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Abstract—Photonic metamaterials are man-made materials
with “lattice constants” smaller than thewavelength of light. Tailor-
ing the properties of their functional building blocks (atoms) allows
one to go beyond the possibilities of usual materials. For example,
magnetic dipole moments at optical frequencies (µ �= 1) become
possible. This aspect substantially enriches the possibilities of op-
tics and photonics and forms the basis for the so-called negative-
indexmetamaterials. Here, we describe the underlying physics and
review the recent progress in this rapidly emerging field.

Index Terms—Metamaterial, negative permeability, split-ring
resonator (SRR).

I. INTRODUCTION

INa usual crystal, the atoms are arranged in a periodic fashion
with lattice constants of the order of half a nanometer. This

is orders of magnitude smaller than the wavelength of light.
For example, green light has a wavelength of about 500 nm.
Thus, for a given direction of propagation, the light field expe-
riences an effective homogeneous medium, that is, it does not
“see” the underlying periodicity but only the basic symmetries
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of the crystal. In such materials, the phase velocity of light c
may depend on the propagation direction and is generally dif-
ferent from the vacuum speed of light c0 by a factor called the
refractive index n = c0/c (the slowness). The physical origin
are microscopic electric dipoles that are excited by the electric
field component of the incoming light and that radiate with a
certain retardation. Hence, the electric permittivity is different
from unity, i.e., ε �= 1. In contrast to this, magnetic dipoles play
no role at optical frequencies in natural substances, i.e., the
magnetic permeability is unity, µ = 1.
Electromagnetic metamaterials are artificial structures with

inter-“atomic” distances (or “lattice constants”) that are still
smaller than the wavelength of light. Similarly, the light field
“sees” an effective homogeneous material for any given propa-
gation direction (quite unlike in a photonic crystal). The building
blocks (atoms), however, are not real atoms but are rather made
ofmany actual atoms, oftenmetallic ones. It is this design aspect
that allows us to tailor the electromagnetic material properties,
in particular the corresponding dispersion relation, to a previ-
ously unprecedented degree. For example, it becomes possible
to achieve magnetic dipole moments at optical frequencies, i.e.,
magnetism at optical frequencies (µ �= 1). It turns out that, for
ε < 0 and µ < 0, the refractive index becomes negative with
n = −√

εµ < 0 (rather than n = +
√

εµ > 0). This aspect was
pointed out by Veselago many years ago [1], but remained an
obscurity until rather recently.
In this paper, we first describe the physics of “magnetic

atoms” [e.g., the so-called split-ring resonators (SRRs)], which
can be best viewed as the magnetic counterpart of the famous
Lorentz oscillator model for electric dipoles in optical materi-
als. By simple size scaling, these concepts have recently been
brought toward the optical regime. We also discuss the limits
of size scaling. Alternative “magnetic atom” designs can push
the limits somewhat further and can also ease nanofabrication
of these metamaterials.

II. PHYSICS OF SRRS AS “MAGNETIC ATOMS”

It is well known from basic magnetostatics that a magnetic
dipole moment can be realized by the circulating ring current
of a microscopic coil, which leads to an individual magnetic
moment given by the product of the current and the area of
the coil. This dipole moment vector is directed perpendicular
to the plane of the coil. If such a coil is combined with a plate
capacitor, one expects an increased current at a finite-frequency
resonance, hence, an increased magnetic dipole moment. Thus,
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Fig. 1. Illustration of the analogy. (a) A usualLC circuit. (b) SRR. (c) Electron
micrograph showing an actually fabricated structure, a gold SRR (t = 20nm)
on a glass substrate. Taken from [6].

a popular design for the magnetic “atoms” is to mimic a usual
LC circuit, consisting of a plate capacitor with capacitance C
and a magnetic coil with inductance L, on a scale much smaller
than the relevant wavelength of light.
Fig. 1 shows the analogy of a conventional LC circuit and a

metallic SRR on a dielectric surface. The right-hand side (RHS)
shows an electron micrograph of a single gold SRR fabricated
by standard electron-beam lithography. The name “split-ring
resonator” goes back to the work of Hardy and Whitehead in
1981 [2] and that of Pendry et al. in 1999 [3]. This name shall
be employed later. However, the SRR has also previously been
discussed under the names “slotted-tube resonator” in 1977 [4]
in the context of nuclear magnetic resonance (NMR) and “loop-
gap resonator” in 1996 [5].

