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ABSTRACT: Metasurfaces impart phase discontinuities on impinging
electromagnetic waves that are typically limited to 0−2π. Here, we
demonstrate that multiresonant metasurfaces can break free from this
limitation and supply arbitrarily large, tunable time delays over ultrawide
bandwidths. As such, ultrathin metasurfaces can act as the equivalent of
thick bulk structures by emulating the multiple geometric resonances of
three-dimensional systems that originate from phase accumulation with
effective material resonances implemented on the surface itself via
suitable subwavelength meta-atoms. We describe a constructive
procedure for defining the required sheet admittivities of such
metasurfaces. Importantly, the proposed approach provides an exactly linear phase response so that broadband pulses can
experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an
antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which
completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a
broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances,
thus opening up diverse possibilities in the temporal applications of metasurfaces.
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Metasurfaces are the two-dimensional versions of
metamaterials, typically formed by arranging subwave-

length resonant meta-atoms on a single plane. They have been
investigated intensely in recent years for an abundance of
functionalities spanning perfect absorption,1,2 dispersion
compensation,3 electromagnetically induced transparency,4

wavefront transformations,5−21 polarization control,22,23 and
nonreciprocal response.24,25 Operation in both transmission
and reflection has been examined, and the main achievements
can be found in recent review papers.26−29

An important realization along the way has been that
metasurfaces with both electric and magnetic response can
extend the π phase span offered by purely electric resonant
sheets and provide a phase modulation approaching 2π. This,
by Huygens’ principle, allows for full control over the
wavefront; at the same time, the excitation of both electric
and magnetic surface currents allows for unidirectional
scattering. Thus, impedance-matched gradient metasurfaces
that provide maximum efficiency in transmission and perform
prescribed wavefront transformations became possible.7 Still,
even electromagnetic sheets exhibit a limited delay-bandwidth
product, restricted by the maximum 2π shift obtained over the
narrow bandwidth of the matched resonance pair.
In this work, we demonstrate that metasurfaces can

overcome this longstanding limitation and provide arbitrarily
large time delays over broad bandwidths. This is achieved by
implementing multiple, properly arranged resonances in the

effective surface admittivities. As such, ultrathin metasurfaces
can act as the equivalent of thick bulk structures, by emulating
the multiple geometric (e.g., Fabry−Peŕot) resonances of three-
dimensional systems that originate from phase accumulation
with effective material resonances on the surface itself via
suitable subwavelength meta-atoms. Both electric and magnetic
resonances are necessary for obtaining control over unidirec-
tional radiation. Importantly, we require flat amplitude response
and an exactly linear phase profile corresponding to zero group
delay dispersion. As a result, broadband pulses can interact with
the metasurface and experience the desired group delay with
zero pulse distortion. The group delay can be readily tuned (or
switched off) by modifying (quenching) the implemented
resonances, thus opening up diverse possibilities in the
temporal applications of metasurfaces.
We focus on operation in reflection mode, drawing on an

idea introduced in ref 30 for operation in transmission.
Operating in reflection is highly desirable for the tunable
delay applications since any control circuitry for tuning the
implemented resonances can be accommodated behind the
metasurface without interfering with the electromagnetic wave.
Notably, efficient operation in reflection is achieved by
exploiting an admittivity antimatching condition which zeroes
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out transmission. As a result, the proposed metasurfaces are
highly efficient with power lost only through absorption.

■ CREATING A MONOTONIC ACCUMULATIVE
REFLECTION PHASE

In ultrathin metasurfaces where geometric resonances are
absent, phase delay can only be provided by effective material
resonances, i.e., those of the constituent meta-atoms. For
arbitrarily large delays one needs to break free from the typical
singly resonant metasurfaces and enter the multiresonant
regime. Our first concern is to determine the proper way of
arranging multiple resonances so that the respective phase shifts
combine constructively, producing a monotonic aggregate
phase shift.
Let us consider a metasurface described by electric and

magnetic surface admittivities (complex conductivities) σse and
σsm measured in S and Ω, respectively.31 We assume that the
macroscopic admittivities are the result of homogenized
microscopic meta-atom responses and can feature multiple
Lorentzian resonances. The equations relating the surface
admittivities with reflection and transmission coefficients
are32,33
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where we have defined dimensionless ef fective admittivities
σ̃se(ω, θ) = ζσse/2 and σ̃sm(ω, θ) = σsm/(2ζ). Note that ζ

