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ABSTRACT: Graphene, a two-dimensional material possess-
ing extraordinary properties in electronics as well as
mechanics, provides a great platform for various optoelectronic
and optomechanical devices. Here, we theoretically study the
optical gradient force arising from the coupling of surface
plasmon modes on parallel graphene sheets, which can be
several orders stronger than that between regular dielectric
waveguides. Furthermore, with an energy functional opti-
mization model, possible force-induced deformation of
graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state
transitions of graphene sheets, which are accompanied by abrupt changes in reflection and transmission spectra of the system.
Our demonstrations illustrate the potential for broader graphene-related applications such as force sensors and actuators.
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Light−matter interactions exist in various forms, and optical
force is one of the most intuitive representations. A well-

known phenomenon showing the effect of optical force is the
deflection of the comet tail pointing away from the sun due to
the solar radiational pressure. Recently, people have been
exploring the possibilities of utilizing optical force in micro- and
nanosystems for a variety of practical applications, such as
optical tweezers1 and controlling photonic circuits.2 However,
under many circumstances, the optomechanical effects are fairly
inconspicuous due to weak light−matter interactions. There-
fore, many efforts have been taken toward the enhancement of
optical forces.3−5

Graphene, a two-dimensional (2D) material composed of
one layer of carbon atoms in a honeycomb lattice, has attracted
intensive attention due to its unique properties in various
aspects.6,7 In particular, graphene provides a new platform for a
variety of intriguing optoelectronic and optomechanical effects.
The highly reactive electric response of graphene results in
strongly localized plasmons residing within the deep sub-
wavelength region, which leads to a prosperous subfield named
graphene plasmonics with plenty of promising applications
ranging from the terahertz (THz) to the infrared regime.8−11

Graphene also has been shown to possess superior mechanical
properties, such as strong in-plane stiffness with a measured
Young’s modulus as high as 1 TPa,12 several orders larger than
that of conventional materials. Considering its extremely small
mass density as a 2D material, graphene therefore provides a
great opportunity in force sensing and many other practical
applications.13−16

In this paper, we investigate the interaction (optical gradient
force) between two graphene sheets, which may be adopted in
micro- and nanomechanical systems, and reveal that such force

originating from the coupled surface-plasmon-polariton (SPP)
modes of graphene layers can be greatly enhanced to several
orders stronger than that of a regular parallel-waveguide system
(Section II). In addition, in a cavity-like system with precurved
graphene sheets, we explore the potential configurations of
deformationmechanical statesunder certain bending en-
ergy. Arising from the strongly enhanced gradient force
between graphene layers, the phenomena of mechanical state
transitions are demonstrated, accompanied by abrupt changes
in reflection and transmission spectra of the system (Section
III). Our work will be beneficial for various designs of
graphene-based optomechanical devices, such as force sensors,
actuators, and optical switches.

■ STRONGLY ENHANCED GRADIENT FORCE
BETWEEN GRAPHENE LAYERS

In general, the dipole approximation classifies optical forces
into two main categories, i.e., radiational force and gradient
force.17 The radiational force is directly associated with the
wave-vector of light and is interpreted as the momentum
interchange between light and matter when the propagation
path is altered due to the inhomogeneity of the space.18,19 The
optical gradient force essentially refers to the gradient of field
energy, which plays an important role in integrated optics and
has been intensively studied in coupled waveguide sys-
tems.2,3,20−27 For two dielectric slab waveguides (thickness t),
settled in parallel with separation dw as shown in Figure 1b, the
tails of fields for waveguide modes interact with each other,
introducing a force perpendicular to the propagation direction.
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Mimicking the case of a parallel-waveguide system, here, we
consider the interaction between two graphene layers upon the
excitation of SPP modes, the field of which decays away from
graphene at both sides (see Figure 1a). It is noted that the
coupled SPP modes can be classified as symmetric or
antisymmetric, depending on the relative phase of surface
currents or electromagnetic (EM) fields (see Figure 1c). For
uniform notation, we denote the symmetry of the coupled SPP
modes based on the symmetry of surface currents throughout
the paper, since the currents and fields may show opposite
symmetry.
Figure 2a shows the comparison of the dispersion relations