A. LC-Resonance Frequency

The position of the anticipated LC-resonance frequency can
be estimated by the following crude approach: suppose we can
describe the capacitance by the usual textbook formula for a
large capacitor with nearby plates (C ∝ plate area/distance) and
the inductance by the formula for a “long” coil with N wind-
ings for N = 1(L ∝ coil area/length). Using the nomenclature
of Fig. 1(b), i.e., the width of the metalw, the gap size of the ca-
pacitor d, themetal thickness t, and thewidth of the coil l, we get

C = ε0εC
wt

d
(1)

with the relative permittivity of the material in between the
plates εC , and

L = µ0
l2

t
. (2)

This leads to the eigenfrequency

ωLC =
1√
LC

=
1
l

c0√
εC

√
d

w
∝ 1

size
(3)

and to the LC-resonance wavelength

λLC =
2πc0

ωLC
= 2πl

√
εC

√
w

d
∝ size. (4)

Despite its simplicity and the crudeness of our derivation, this
formula contains a lot of correct physics, as confirmed by the
numerical calculations (see later): first, it tells us that the LC-
resonance wavelength is proportional to the linear dimension
of the coil l, provided that the ratio w/d is fixed. This scaling
is valid as long as the metal actually behaves like a metal,

i.e., as long as the LC-resonance frequency is much smaller
than the metal plasma frequency ωpl. We will describe this
fundamental limitation in the following paragraphs. Second,
for relevant parameters (εC ≥ 1 and w ≈ d), the prefactor is
typically of the order of ten, i.e.,

λLC ≈ 10× l. (5)

Thus, it is possible to arrange these SRRs in the form of an
array in the xy plane such that the lattice constant axy is much
smaller than the resonancewavelength, i.e., axy � λLC . For ex-
ample, for a telecommunication wavelength of λLC = 1.5µm,
the linear dimension of the coil would need to be of the order
of l = 150 nm, implying minimum feature sizes around 50
nm or smaller. Under these conditions, typical values for the
capacitance and the inductance are C ≈ 1 aF and L ≈ 1 pH,
respectively. Third, the dielectric environment influences the
resonance via εC , which is, e.g., modified by the presence of a
dielectric substrate. Fourth, if one closes the gap, i.e., in the limit
d → 0 or C → ∞, the resonance wavelength goes to infinity,
or equivalently, the resonance frequency ωLC becomes zero.

B. Limits of Size Scaling

What are the limits of size scaling according to (3)? This
question has been addressed in [7]–[9]: for an ideal metal, i.e.,
for an infinite electron densityne, hence an infinitemetal plasma
frequency, a finite current I flowing through the inductance is
connected with zero electron velocity, hence, with a vanishing
electron kinetic energy. In contrast, for a real metal, i.e., for a
finite electron density, the current is inherently connected with a
finite electron velocity ve. Thus, one must not only provide the
usualmagnetic energy (1/2)LI2 to support the current I , but ad-
ditionally the total electron kinetic energy Ne(me/2)v2

e , where
Ne = neV is the number of electrons in the SRR contributing
to the current. To conveniently incorporate this kinetic energy
term into our electromagnetic formulation, we recast it into the
form of an additional magnetic energy. Using neeve = I/wt
and the volume (= cross section times the length) of the SRR
wire V = wt(4(l − w)− d), we obtain

Ekin = Ne
me

2
v2
e =

1
2
LkinI

2. (6)

Here, we have introduced the “kinetic inductance”

Lkin =
me

nee2

4(l − w)− d

wt
∝ 1

size
. (7)

While the usual inductance L is proportional to the SRR
size [2], the kinetic inductance (7) scales inversely with size—
provided that all the SRR dimensions are scaled down simul-
taneously. Thus, the kinetic inductance is totally irrelevant for
macroscopic coils but becomes dominant for microscopic in-
ductances, i.e., when approaching the optical frequencies. The
kinetic inductance adds to the usual inductance, L → L + Lkin

in (3), and we immediately obtain the modified scaling for the
magnetic resonance frequency

ωLC ∝ 1√
size2 + constant

. (8)
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Obviously, themagnetic resonance frequency is inversely pro-
portional to the size for a large SRR, whereas it approaches a
constant for a small SRR. To evaluate this constant and for the
sake of simplicity, we consider the limits w � l, d � 4l and
the capacitance C according to (1) in air. Inserting the metal
plasma frequency ωpl =

√
(nee2)/(ε0me), we obtain the max-

imum magnetic resonance frequency

ωmax
LC =

√
1

LkinC
= ωpl

√
d

4l
. (9)

This saturation frequency is further reduced by the dielec-
tric environment and by the skin effect [9], which we have
tacitly neglected in our simple reasoning. Furthermore, we re-
mind that our results are implicitly based on the Drude model
of the metal intraband transitions. For real metals in the optical
regime, the interband transitions also often play a significant
role. Our results are meaningful only if ωmax

LC is smaller than the
onset frequency of the interband transitions. For example, the
interband transitions in aluminum (gold) occur for wavelengths
below 800 nm (550 nm).