TE(θ)
= ωμ/k⊥ = η sec(θ) and ζTM(θ) = k⊥/(ωε) = η cos(θ) for the
TE and TM polarization, respectively, where θ is the incidence
angle and η μ ε= / is the characteristic impedance of the
homogeneous host medium. Both r and t as well as σ̃se and σ̃sm
depend on the polarization, with the notation suppressed for
brevity.
A single resonance in the electric or magnetic surface

admittivity results in a spectral region of high reflection and an
underlying π phase variation. The bandwidth of high reflection
is limited, being directly associated with the resonance
linewidth. Trying to increase the bandwidth and the available
phase span, one could think of placing two resonances of the
same kind (electric or magnetic) side by side (Figure 1a).
However, the resonances do not combine in a single high-
reflection region. The respective susceptivity (imaginary part of
admittivity) contributions compensate each other approx-
imately halfway between the two resonant frequencies. At the
zero crossing we get a reflection zero since no currents are
induced on the metasurface. Importantly, while traversing the
zero crossing, the polarization shifts from antiphase to in-phase
and the reflection phase from 3π/2 to π/2 (Eref ∝ Jse ∝ Ṗse).
Thus, the reflection phase is not monotonic and respective π
shifts do not add up to 2π.
Reflection phase monotonicity can be achieved by utilizing

adjacent resonances of different kind (Figure 1b). Since electric
and magnetic susceptivities cannot compensate each other, the

reflection phase becomes monotonic and respective π shifts add
up to 2π. Moreover, by avoiding the zero crossing and the
associated reflection zero we end up with a single high-
reflection region. This concept can be generalized to multiple
resonances despite the fact that susceptivity zero crossings will
be inevitably present. Consider for example alternating electric,
magnetic, electric resonances (Figure 1c). Although there is a
zero crossing in the electric susceptivity, it is masked by the
magnetic resonance and the associated reflection zero is
avoided. As a result, the reflection phase is monotonic and
respective π shifts add up to 3π. Note that out of the available
3π span more than 2π is obtained under high reflection. Thus,
Figure 1c illustrates a way of achieving a 2π span in reflection
using passive isotropic metasheets. This can be exploited in
designing gradient metasurfaces in reflection, presenting an
alternative to magnetoelectric coupling13 or structures with a
ground plane.10,11 Three resonances are required in contrast to
the transmission case, where two matched electric and magnetic
resonances provide the entire 2π shift under high transmission.

■ BROADBAND UNIFORM REFLECTION WITH ZERO
GROUP DELAY DISPERSION

We now seek to build on the concept of alternating resonances.
Our goal is to perfectly reflect broadband pulses imparting on
them a tunable time delay. Observing Figure 1c, we recognize
that the reflection bandwidth is finite, the amplitude is not flat,
and the phase is not linear. To accommodate arbitrarily
broadband pulses without any pulse distortion, we need
wideband flat reflection with zero group delay dispersion.
Mathematically, we require ω τ ω= −r i( ) exp( )0 and t(ω) =
0 for the scattering amplitudes of the metasurface, where τ0 is

Figure 1. Metasurface with resonant surface admittivities. (a) Adjacent
resonances of the same kind (electric). The susceptivity zero crossing
leads to a reflection minimum. The reflection phase is not monotonic.
(b) Adjacent electric and magnetic resonances. Electric and magnetic
susceptivities cannot compensate each other, and the reflection phase
is monotonic. (c) Alternating electric and magnetic resonances. The
magnetic resonance masks the electric susceptivity zero crossing. The
reflection zero is avoided, and the reflection phase is monotonic. For
the parameters of the Lorentzian resonances see the Supporting
Information.
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the desired group delay and the prefactor allows for some
absorption in the metasurface.34 Substituting this mathematical
prescription in eq 2 we find
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stating that the surface admittivities should exhibit a specific
frequency dependence while being complex inverses. Notice
that the poles of σ̃se coincide with the zeros of σ̃sm and vice
versa, in agreement with the concept of interleaved resonances
guaranteeing a monotonic accumulative reflection phase.
Importantly, in analogy with the well-known admittivity
matching condition σ̃se = σ̃sm

