ, xcl. Using the fact that a potential
well, no matter how shallow, always sustains a
bound state for dp2, while it must exceed a critical
value of V0a2 to sustain a bound state for d ¼ 3, the
basic picture presented before is recaptured, before
including the expressions for the localization length
in 1D and 2D systems. Furthermore, by employing
the critical value of V0a2, one finds that localized
states appear in 3D systems, when the product
lkt0:85 or l=lt0:14; this is the so-called Ioffe–
Regel criterion.

Classical Wave Localization

In addition to the work of electronic localization
presented above, the question of classical localiza-
tion has received attention. This interest is due partly
to the fact that classical waves, such as electromagne-
tic or acoustic/elastic, being subject to destructive
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interference and hence to the possibility of localiza-
tion, can serve as a model system for testing the
theory of Anderson localization of electrons exper-
imentally in a clean way, without the complication of
strong inelastic scattering and other effects of elec-
tron–electron and electron–phonon interactions. On
the other hand, it is harder to localize classical
waves, mainly due to the fact that at low frequencies,
the effects of disorder tend to be wiped out, whereas
electrons at low energies are trapped very effectively,
even by a weak random potential.

To see this, consider the simple scalar wave equa-
tion, r2u þ ðo2=c2Þu ¼ 0, where the velocity, c(r), in
the medium varies from point to point between a
maximum, cM, and a minimum, cm, value. Compare
this equation with Schrödinger’s equation in the pres-
ence of a potential V(r) which varies between VM and
Vm. The two equations are mathematically equivalent
if one makes the following correspondences:

o2

c2
M

2
2m

_2
ðE � VMÞ ½6a�

o2 1

c2
M

� 1

cðrÞ2

 !
2

2m

_2
½VðrÞ � VM� ½6b�

Equation [6a] implies that classical waves correspond
to electronic waves, but for energy above the max-
imum value of the potential; eqn [6b] shows that the
scattering producing fluctuations in the classical wave
case are multiplied by o2, and thus are fully inef-
fective for low frequencies. The conclusion is that
classical waves can only be localized, if at all, at in-
termediate frequencies. The analogies between the
classical and quantum problems indeed lead to many
cross fertilizations, since solutions obtained in one
field can be carried over to the other. However, con-
siderable care has to be exercised in transforming the
results of the theory of localization of electrons to the
case of classical waves. The most important differ-
ence is that for classical waves, the equivalent of the
particle number is not conserved. The quantity cons-
erved here is the energy, leading to a diffusion
behavior of the energy density. Another difference is
that the scattering potential is frequency dependent as
shown in eqn [6]. As a consequence, the energy
transport velocity entering the diffusion coefficient
for a strongly disordered system may be appreciably
renormalized, and, as a result, diffusion coefficients
can be quite small even far from the localization
transition. In particular, the low values experimen-
tally obtained for the diffusion coefficient, D ¼ vEl=3,
are caused by extremely small values of the energy
transport velocity, vE, and not necessarily by the small
values of l, which would signify strong localization. It

is well understood that low values of vE for classical
waves are due to the Mie resonances of the scatterers.
Near resonances, a lot of energy is temporarily stored
inside the dielectric scatterer or, equivalently, the
wave spends a lot of time (dwell time) inside the
dielectric scatterer.

The outstanding problem in classical wave local-
ization is to find the optimal conditions for its real-
ization. It has been suggested that an intermediate
frequency window of localized states separates the
low-frequency extended states, characterized by Ray-
leigh scattering, from the high-frequency extended
states, described by geometric optics. Theories based
on weak scattering limit and on the coherent poten-
tial approximation (CPA) predict frequency intervals
within which localization should be observed. These
predictions are based on extrapolation of results
obtained in the weak disorder regime. Wiersma et al.,
in 1997, reported experiments at the near-infrared in
GaAs powders, where the transmission coefficient, T,
was measured in the extended, critical, and localized
regimes. In the critical regime, T should vary with the
inverse of the square of the sample thickness and in
the localized regime, it should vary exponentially
with the thickness. F Scheffold et al., in 1999, argued
that the results can be interpreted on the basis of the
classical diffusion theory if absorption is included.
One way to separate the effects of absorption
and localization is to measure fluctuations of the
transmission T, in addition to more conventional
transport properties. This can be done easier at
microwave frequencies, where one can measure both
the amplitude and the phase of the electric field.

To facilitate the solution of the classical wave
localization problem, it was proposed to construct
first a periodic medium which, hopefully, will pro-
duce a spectral gap, and then by a disordering proc-
ess, to create tails of localized states in this gap. The
first part of this proposal produced much more than
what one was looking for initially: it led to the cre-
ation of the so-called photonic (and phononic) band
gap (PBG) artificial materials, and to the emergence
of a new technological field.

See also: Disordered Magnetic Systems; Disordered
Solids and Glasses, Electronic Structure of.
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Introduction

Disordered magnetic systems, when defined widely,
comprises the whole field of applied magnetic mate-
rials – ranging from the extremely soft permalloy to
the hardest permanent magnet as well as the physics of
model systems of strongly disordered magnetic mate-
rials, spin glasses, and random-field Ising systems.

Magnetic ordering requires that the electron sys-
tem forms local or itinerant magnetic moments and
that there is interaction between these moments.
Such interacting magnetic moments will eventually,
as the temperature is lowered, become correlated and
in certain cases form a long-ranged ordered phase at
a critical temperature. The simplest magnetic order
in crystalline systems arises when the leading inter-
action is ferromagnetic and there is only one type of
magnetic ions in the material. The low-temperature
phase then shows a regular pattern with the magnetic
moments all aligned in parallel. Magnetic disorder in
an ideal system of this type is enforced by thermal
energy, and above the critical ordering temperature,
a random paramagnetic phase forms. However, in-
trinsic quenched disorder, due to lattice dislocations,
impurities, and other defects, always appears in a
real magnetic system, also in the magnetically or-
dered phase. This kind of disorder is the key to the
macroscopic magnetic properties of an ordered
ferromagnet. The disorder and the microstructure
of the system then determine if a weakly anisotropic
magnet becomes a good soft ferromagnet or if a
strongly anisotropic system attains applicable per-
manent magnetic properties. It is thus disorder, on

nano- and micrometer length scales, that governs the
quality of applied magnetic materials, whether soft
or hard.

Models

A random distribution of the atomic magnetic ele-
ments in alloys and compounds introduces strong
disorder and deviations from a regular interaction
pattern. The interaction between the magnetic constit-
uents becomes random in size and, in some cases, also
in sign. This causes the appearance of new magnetic
phases and phenomena. An interacting magnetic Ising
system can be described by its spin Hamiltonian

H ¼ �
X

i;j

Ji;jSiSj ½1�

where Ji,j is the exchange interaction strength between
spin Si and spin Sj: spins that in an Ising system point
either up or down. A random-exchange ferromagnet is
described if all Ji,j are positive but of different magnit-
ude, and a spin glass is described if the sign of Ji,j varies
but the mean value is zero. Equation [1] can be used to
describe systems of any dimensionality and any range
of interaction. Another important class of disordered
magnetic Ising systems is the random field system

H ¼ �
X

i;j

Ji;jSiSj þ
X

i

hiSi ½2�

where Ji,j are positive interaction constants and hi is a
local field of random size and sign with zero mean that
acts on spin number Si. This system does not have an
experimental realization, but a dilute Ising antifer-
romagnet in an applied homogeneous magnetic field
has been shown to describe an equivalent problem:

H ¼ �
X

i;j

JeiejSiSj þ Ha

X
i

eiSi ½3�
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