C. Magnetic Permeability

One can even obtain an explicit and a simple expression
for the magnetic permeability µ(ω) from our simple circuit
reasoning. We start by considering an excitation configuration
where the electric field component of light cannot couple to the
SRR (see later), and where the magnetic field is normal to the
SRR plane. Under these conditions, the self-induction voltage
of the inductanceL plus the voltage drop over the capacitanceC
equals the voltage Uind induced by the external magnetic field,
i.e., UL + UC = Uind or

Lİ +
1
C

∫
I dt = Uind = −φ̇. (10)

Again assuming a homogeneous magnetic field in the coil, we
obtain the external magnetic flux φ = l2µ0H , with the external
magnetic field H = H0e

−iω t + c.c. Taking the time derivative
of (10) and dividing by L yields

Ï +
1

LC
I =

1
L

U̇ind = +ω2 µ0l
2

L
H0e

−iω t + c.c. (11)

Upon inserting the obvious ansatz I = I0e
−iω t + c.c., we

obtain the current I , the individual magnetic dipole moment
l2I , and the magnetization M = (NLC /V )l2I . Here, we have
introduced the number of LC circuits NLC per volume V .
Suppose the lattice constant in the SRR plane is axy ≥ l,
and az ≥ t in the direction normal to the SRRs. This leads
to NLC /V = 1/a2

xy az . Finally, using M = χm(ω)H,µ(ω) =
1 + χm(ω), and (2) brings us to

µ(ω) = 1 +
F ω2

ω2
LC − ω2

. (12)

Apart from the∝ ω2 numerator, this represents a Lorentz os-
cillator resonance. Here, we have lumped the various prefactors

into the dimensionless quantity F with

0 ≤ F =
l2t

a2
xy az

≤ 1. (13)

F = 1 corresponds to the nearest-neighbor SRRs touching
each other—obviously the ultimate upper bound for the ac-
cessible SRR density. Thus, we can interpret F as a filling
fraction. Ohmic losses, radiation losses, and other broadening
mechanisms can be lumped into a damping γm of the magnetic
resonance.
The bottom line is that the SRR is the magnetic analog of the

usual (electric) Lorentz oscillator model. The permeability of
the closed ring, i.e., the special case of d → 0 ⇒ C → ∞ ⇒
ωLC → 0 in (12), reduces to

µ(ω) = constant = 1−F ≥ 0. (14)

In other words, the split in the ring is essential for obtaining
µ(ω) < 0. For example, for 30% lateral spacing (axy = 1.3× l)
and for a spacing in the vertical direction equal to the SRR thick-
ness (az = 2× t), we obtainF = 0.30 and µ = 0.70 for closed
rings. Note, however, that we have tacitly neglected the inter-
action among the rings in our considerations leading to this
conclusion [10]. The assumption of noninteracting rings is jus-
tified for F � 1, but becomes questionable for F → 1. What
qualitative modifications are expected from the interaction of
rings? The fringing field of any particular ring at the location
of its in-plane neighbors is opposite to its own magnetic dipole
moment, hence parallel to the external magnetic field of light.
Thus, in-plane interaction tends to effectively increase the value
of F in (14). In contrast, interaction with rings from adjacent
parallel planes tends to suppress F in (14). It is presently un-
clear, whether a particular arrangement of rings could allow for
an increase of F sufficient to obtain µ(ω) < 0 (also see [3]).
Interaction similarly influences the behavior of the split rings.
We note in passing that the description of an isotropic

(meta)material in terms of ε(ω) and µ(ω)may be valid, but it is
not unique. Indeed, it has already been pointed out in [11] that,
alternatively, one can set µ̃ = 1 and describe the (meta)material
response in terms of the spatial dispersion, i.e., via a wave-
vector dependence of the electric permittivity ε̃(ω, k). One must
be aware, however, that the resulting “refractive index” ñ(ω, k)
looses its usual meaning. A more detailed discussion of this
aspect can be found in [12].
Historically, the first demonstration of the negative-index

metamaterials was in 2001 at a frequency of about 10GHz or
the wavelength of 3 cm [13], a regime in which SRR “magnetic
atoms” can easily be fabricated on electronic circuit boards.
The negative permittivity was achieved by the additional metal
stripes. In 2004 [14], µ(ω) < 0 has been demonstrated at a
frequency of about 1THz(300µm wavelength) using standard
microfabrication techniques for the SRR ( [15] reviews this early
work).