7 which zeroes-out reflection, eq
1a, there is an antimatching condition σ̃se = 1/σ̃sm that zeroes
out transmission, eq 1b. This condition has been identified
independently in refs 35 and 36, albeit exploited for a single
frequency point.
Equation 3 describes the target spectrum. However, only

certain types of resonant behavior are available in nature. Thus,
we seek a good approximation of the target spectrum using
Lorentzian resonances, which can be provided by subwave-
length meta-atoms. Using a partial fraction decomposition at
the poles of eq 3, as detailed in the Supporting Information, we
end up with a physical recipe that matches the target spectrum
almost perfectly. It requires trains of interleaved electric and
magnetic Lorentzian resonances with proper frequency spacing,
strength (κ), and damping (Γ):
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where ω π τ= +k[(2 ) ln ( )] /ke,
2 2 1/2

0 with k = 1, 2, ...,

ω π τ= + +k{[(2 1) ] ln ( )} /km,
2 2 1/2

0 with k = 0, 1, 2, ...,

κ e = κ m = 4 / τ 0 , τΓ = Γ = | |2 ln( ) /e m 0, a n d
Γ = − | | Γ[2(1 )/( ln( ) )]e

cor
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resonances guarantee the monotonicity of the reflection phase,
as illustrated in Figure 1c. The specific frequency spacing,
strength, and damping are required for providing uniform
reflection and a linear phase response. The only input
parameters of the recipe are the desired group delay τ0 and
the allowed attenuation in the metasurface . For large (of
practical interest) values of the normalized (ω̃ ≜ ωτ0/π)
electric and magnetic resonant frequencies are given by ω̃e,k ≈
2k (even integers) and ω̃m,k ≈ 2k + 1 (odd integers),
respectively. This can be seen in Figure 2a, where we plot the
recipe for = 0.9 in the spectral region ω̃ = 0...8, involving
the first four electric and magnetic resonances. Notice that the k
= 0 (Drude) electric term is characterized by a different
damping frequency Γe

cor as evidenced by the peaking of Im(σ̃se)
at ∼5 instead of ∼10.
The response of the recipe is plotted in Figure 2b by

substituting eq 4 into eq 1. Reflection R = |r|2 is flat and equal
to the prescribed = 0.812 . This behavior extends to
arbitrarily high frequencies for the untruncated sums of eq 4.
Transmission is zero since we have satisfied the antimatching
condition. Notice the effect of the Drude term correction
meant to provide proper loss at DC (see Supporting
Information). Importantly, the phase is exactly linear. Physi-

cally, this relies on characteristic points with Arg(r) = ∓π/2
showing up at the midpoints between resonances (ω̃ ≈ k + 1/
2). Then, starting from an electric resonant frequency the
reflection phase equidistantly traverses {−π, −π/2, 0, +π/2, +π,
...}, leading to a linear phase response. Note that Arg(r) = ∓π/2
is attained when |σ̃s|= 1 and the admittivities have negative-
equal imaginary parts: σ̃se = ± ia + b and σ̃sm = 1/σ̃se = ∓ia + b.
Substituting in eq 1a one finds r = ∓ia/(1 + b), i.e., Arg(r) =
∓π/2. For values of practical interest the admittivity real
parts are small at the midpoints, leading to a ≈ 1, i.e., to unity
negative-equal susceptivities σ̃se ≈ ±i + ϵ and σ̃sm ≈ ∓i + ϵ with
ϵ2 ≪ 1.