for SPP modes of two coupled graphene sheets (dg = 100 nm)
and TM0 modes (magnetic field H along the z-direction) of
two coupled slab waveguides (dw = 100 nm) made from silicon
with refractive index n = 3.48.3 For the parallel-waveguide
configuration, two different thicknesses are considered, i.e., t =
1.5 and 2.5 μm, respectively. From Figure 2a, we can clearly see
the advantages of coupled graphene sheets mainly in two
aspects: much better separated modes in dispersion relation
imply a much stronger coupling effect between graphene layers,
and the settlement of modes much further away from the light
line (dash-dotted line in Figure 2a) illustrates a stronger
localization of SPPs, leading to a much larger field gradient in
the ambient medium (air) and therefore the force as well. By
setting the frequency to 40.4 THz, we show in Figure 2b the
eigenvalues of the propagation constant of coupled SPP modes
(kSPP) dependent on the separation between graphene sheets,
dg. When the two graphene layers are well separated, i.e., dg is
large enough, the coupling in-between can be neglected and,
correspondingly, the symmetric (solid line) and antisymmetric
(dashed line) modes are degenerate. As the separation dg
decreases, the interaction between graphene layers gets
stronger and the degeneracy of SPP modes breaks eventually.
To provide an intuitive analysis to the gradient force in the

aforementioned parallel-graphene-layer or parallel-waveguide
system, we can consider both of the graphene layers or
waveguides as two adjacent finite-potential wells. Although light
is confined on the graphene sheets or inside the waveguides,
the quantum tunneling effect still allows the photons to

transmit from one to the other, and it is this exchange of
photons that leads to the gradient force. Assuming U = Nℏω,
representing the coupled EM field energy, where N is the
number of photons, ℏ the reduced Plank constant, and ω the
circular frequency of the EM wave, the induced gradient force
can be expressed as follows:26

Figure 1. Schematic configurations of parallel graphene sheets (a) and parallel dielectric waveguides (b). Surface plasmons, propagating along the x-
direction of either a symmetric or antisymmetric mode (c), induce interactions between graphene sheets. Signs “+” and “−” denote the oscillating
surface charges. Straight and curved arrows show the directions of surface currents and electric fields, respectively. Circled cross and dot symbols
indicate the magnetic fields.

Figure 2. (a) Dispersion relations for SPP modes of parallel graphene
sheets in comparison to TM modes of the parallel dielectric
waveguides (ϵd = 3.8) with t = 1.5 (left set in green) and 2.5 μm
(right set in red). dg = dw = 100 nm. The case of the light line (dash-
dotted line) is set as a reference. Solid (dashed) lines correspond to
the symmetric (antisymmetric) modes. The green (red) lines
correspond to the modes in a pair of dielectric slabs with a thickness
of 1.5 μm (2.5 μm). (b) kSPP−dg dependency for parallel graphene
sheets at 40.4 THz: symmetric (solid line) and antisymmetric (dashed
line) modes.
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It must be noted that ω, y, and kspp are not independent, but
tied with each other under the following dispersion relation of
the coupled graphene SPPs:

κ
ω
σ

± − = −
ϵκ−( e 1) i

2d 0

s

g

(2)

where κ = (kspp
2 − k0

2)1/2 denotes the decaying factor and σs is
the surface conductivity of graphene. In the long-wavelength
and high doping limits under our consideration, the optical
conductivity σs is dominated by the intraband transitions, which
follow the local Drude model expressed as28
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where e is electronic charge, EF is the doped Fermi level, γ = τ−1

is the collision frequency with τ denoting the momentum
relaxation time, and α is the so-called Drude weight. In our
following calculations, we assume α = 7.6 × 1010 (Ωs)−1 and γ
= 1.89 THz, as reported in ref 29.
From the implicit function theorem for differentiation of

dependent variables,30 the gradient force F in eq 1 can be
rewritten in the form of
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and, qualitatively, we can determine whether the force F is
attractive (negative sign) or repulsive (positive sign) based on
Figure 2; that is, the antisymmetric (symmetric) mode
corresponds to an attractive (repulsive) force. We can also
understand the nature of such a force in an intuitive view
considering the oscillating charges. Taking the symmetric-mode
case as an example where both currents and charges are in
phase, the in-phase currents result in an attractive force, while
the charges with the same sign will lead to a repulsive force.
Therefore, a competition exists between the forces arising from
the currents and charges, which determines the net force, and
in our configuration of parallel graphene layers, we can find the
interaction of charges plays a dominant role.
Quantitatively, we can calculate the time-averaged force

between graphene layers with Maxwell’s stress tensor T⃡ :17
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Figure 3 shows the comparison of calculated forces (plotted
with absolute values in log scale) for the configurations of
parallel graphene layers and parallel waveguides, where the
separations in-between are set the same with dg = dw = 100 nm.
Two different thicknesses, i.e., t = 1.5 and 2.5 μm, are
considered for the parallel-waveguide case, and as expected,
thinner slabs show a stronger force since the thicker the slabs,
the stronger confinement of EM fields inside the waveguides
but the weaker the fields outside, leading to a weaker
interaction in between. From Figure 3, we are amazed to see
that the force between graphene layers can be several orders