III. TOWARD MAGNETISM AT OPTICAL FREQUENCIES

At this point, our experimental team entered this field—partly
driven by the scepticism that similar materials would not be
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possible at optical frequencies. In our first set of experiments,
we scaled down the lateral size of the SRR by two more or-
ders of magnitude, leading to the following parameters: l =
320 nm, w = 90nm, t = 20nm, and d = 70nm. On this ba-
sis, we anticipated a magnetic resonance at about λLC = 3µm.
These “magnetic atoms” were arranged on a square lattice with
axy = 450 nm ≈ 7× λLC (and larger ones) and a total sample
area of 25µm2. For normal incidence conditions, however, the
light has zero magnetic field component perpendicular to the
SRR plane. Thus, excitation via the magnetic field is not pos-
sible. Alternatively, the magnetic resonance can also be excited
via the electric-field component of light if it has a component
normal to the plates of the capacitor, i.e., if the incident light
polarization is horizontal. In contrast, for normal incidence and
vertical incident polarization, neither the electric nor the mag-
netic field can couple to the SRR. This “selection rule” can be
used to unambiguously identify the magnetic resonance.

A. SRR at Infrared Wavelengths

Corresponding measured transmittance and reflectance spec-
tra are shown in Fig. 2. Independent of the lattice constant
axy , two distinct resonances are clearly visible. With increas-
ing axy , these resonances narrow to some extent because of the
reduced interaction between the SRRs, but their spectral posi-
tion remains essentially unchanged as expected for the electric
and magnetic resonant responses of SRRs. This also clearly
shows that Bragg diffraction plays no major role. The long-
wavelength resonance around 3-µm wavelength is present for
the horizontal incident polarization and absent for the vertical
polarization—as expected from the earlier reasoning. Further-
more, as expected from the previous section, this resonance dis-
appears for the closed rings [Fig. 2(g) and (h)], i.e., for d → 0,
henceωLC → 0. The additional short-wavelength resonance be-
tween 1- and 2-µmwavelength is due to the particle plasmon or
Mie resonance, mainly exhibiting an electric permittivity, which
follows a Lorentz oscillator form according to

ε(ω) = 1 +
Fω2

pl

ω2
Mie − ω2 − iγω

(15)

with themetal Drudemodel damping γ. The constantF depends
on the SRR volume filling fraction. We will come back to the
Mie resonance in more detail later.
All features of themeasured spectra (Fig. 2) are reproduced by

numerical calculations using a three-dimensional (3-D) finite-
difference time-domain approach [6] (not shown here). The cor-
responding calculated field distributions [6] (not shown here)
support the simplistic reasoning on SRRs in the previous sec-
tion. Retrieving [16] the effective permittivity ε(ω) andmagnetic
permeability µ(ω) from the calculated spectra, indeed, reveals
µ < 0 associated with the λLC = 3µm resonance for appropri-
ate polarization conditions [6].

B. SRR at Near-Infrared Wavelengths

Two questions immediately arise: 1) can the magnetic
resonance frequency be further increased by the miniaturization
of the SRRs and 2) can one also experimentally demonstrate

Fig. 2. Measured transmittance and reflectance spectra (normal incidence).
In each row of this “matrix,” an electron micrograph of the corresponding
sample is shown on the RHS. The two polarization configurations are shown
on the top of the two columns. (a) and (b) Lattice constant a = 450nm. (c)
and (d) a = 600nm. (e) and (f) a = 900nm correspond to the nominally
identical SRRs. (g) and (h) a = 600nm correspond to the closed rings. The
combination of these spectra unambiguously shows that the resonance at about
3-µm wavelength (gray areas) is the LC resonance of the individual SRRs.
Taken from [6].

coupling to the magnetic (or LC) resonance via the magnetic
field component of light at optical frequencies? Both aspects
have been addressed in our earlier work [17]. Electron micro-
graphs of miniaturized structures are shown in Fig. 3(a). 1)
The corresponding measured spectra for horizontal incident
polarization in Fig. 3(b) reveal the same (but blue-shifted)
resonances as in Fig. 2(a). For vertical incident polarization,
compare Fig. 3(c) and Fig. 2(b). 2) In Fig. 4(a), the electric
component of the incident light cannot couple to the LC circuit
resonance for any angle [in Fig. 4(b) it can]. With increasing
angle, however, the magnetic field acquires a component normal
to the SRR plane. This component can induce a circulating
electric current in the SRR coil via the induction law. This
current again leads to the magnetic dipole moment normal to
the SRR plane, which can counteract the external magnetic
field. The magnitude of this resonance (highlighted by the
gray area around 1.5-µm wavelength) is indeed consistent
with theory [17] (not depicted here), and leads to an effective
negative magnetic permeability for propagation in the SRR
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Fig. 3. (a) Electron micrograph of a split-ring array with a total area of
100µm2. Lower RHS inset shows the dimensions of an individual split ring.
(b) and (c) Corresponding measured normal-incidence transmittance and re-
flectance spectra for the horizontal and vertical polarization, respectively. Taken
from [17].

plane and for a stack of SRR layers rather than just one layer
as considered here. This aspect has been verified explicitly by
retrieving the effective permittivity and permeability from the
calculated transmittance and reflectance spectra [16], [18].
An unexpected feature of the spectra in Fig. 4(a) is that the