■ TOLERANCE ON INCIDENCE ANGLE−ANGULAR
BANDWIDTH

Let us now investigate the effect of incidence angle on the
recipe described by eq 4 and the corresponding electromagnetic
response. This is important for assessing the angular spectrum
of wave packets with a finite spatial extent that can be
accommodated by the metasurface. We start by noticing that eq
4 is written for the ef fective admittivities. The actual physical
admittivities σse and σsm can be specified once the desired
incidence angle and polarization are determined by utilizing σ̃se
= ζσse/2 and σ̃sm = σsm/(2ζ). Given that ζTE/TM depends on the
incidence angle, the recipe holds exactly only for the prescribed
angle of incidence unless the physical conductivities are
spatially dispersive (nonlocal) with a very specific dispersion
that exactly counteracts the angle dependence of ζTE/TM.
Limiting ourselves to local admittivities, some performance
degradation is inevitable when the actual incidence angle θact is

Figure 2. (a) Lorentzian sum recipe of eq 4 for = 0.9. First four
electric (ω̃e,k ≈ 2k) and magnetic (ω̃m,k ≈ 2k + 1) resonances. Note
the corrected electric Drude (k = 0) term for supplying proper loss at
DC. (b) Metasurface response: The reflection amplitude is flat and the
phase linear. The latter relies on characteristic points of unity negative-
equal susceptivities (σ̃se ≈ ± i + ϵ, σ̃sm ≈ ∓i + ϵ), which lead to a
reflection phase Arg(r) = ∓π/2 occurring at the midpoints between
resonances (ω̃ ≈ k + 1/2).
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different from the prescribed θpre. Specifically, it is easy to show
that for TE polarization the electric effective admittivity scales
with γ = sec(θact)/sec(θpre) and the magnetic effective
admittivity with 1/γ. The opposite holds for TM polarization.
This interferes with the recipe of equally strong electric and
magnetic resonances (cf. Figure 2a). The reflection amplitude
acquires a periodic ripple about the prescribed value , as
demonstrated in Figure 3a for γ = 2 (TE polarization).

Resistive damping is not masked evenly, leading to a
periodically varying absorption, which shows up in the
reflection (see Supporting Information). The ripple period is
equal to the spacing between two adjacent electric (or
magnetic) resonances, i.e., equal to 2π/τ0 in ω or 1/τ0 in f.
In Figure 3a we have chosen τ0 = 0.5 ns, leading to a period of 2
GHz.
Next, we study the impact on a broadband input pulse.

Consider a single Gaussian pulse uin(t) centered at 100 GHz
with a bandwidth of 12 GHz measured at the e−1 amplitude
points. Multiplication of the pulse spectrum Uin(ω) with the
transfer function r(ω) translates into convolution in the
temporal domain. Since the transfer function is periodic, its
temporal response is discrete with a period of 0.5 ns, equal to
τ0. As a result, besides the main output pulse at t = τ0 we get
causal pulse replicas at multiples of τ0 (t = mτ0, m = 0, 2, 3, ...),
with the strongest one at t = 0 (see Supporting Information).
They can become detrimental in a pulse-train scenario,
especially in real-world conditions with additive noise and
jitter (see Supporting Information). Consider for example a

pseudorandom pulse-train u ̃in(t) with a period of Tpt = 250 ps.
The input spectrum, Ũin(ω), is depicted in Figure 3a and is
characterized by prominent peaks every 4 GHz, i.e., the pulse
repetition frequency. In this worst-case scenario where Tpt is
commensurate with τ0, pulse replicas fall on the bit positions,
modifying both logical 1’s and 0’s. This can be clearly seen in
Figure 3c, where we plot the output pulse-train. For the γ = 2
case we have considered, the strongest (t = 0) replica is at 0.2
(only 4% intensity) of the main pulse. If the incidence angle
deviates even more from the prescribed, replicas become
stronger. The fractional peak-to-peak amplitude of the ripple
(Rp−p) increases (color-coded in Figure 3b), and more energy is
transferred to the replicas. In addition, the ripple becomes less
sinusoidal with higher-order replicas coming into play (see
Supporting Information). Depending on the application, only a
certain relative strength of the replicas can be tolerated. In turn,
this sets upper and lower bounds on the actual incidence angle
for a given prescribed angle and defines the minimum spatial
extent for an incident wave packet. These bounds are plotted in
Figure 3b for characteristic cases of the t = 0 replica relative
strength: 0.1, 0.2, 0.5 corresponding to γ = 1.2, 2 , 2.25,
respectively. Obviously, the proposed metasurfaces are
characterized by ample angular bandwidth. Only for very
steep θpre angles does the tolerance on θact deteriorate
noticeably since it depends on the secant ratio γ.