stronger than that in the waveguide cases, and such a dramatic
enhancement of interaction, originating from much larger field
gradients in the ambient medium (see dispersion relations in
Figure 2 for direct evidence), will be greatly beneficial for
various practical applications in optomechanical systems. We
also notice from Figure 3 that the gradient optical force
between graphene layers does not change monotonically with
frequency. This can be understood qualitatively via the
expression of the force F ∝ (κ2/ω2)e−κdg, calculated from the
Maxwell stress tensor. Therefore, the force is determined by
two competitive aspects, i.e., κ, which represents the gradient of
the field, and e−κdg, which corresponds to the field strength at
the evanescent tail. At the low frequency side, the system has a
smaller kSPP and correspondingly smaller κ (see Figure 2a),
which means the EM field between layers is stronger but with a
lower gradient. Therefore, the strength of the field dominates
over the gradient for the force at low frequencies. It is the
opposite case for high frequencies, where the gradient of the
field is large, while with a weak field strength. A trade-off does
exist leading to the strongest force. It is noted that the force of
parallel graphene layers at frequencies over 50 THz are marked
with a dotted line in Figure 3, since the actual force would be
smaller due to extra losses induced by phonon−electron
interactions.

■ MECHANICAL STATE TRANSITIONS
In Section II, we have demonstrated an SPP-induced significant
force enhancement between parallel graphene layers in the
infrared regime, i.e., several orders stronger than that between
parallel waveguides. Therefore, the introduction of graphene in
micro- or nanosystems is believed to result in various

Figure 3. Comparisons of optical force for parallel-graphene-sheet and
parallel-waveguide configurations with the same separation 100 nm in-
between: (a) repulsive force for symmetric mode; (b) attractive force
for antisymmetric mode. The input power is set as 1 W/m.
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interesting optomechanical effects. As well-known, from
classical mechanics, a thin plate can be bent if a force or
torque is exerted. In this section, we will construct a conceptual
configuration with two graphene layers settled closely to each
other and explore the deflections of graphene sheets, even the
possibilities of mechanical state variations, which will provide
solid physical foundations and guidances toward various
practical applications in optomechanics.
Generally, considering the bending of a classical thin shell,

the middle plane keeps its original length, while the planes
above and below are stretched and compressed, respectively,
resulting in a bending energy in comparison to its free state.
Under small deflections, the level of bending can be described
using a linear model and is related to a material-dependent
constant, the so-called bending stiffness, D ∝Eh3,31 where E is
the bulk Young’s modulus and h is the thickness of the thin
plate. In contrast, graphene, as a 2D material, has no well-
defined thickness. Therefore, a different origin of rigidity
corresponds to free bending of graphene sheets; that is, instead
of any stretch or compression, the bending energy of graphene
arises from the rotation of C−C bonds since the sp2

hybridization tends to keep the carbon atoms in plane, and
accordingly, the Kirchhoff theory for classical thin plates no
longer holds.32 Theoretically, the bending modulus D can be
obtained from ab initio calculations, and the most commonly
used value is 0.192 nN·nm.13,33−37 In our work, we will adopt a
phenomenological model to investigate the bending of
graphene sheets. Under small deformations, the linear model
applies: F = Fb + Fs, with Fs being the in-plane stretch energy

and Fb the pure bending energy, ∫ κ=F D sdb
1
2

2 ,32 respec-

tively, where κ = y″/(1 + y′2)3/2 denotes the curvature of the
bent graphene sheet.
Figure 4 shows the schematic of our setup, in which two

graphene layers with the separation dg = 100 nm are embedded
in some dielectric medium (ϵd is taken as 3.8) at two sides. The

distance between two-sided dielectric blocks, s, is 1 μm, while
the length of the graphene sheets in-between is assumed to be
1.004 μm, so that the graphene layers are in a curved status for
demonstrating optomechanical deflections, and different shapes
of graphene sheets correspond to different mechanical energy
states. Intuitively, the lowest state, denoted as the ground state,
should have a cosine-like shape with only one antinode, the first
metastable state will correspond to a sine-like shape with two
antinodes, and higher order states possess a certain number of
antinodes. Assuming the parallel graphene sheets sit at the
ground state initially, they may be in either concave (Figure 4a)
or convex (Figure 4b) configurations, which are degenerate
without an external force. In the case of some force being
applied to the system, such a degeneracy will be broken and
one configuration experiences lower energy than the other.
Therefore, an optical-gradient-force-induced mechanical state
transition may be achieved.
In Figure 4a, the two graphene sheets are initially in the