950-nm wavelength Mie resonance at normal incidence splits
into two resonances for oblique incidence. This aspect is repro-
duced by numerical calculations [17], [19]. Intuitively, it can be
understood as follows: for normal incidence and vertical polar-
ization, the two similarly shaped vertical SRR arms contribute.
These arms are coupled via the SRR’s bottom arm (and via
the radiation field). As usual, the coupling of the two degen-
erate modes leads to an avoided crossing with two new effec-

Fig. 4. Measured transmittance spectra taken for oblique incidence for the
configurations shown as insets (where α = 60◦). (a) Coupling to the funda-
mental magnetic mode at 1.5-µm wavelength is possible only via the magnetic
field component of the incident light. (b) Both electric and magnetic fields can
couple. Note the small but significant feature in (a) for 60◦ around 1.5-µm
wavelength. The lower gray area in (a) is the transmittance into the linear po-
larization orthogonal to the incident one for α = 60◦. This can be viewed as a
fingerprint of the magnetic resonances under these conditions. Taken from [17].

tive oscillation modes, a symmetric and an antisymmetric one,
which are frequency down-shifted and up-shifted as compared
to the uncoupled resonances, respectively. The antisymmetric
mode cannot be excited at all for normal incidence as it has
zero effective electric dipole moment. The red-shifted symmet-
ric mode can be excited. It even has a larger effective electric
dipole moment than a single arm. Indeed, the Mie resonance for
the vertical polarization is deeper and spectrally broader than
for the horizontal polarization in Fig. 2, and red-shifted with
respect to it. For finite angles of incidence, the phase fronts of
the electric field are tilted with respect to the SRR plane. Thus,
the vertical SRR arms are excited with a small but finite time
delay, equivalent to a finite phase shift. This shift allows cou-
pling to the antisymmetric mode of the coupled system of the
two vertical arms as well. In one half cycle of light, one gets a
positive charge at the lower left-hand side (LHS) corner of the
SRR and a negative charge at the lower RHS corner, resulting
in a compensating current in the horizontal bottom arm. Char-
acteristic snapshots of the current distributions in the SRR have
been shown schematically in [17].
According to this reasoning for oblique incidence (e.g., 60◦),

we expect a circulating current component for wavelengths near
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the twomagnetic resonances at 1.5µmand 800 nm, respectively.
Any circulating current is evidently connected with a current in
the horizontal bottom arm of the SRR. According to the usual
laws of a Hertz dipole, the corresponding charge oscillation in
the bottom arm can radiate into the forward direction with an
electric field component orthogonal to the incident polarization.
In other words, for oblique incidence, the fingerprint of the
magnetic resonances is a rotation of polarization. Such rotation
is indeed unambiguously observed in the numerical simulations
(not shown here, see [17]) and in the experiments [see gray area
in Fig. 4(a)].
Further down-scaling of the SRR size is eventually limited

by the fact that the resonances stop shifting with decreasing
SRR size (see Section II). The shortest magnetic resonance
wavelengths that we have achieved are around 900 nm using
gold SRR [20].
We note in passing that there is a continuous transition be-

tween the twofold degenerate Mie resonance of a metallic
square-shaped “particle” and an SRR, exhibiting a magnetic
resonance and a Mie resonance. This transition has been inves-
tigated by us [21] using the rapid prototyping capabilities of
focused-ion-beam writing.

C. Cut-Wire Pairs

The above discussion on the antisymmetric and symmetric
eigenmodes of the two coupled vertical SRR arms makes one
wonder whether the SRR bottom arm is necessary at all. Indeed,
it is not. This has basically been explained earlier and can al-
ternatively be discussed as follows: eliminating the bottom arm
can be viewed as introducing a second capacitance into the LC
circuit. This effectively reduces the total capacitance in the cir-
cuit; hence, it increases the magnetic resonance frequency for a
given minimum feature size. However, this eases access to the
(near-)visible regime at a reduced fabricational effort. On the
other hand, this increased resonance frequency at fixed lattice
constant decreases the ratio between the (resonance) wavelength
λLC and the lattice constant axy , to about λLC /axy ≈ 2–3. In
the true metamaterial limit, one aims at λLC /axy � 1. Recall
that the Bragg condition corresponds to λLC /axy = 2. Another
significant difference between the original planar SRR design
and the resulting cut-wire pairs is that the latter can be ro-
tated by 90◦ with respect to the substrate. This not only eases
nanofabrication but also allows for the magnetic permeability
µ(ω) for normal incidence conditions (the magnetic field can be
perpendicular to the plane spanned by the two wire pieces, i.e.,
parallel to the magnetic dipole moment vector). Corresponding
theoretical [22]–[25] and experimental [26]–[28] work has been
published.
Fig. 5(a)–(c) shows our results for cut-wire pairs of different

length but fixed magnesium fluoride (MgF2) spacer thickness
and fixed gold wire width. The dotted curves in (a) correspond to
a nominally identical sample, however, without the upmost gold
layer. This single cut-wire sample shows only one pronounced
resonance—the Mie resonance—for each polarization. For an
incident polarization along the long axis of the cut-wire pairs,
however, two resonances are observed that essentially disappear