■ REALISTIC IMPLEMENTATION WITH FEW
LORENTZIAN RESONANCES

The recipe described by the infinite sums in eq 4 guarantees
perfectly flat reflection amplitude and exactly linear reflection
phase for arbitrarily wide bandwidths. In practice, however, one
can implement only a limited number of resonances on the
metasurface. Figure 4 examines the effect of truncating the
infinite sum to a practical number of terms keeping three
electric and four magnetic resonances around the normalized
frequency ω̃ = 100. Their positions are marked in Figure 4c
with circles and crosses, respectively. Obviously, truncation
results in a finite reflection bandwidth, as shown in Figure 4c.
The full width half-maximum (fwhm) of the reflection band is
∼6. In addition, it interferes with the antimatching condition
due to the absence of lower- and higher-order resonances (see
Supporting Information). Consequently, the reflection ampli-
tude and group delay slightly deviate from the prescribed
values, predominantly near the band edges (Figure 4c,d).
Let us consider now an incident pulse with a spectral

bandwidth of 4 measured at the e−2 intensity points (Figure 4c)
impinging on the metasurface. The corresponding output pulse
is depicted in Figure 4b. It is somewhat shifted and attenuated
compared to the ideal case of no truncation since, on average, R
and τg are slightly lower than prescribed (Figure 4c,d).
However, there is negligible broadening or distortion, as can
be seen by properly shifting and scaling the ideal output pulse.
Importantly, it is not the nonideal response in the reflection
band, but rather the finite bandwidth that constitutes the
bottleneck of the truncated recipe performance; incident pulses
with higher bandwidths would simply experience windowing
(see Supporting Information).
Finally, we study the combined effect of sum truncation and

θact ≠ θpre. We consider a pulse-train impinging on the
metasurface at an incidence angle different from the prescribed.
The pulse-train period is set to Tpt = 700 ps and τ0 = 500 ps;
they are incommensurate, meaning that pulse replicas will not

Figure 3. Impact of θact ≠ θpre on pulsed input. (a) Reflection
amplitude when γ = 2 and pulse/pulse-train input spectra. The
periodic r(ω) leads to pulse replicas in the temporal domain. (b)
Color-coded fractional peak-to-peak amplitude of R ripple as θact
deviates from θpre. As Rp−p increases, more power is transferred to the
pulse replicas. Contours indicate the relative strength of the strongest
replica compared to the main pulse. For γ = 2 , Rp−p = 15% and the
strongest replica is at 0.2 of the main pulse (dashed contour). (c)
Output pulse-train. Tpt is commensurate with τ0 (250 and 500 ps,
respectively), and pulse replicas fall on the bit positions modifying
logical 1’s and 0’s.
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fall on the bit positions (cf. Figure 3c). The metasurface
response for γ = 2/ 3 is depicted in Figure 4e,f along with the
pulse-train input spectrum. Both reflection amplitude and
group delay deviate from their prescribed values. One period of
the 1/τ0 = 2 GHz ripple due to θact ≠ θpre is clearly visible in the
center of the reflection band, before the effect of truncation also
starts contributing near the band edges. The impact on the
pulse-train can be assessed by constructing the output eye

diagram (Figure 4g). To emulate as realistic a scenario as
possible, we have included jitter (normal distribution with a
standard deviation of Tpt/50) and additive white Gaussian noise
(signal-to-noise ratio of 20 dB). Even in such real-world
conditions, the input pulse-train can be readily recovered as the
levels of logical 1 and 0 are clearly distinguishable.
In Figure 4 we have demonstrated how a multiresonant