concave configuration, to which we inject the symmetric SPP
mode with a certain power from one side, leading to a repulsive
force between the graphene sheets. Upon increasing the input
power, the force gets stronger accordingly, and at some
threshold point, the graphene sheets get flipped and reach the
state of a convex configuration. It should be noted that, as long
as the graphene sheets flip over, the effective gap in-between
changes and the eigenvalue of the propagation constant of the
coupled SPPs also changes accordingly. In the EM view, the
two-sided dielectric blocks naturally form a Fabry−Peŕot (FP)
cavity in-between for SPP waves of graphene, and the
transmission (T) and reflection (R) of the system may vary
dramatically upon the shape change of the graphene sheets,
providing an excellent and straightforward strategy of
monitoring the mechanical state transition macroscopically.
We apply a self-consistent iterative method to find the

corresponding deformations of the graphene sheets. Consider-
ing the optical force is fairly small compared to the strong in-
plane modulus of graphene, we assume no in-plane stretch or
compression happens in our discussions, implying a constraint
of the length of graphene sheets in the cavity being kept as
1.004 μm. Therefore, the problem of finding the shape
configurations for graphene sheets turns out to be optimizing
the energy function for a local minimum under the length
constraint. Under external fields, the bending energy density
function can be written as follows in the form of deformation:

∫ ∫κ= − ΔF w x D s f w x w x x[ ( )]
1
2

d [ ( )] ( ) d2
optical (7)

where the energy density F, in units of J/m, represents the total
energy per unit length in the z-direction of graphene, w(x) is
the function of deformation with respect to the coordination
along the x-direction, κ = w″(x)[1 + w′(x)2]−3/2 is the local
curvature, and ds = [1 + w′(x)2]−1/2 dx is the arc length.
Technically, to figure out the local minimum of the energy
function, we utilize the so-called “steepest decent” method38 by
performing Fourier expansions to the deformation function
w(x) and applying the optical force of the initial configuration.
As long as a new configuration of deformation is reached, the
corresponding optical gradient force of the graphene system is
calculated and substituted into the energy function for another
round of optimization. Iterations continue until the deforma-
tion configuration does not change, reaching a converged and
final state.

Figure 4. Schematic configuration of the constructed system for
demonstrating optical-force-induced mechanical state transitions of
graphene sheets: (a) initial state of the concave configuration with
symmetric mode injection; (b) initial state of the convex configuration
with antisymmetric mode injection. Graphene layers are embedded in
a dielectric medium at two sides (s = 1 μm) with precurved shape in
between (length 1.004 μm).
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As stated in the above, we can monitor the mechanical
deformation of graphene sheets via the propagation properties
of EM waves (R and T) in the system. For a better contrast in R
and T spectra between the concave and convex configurations
(see Figure 5), we can choose some demonstration frequency

accordingly, and in our following discussions, we set it as 40.4
THz, at which the concave (convex) configuration has R =
25.1% (2.9%) and T = 51.0% (63.0%) under symmetric SPP
modes, while R = 13.8% (1.3%) and T = 58.0% (69.4%) for
antisymmetric SPP modes, respectively.
Figure 6 shows the processes of mechanical state transitions

with respect to input powers, calculated via the previously

described iterative method. Figure 6a and b correspond to the
case with symmetric SPP mode injection in the graphene
sheets. For the initial state being the concave configuration, the
increase of the input power (the path is marked with single
arrows) leads to slight deformations initially, but abrupt
changes in R and T spectra happen at the input power of
15.8 W/m, the threshold for the mechanical state transition,
where the graphene sheets flip to the convex configuration.
Upon the decrease of input power for the convex configuration,
the repulsive force induced by symmetric SPP modes keeps the
graphene configuration, and there is no change in R or T (see
Figure 6a and b), consistent with our intuitive expectations.
Figure 6c and d show the case of antisymmetric SPP mode
injection with attractive gradient force between graphene
sheets: Starting from the convex configuration, the increase of
input power (direction along single arrows) induces some slight
deformations to the graphene sheets initially, and the
mechanical state transition occurs at 25.0 W/m, with evidence
of abrupt changes in R and T spectra. It should be noted that R
and T of the final state in Figure 6c and d are to some extent
different from those values calculated for the concave ground
state, which means such a final state is not exactly the ground
state and may be called a pseudo-concave configuration. This
will be further explained by working out the transition path and
the corresponding force density profiles shown in Figure 7. The
same as the case of symmetric SPP modes, upon the decrease of
input power from the pseudoconcave configuration, the shape
of graphene sheets does not change with constant R and T,
marked with double arrows in Figure 6c and d. In addition, it
should be noted that in Figure 6, if the injected power keeps
increasing beyond the mechanical state transition, the gradient
force will eventually get extremely strong, leading to the in-
plane deformation of the graphene sheets and corresponding
change of monitored propagation properties (R and T) of the
system. For accurate calculations under high enough input
power, our initial model, which is based on the fixed-length
constraint neglecting any in-plane deformation, needs to be
modified accordingly by introducing a real in-plane elastic
modulus to optimize the total energy function.
We reveal under symmetric SPP mode how the mechanical