Fig. 5. Measured spectra of transmittance (solid lines) and reflectance
(dashed lines) for cut-wire pairs with vertical incident polarization (LHS
column) and horizontal polarization (RHS column). Parameters varied:
(a) l = 500nm; (b) l = 400nm; and (c) l = 300nm. Fixed parameters for
(a)–(c): w = 150nm, t = 20nm, d = 80nm, ax = 500nm, and ay =
1050nm. The dashed-dotted curves in (a) are spectra from a nominally identi-
cal structure, but without the upmost gold wire. (d) as (b), but d = 60nm rather
than 80 nm. The insets in (a)–(d) show corresponding electron micrographs (top
view). Taken from [27].

for orthogonal polarization. A comparison of Fig. 5(b) and (d)
shows dependence on theMgF2 spacer thickness d. As expected
from the discussion on the two coupled oscillators, the splitting
between the two effective resonances depends on their coupling:
For thin (thick) spacers, the coupling is strong (weak); hence,
the two resonances are split by a large (small) amount in the
spectrum. The obvious polarization dependence of the cut-wire
pairs may be undesired in certain cases. Thus, it is also interest-
ing to investigate the samples for which the wire width equals
the wire length, i.e., w = l. In this case, the cut-wire pairs turn
into nanoscopic plate pairs. Their measured optical properties
(shown in [27]) are qualitatively similar, yet even more pro-
nounced than in the case of the cut-wire pairs. Reducing the
value of w = l allows for the tuning of the resulting resonance
positions. The retrieval of ε(ω) and µ(ω) from the calculated
spectra corresponding to these parameters yields a negativeµ(ω)
around 1-µm wavelength [27] (not shown). Other groups have
even reported a negative real part of the refractive index around
1.5-µm wavelength for the above cut-wire pair structures [28],
as deduced from themeasured interferometric transmittance and
reflectance spectra.
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IV. CONCLUSION

In contrast to the “conventional textbook wisdom,” the mag-
netic permeability µ is no longer unity for all the optical ma-
terials. While µ = 1 holds indeed for all the known natural
materials at optical frequencies, for metamaterials µ �= 1 and
even µ < 0 can result. In this class of tailored (mostly peri-
odic) structures, SRRs (and variations thereof) play the role of
“magnetic atoms” and can lead to the local magnetic dipole
moments. Thus, SRRs can be viewed as the magnetic coun-
terparts of the famous Lorentz oscillator model for the electric
dipole moments. For the SRRs made from gold, µ < 0 can be
achieved at telecommunication wavelengths but not in the vis-
ible range. Other metals and/or other designs might allow for
resonances with µ < 0 even in the visible range. Ultimately,
the constituent metal plasma frequency sets a fundamental
limit.
Where does this field go? Many researchers in the field are

driven by the perspective to obtain a negative refractive index n
at near infrared or optical frequencies by combining “magnetic
atoms” with µ < 0 and “electric atoms” with ε < 0. The search
for a negative real part of n itself is motivated by the fascinating
possibility of a “perfect lens” [29] providing the subwavelength
resolution. Accounting for the “granularity” of the metamate-
rials and deviations from the strict case of n = −1 due to the
real [30] and/or the imaginary [31] part of n, however, limits the
performance of the “perfect lens.” Thus, an important parameter
is the figure-of-merit (FOM) [32], defined by the negative ratio
between the real and imaginary parts of the refractive index n
at frequencies where the real part of n is negative. Early exper-
imental work using gold achieved FOM of the order of 1 [33],
[34]; more recent experiments employing silver improved this
to 3 [35].
Possibly, the real potential of the photonic metamaterials lies

in other unexplored areas, for example, in chiral metamaterials
or in nonlinear metamaterials. In any case, given today’s possi-
bilities regarding the nanofabrication of tailored “atoms,” only
our own imagination and creativity set the limits.
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[21] C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, C. M. Soukoulis,
M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-
infrared magnetic metamaterials,” Adv. Mater., vol. 17, no. 21, pp. 2547–
2549, 2005.

[22] A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of com-
posites containing elongated conducting inclusions,” Phys. Rev. B, vol. 53,
no. 10, pp. 6318–6336, 1996.

[23] L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic compos-
ite medium with conducting nanoelements,” Phys. Rev. B, vol. 66, no. 15,
p. 155411, 2002.