metasurface can be used to reflect a broadband pulse-train
imparting a prescribed group delay on the incident pulses. It is
worth noting that the number of resonances needed to cover a
given bandwidth depends on the desired group delay. For
example, the seven resonances in Figure 4a can cover a 7 GHz
bandwidth if the desired group delay is 0.5 ns, or 35 GHz if it is
0.1 ns. Finally, we stress that the proposed approach is general
and not limited to any particular region of the electromagnetic
spectrum. For example, broadband tunable delay components
are particularly useful in wavelength-division-multiplexed tele-
communication systems operating at infrared wavelengths. In
such cases, providing the tunable time delay over broad
bandwidths while preserving signal integrity, as demonstrated
in Figure 4g for Gbit/s transmission rates, is of utmost
importance. The examples in Figures 3 and 4 refer to GHz
carrier frequencies, since implementing multiple electric and
magnetic resonances on the metasurface unit cell should be
easier compared to the infrared or optical regime, allowing for a
first demonstration. For example, one could employ printed
elements on multisided circuit boards as done in refs 7 and 27.
For the meta-atoms, one potential choice is the cut-wire pair,

which supports closely spaced electric and magnetic reso-
nances. By tuning the geometry, the resonant frequencies can
be continuously varied so that the resonances progressively
approach and ultimately cross,37 providing a valuable degree of
freedom. Then, arranging multiple cut-wire pairs inside the unit
cell in an appropriate topology and tuning the system
parameters to accurately space the resonances and balance
their strength could offer a route to a physical implementation
of the proposed concept. Apart from cut-wire pairs, practically
any resonant meta-atom studied in metamaterials and
metasurfaces research could be investigated for this purpose,
since they have been shown to result in Lorentzian spectral
features in the electric and/or magnetic admittivities, as
required by the derived recipe (eq 4). These include plasmonic
resonances in variants of cut-wires, split ring resonators and
fishnet structures, as well as electric and magnetic resonant Mie
modes in dielectric particles. Finally, one can use one meta-
atom for each resonance or resonance pair or, instead, rely on
multiresonant meta-atoms for either the electric or magnetic
response.

■ CONCLUSION
In conclusion, we have shown that multiresonant metasurfaces
can greatly exceed the typical limitation of a 0−2π imparted
phase modulation. For operation in reflection, the proper way
of arranging the resonances is interleaving electric and magnetic
resonances, leading to an accumulative monotonic reflection
phase across their aggregate bandwidth. Combining this
principle with an admittivity antimatching condition that
zeroes out transmission and requiring an exactly linear
reflection phase, we have successfully demonstrated meta-
surfaces that can perfectly reflect a broadband pulse-train
imparting a specified group delay on the incident pulses.
To assess the performance of the proposed metasurfaces, we

have thoroughly studied their tolerance on incidence angle and

Figure 4. Broadband pulsed input signal impinging on a metasurface
with three electric and four magnetic resonances. First case: Single
pulse impinging with θact = θpre. (b) Output pulse with negligible
broadening or distortion. (c) R, T, A coefficients and input pulse
spectrum. Positions of electric and magnetic resonances are marked
with solid circles and crosses, respectively. (d) Reflection phase and
group delay. Second case: Pulse-train impinging at an incidence angle
θact ≠ θpre (γ = 2/ 3 ). The pulse-train period is Tpt = 700 ps and τ0 is
set to 500 ps. (e) R, T, A coefficients and input pulse-train spectrum.
(f) Reflection phase and group delay. Notice the added effect of θact ≠
θpre. (g) Output eye diagram with jitter and additive white Gaussian
noise.
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found that they are characterized by ample angular bandwidth.
In addition, we have shown that few resonances can
accommodate a broadband input pulse-train without pulse
distortion, indicating the potential of our approach for practical
applications. Finally, we have established their performance for
realistic Gbit/s transmission rates in real-world conditions with
timing and amplitude noise.
In this paper, we have solved the physical problem of

establishing the theoretical principles and foundations for
obtaining an arbitrarily broadband linear reflection phase from a
metasurface. A next step would be to engineer an actual
implementation of a metasurface that approximates the derived
surface admittivities by appropriately combining discrete meta-
atoms. This is a complex engineering task that will be the
subject of future work.
Our results highlight that ubiquitous phase modulation and

dispersion engineering operations (such as tunable group delay,
dispersion compensation, pulse compression, and slow light
effects), which customarily rely on bulky resonators, can be
instead performed across the deeply subwavelength thickness of
a metasurface. Thus, they can push metasurfaces into uncharted
territories of broadband temporal applications, previously
considered a privilege of three-dimensional systems relying
on phase accumulation.
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