state of the graphene sheets transits from the concave
configuration to the convex one upon the threshold input
power (transition window marked with dotted lines in Figure
6a and b), by showing the geometric-deformation and force-
density profiles in Figure 7a and b, respectively. The induced
gradient force is stronger at the injection side (left), so the
shape of graphene sheets starts changing from the left and
reaches the final state by experiencing two-antinode profiles. It
is noted that the three middle profiles (marked with a dotted
lines) do not correspond to any metastable state, but are
obtained in our iterative procedure only for illustrating the
instant transition path near the threshold point. The mechanic
transition for the antisymmetric SPP mode behaves similarly,
whose geometric-deformation and force-density profiles
neighboring the threshold are presented in Figure 7c and d;
that is, the graphene sheets have their left parts dragged first
due to a stronger repulsive force induced at the injection side
and transit to a final concave state, experiencing some two-
antinode profiles as well. However, due to the strong but
asymmetric repulsive force, the final concave state is not
symmetric but slightly biased to the left, showing R and T
different from those are in the symmetric concave “ground
state”. In addition, we need to point out that, along the

Figure 5. Calculated reflection (R) and transmission (T) spectra for
concave (blue dark line) and convex (red light line) configurations of
graphene sheets under symmetric (a and b) and antisymmetric (c and
d) SPP modes. Dash dotted lines correspond to the frequency 40.4
THz, where significant contrast in R and T exists between the concave
and convex configurations.

Figure 6. Monitored R and T dependent on the input power showing
the processes of mechanical state transitions: symmetric mode (a and
b) and antisymmetric mode (c and d). Single arrows mark the
direction of the transition path from initial state toward final state
upon the increase of input power, while double arrows indicate that
the final state does not vary when the input power decreases.
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transition path (marked with single arrows in Figure 6), any
point on the solid lines corresponds to a metastable state; that
is, before we reach the transition point, switching off the input
power leads the graphene sheets back to the initial state, and
beyond the threshold, the release of the force will retain the
configuration of the graphene sheets in the new state.
It may also be noted from Figure 7b and d that, during the

demonstrated mechanical state transitions, the antisymmetric
mode experiences a significant change in the corresponding
attractive force, but the repulsive force remains more or less the
same under the symmetric mode. Equation 4 indeed shows that
the gradient optical force between graphene sheets is
proportional to the first derivative of kspp to dg. For the
antisymmetric mode, the transition from convex configuration
to concave state leads to the abrupt decrease of effective
separation between graphene sheets, and as indicated with a
dashed line in Figure 2b, there exists a sharp dependence of kspp
with respect to dg at the side of a small separation in-between
and very strong attractive force correspondingly. In contrast,
the symmetric mode has a fairly gentle dependence between
kspp and dg (see solid line in Figure 2b), which indicates there is
no dramatic change in the repulsive force under the transition
from concave to convex configuration. Moreover, in our
meticulous calculations, we noticed the repulsive force under
the symmetric mode experiences a tendency of first getting
stronger and then weaker during the mechanical state
transition, while the antisymmetric mode shows a monotonic
change in the attractive force. According to eq 4, the second
derivative of kspp to dg determines the tendency of gradient
force, and only the case of the symmetric mode possesses an

inflection point with dg around 70 nm (see Figure 2b), where
the repulsive force is the strongest.

■ CONCLUSION
In conclusion, our work showed a significant enhancement of
optical gradient force between graphene sheets induced by
coupled surface plasmon polaritons. Such a force can be several
orders stronger than that existing between regular dielectric
waveguides and definitely will open up new avenues for efficient
control of micro- and nanocomponents in optomechanical
systems. As one of the fundamental phenomena, we
demonstrated optical-force-induced mechanical state transitions
for curved neighboring graphene sheets, which were intuitively
characterized via electromagnetic spectra measurements in a
constructed cavity-like system. Our investigations therefore will
be greatly beneficial for the exploration of various new
optomechanical devices integrated with graphene, such as
force sensors, actuators, and optical switches.
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