[24] V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes
in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys.
Mater., vol. 11, no. 1, pp. 65–74, 2002.

[25] V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev,
“Resonant light interaction with plasmonic nanowire systems,” J. Opt. A,
Pure Appl. Opt., vol. 7, no. 2, pp. S32–S37, 2005.

[26] A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov,
I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative
permeability at visible frequencies,” Nature, vol. 438, no. 7066, pp. 335–
338, 2005.

[27] G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and
S. Linden. (2005). Cut-wire pairs and plate pairs as magnetic atoms for
optical metamaterials. Opt. Lett. [Online] 30(23), pp. 3198–3200. Avail-
able: http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3198

[28] V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev,
A. V. Kildishev, G. Klimeck, and V. M. Shalaev. (2006). Experi-
mental verification of an optical negative-index material. Laser Phys.
Lett. [Online] 3(1), pp. 49–55. Available: http://dx.doi.org/10.1002/lapl.
200510062



1104 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006

[29] J. B. Pendry. (2000). Negative refraction makes a perfect lens.
Phys. Rev. Lett. [Online] 85(18), pp. 3966–3969. Available:
http://link.aps.org/abstract/PRL/v85/p3966

[30] R.Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl.
Phys. Lett., vol. 84, no. 8, pp. 1290–1292, 2004.

[31] V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt.
Lett., vol. 30, no. 1, pp. 75–77, 2005.

[32] S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and
R. M. Osgood, “Near-infrared double negative metamaterials,” Opt.
Express, vol. 13, no. 13, pp. 4922–4930, 2005.

[33] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and
S. R. J. Brueck. (2005). Experimental demonstration of near-infrared
negative-indexmetamaterials. Phys. Rev. Lett. [Online] 95(13), p. 137404.
Available: http://link.aps.org/abstract/PRL/v95/e137404

[34] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Si-
multaneous negative phase and group velocity of light in a metamaterial,”
Science, vol. 312, no. 5775, pp. 892–894, 2006.

[35] . (2006). Low-loss negative-index metamaterial at telekommuni-
cation wavelengths. Opt. Lett. [Online] 31(12), 1800–1802. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-12-1800

Stefan Linden received the Ph.D. degree in physics
from the Universität Marburg, Marburg, Germany, in
2002.

He received the Feodor Lynen Research Fellow-
ship from the Alexander von Humboldt Foundation
and spent one year at the University of Toronto work-
ing on the nonlinear properties of photonic crys-
tals. He is currently a Postdoctoral Researcher at
the Institut für Nanotechnologie, Forschungszentrum
Karlsruhe, Karlsruhe, Germany. He also leads a
Helmholtz Young Investigators Group. He has a

strong background in ultrafast spectroscopy, optics of metal nanostructures,
photonic crystals, and electron-beam lithography. His current research interests
include the nonlinear optical properties of photonic crystals and the realization
of left-handed metamaterials for telecommunication wavelengths.

Christian Enkrich received the Ph.D. degree
in physics from the Universität Karlsruhe (TH),
Karlsruhe, Germany, in 2006.

He is currently with the Institut für Angewandte
Physik, Universität Karlsruhe (TH). His current re-
search interests include fabrication and characteri-
zation of metamaterials for the near-infrared wave-
length regime and corresponding numerical simula-
tions.

Gunnar Dolling was born in Germany in 1982. He
received the Diploma in physics from the Universität
Karlsruhe (TH), Karlsruhe, Germany, in 2006, where
he is currently working toward the Ph.D. degree in
physics, focusing on negative-index metamaterials at
telecommunication and visible wavelengths.

Matthias W. Klein received the Diploma in
physics from the Universität Heidelberg, Heidelberg,
Germany, in 2002. He is currently working toward
the Ph.D. degree in physics at the Universität Karl-
sruhe (TH), Karlsruhe, Germany.

During 1999–2000, he was a Cornell–Heidelberg
Exchange Fellow at Cornell University, Ithaca, NY,
where hewas engaged in experimental and theoretical
research in organic nanoelectronics. He performed
his diploma thesis in the field of quantum optics. His
current research interests include the area of nanopho-

tonics, with focus on linear and nonlinear experiments with metallic photonic
crystals and metamaterials.

Jiangfeng Zhou was born in 1976. He received
the M.S. degree in physics from Beijing University,
Beijing, China, in 2001. He is currently working to-
ward the Ph.D. degree in electrical engineering at
Iowa State University, Ames.

Thomas Koschny was born in 1971. He received
the M.Sc. and Ph.D. degrees from the Universität
Leipzig, Leipzig, Germany, in 1997 and 2001, re-
spectively, both in physics.

During 2000–2002, he was a Postdoctoral Re-
searcher of quantum Hall effect at the Physikalisch-
Technische Bundesanstalt Braunschweig, Germany.
Since 2003, he has been working on the electro-
magnetic wave propagation in left-handed metama-
terials at the Institute of Electronic Structure and
Laser, Foundation for Research and Technology Hel-

las, Crete, Greece. Since 2004, he has been a Researcher at the Ames Laboratory
and the Department of Physics and Astronomy at Iowa State University, Ames.
His current research interests include the theory of left-handed metamaterials
and photonic crystals.

Costas M. Soukoulis received the B.S. degree
from the University of Athens, Athens, Greece, and
the Ph.D. degree from the University of Chicago,
Chicago, IL, in 1974 and 1978, respectively, both in
physics.

From 1978 to 1981, he was a Visiting Assistant
Professor in the Physics Department, University of
Virginia. During 1981–1984, he was with Exxon Re-
search and Engineering Company. Since 1984, he has
been at Iowa State University and the Ames Labora-
tory, Ames, IA, where he is currently a Distinguished

Professor of physics. Since 1983, he has been an Associate Faculty Member of
the Foundation for Research and Technology Hellas, Crete, Greece, and since
2001, he has been a Professor (part-time) in the Department of Materials Sci-
ence and Engineering, University of Crete, Crete. He is the author or coauthor
of approximately 300 publications and 7000 citations. He is the holder of two
patents for photonic crystals. His current research interests include photonic
crystals, left-handed materials, random lasers, light localizations, and theory of
disordered systems.

Prof. Soukoulis is a Fellow of the American Physical Society, Optical Society
of America, and American Association for the Advancement of Science. He is
the Senior Editor of Photonic Nanostructures: Fundamentals and Applications.



LINDEN et al.: PHOTONIC METAMATERIALS: MAGNETISM AT OPTICAL FREQUENCIES 1105

Sven Burger received the Ph.D. degree in physics
from the University of Hannover, Hannover,
Germany, in 2000.

He was a FacultyMember at the Institute of Quan-
tum Optics, University of Hannover. From 2000 to
2001, he was a Postdoctoral Researcher in an EU
TMR network at the European Laboratory for Non-
linear Spectroscopy, Florence, Italy. Since 2002, he
has been with the Numerical Analysis and Modeling
Group, Zuse Institute Berlin, Berlin, Germany. He is
also with the DFG Research Center Matheon, Berlin,

and with the spin-off company JCMwave. He has been engaged in research on
solitons in Bose–Einstein condensates and the realization of arrays of Josephson
junctions in atomic systems. His current research interests include developing
numerical methods for Maxwell’s equations, with applications to photonic crys-
tals, photolithography, metamaterials, among others.

Frank Schmidt received the Ph.D. degree in elec-
trical engineering/optical telecommunications from
Humboldt University, Berlin, Germany, in 1989, and
the Habilitation (mathematics) from the Free Univer-
sity Berlin, Berlin, in 2002.

Since 1992, he has been a Researcher at the Zuse
Institute Berlin, Berlin, where he currently heads the
Computational Nano-Optics Group. He is one of the
Scientists-in-Charge of Electronic Circuits and Opti-
cal Technologies of the DFG Research Center Math-
eon, Berlin, and is one of the founders of the spin-off

company JCMwave. He is the author or coauthor of about 40 papers in the field
of numerical methods in optics.

Martin Wegener received the Ph.D. degree in
physics from Johann Wolfgang Goethe Universität
Frankfurt, Frankfurt, Germany, in December 1987.

After being a Postdoctoral Fellow at AT&T Bell
Laboratories, Holmdel, NJ, he became an Associate
Professor at the Universität Dortmund in June 1990.
Since October 1995, he has been a Full Professor at
the Universität Karlsruhe (TH), Karlsruhe, Germany.
Since 1997, he has been the Head of the DFG Grad-
uate School Collective Phenomena in Solids. Since
2001, he has been a Group Leader at the Institut für

Nanotechnologie, ForschungszentrumKarlsruhe, and since 2001, a Coordinator
of the Karlsruhe DFG-Center for Functional Nanostructures. He is the author of
two textbooks, a coauthor of about 150 publications in peer-reviewed journals
and international conference proceedings, and has given about 50 invited talks
at international conferences. His current research interests include different ar-
eas of photonics, such as, nonlinear-optical spectroscopy, ultrafast spectroscopy,
extreme nonlinear optics, near-field optical spectroscopy, photonic bandgapma-
terials, and photonic metamaterials.

Dr. Wegener serves as Referee for a number of national committees and
various international journals. Since 2005, he has been a Topical Editor of the
Journal of the Optical Society of America. He was the recipient of the Research
Award of the Alfried Krupp von Bohlen und Halbach-Stiftung in 1993, the
Teaching Award of the State of Baden-Württemberg in 1998, the DFG-Leibniz
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