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ABSTRACT We apply the conformal transformation technique to study systematically a variety of singular plasmonic structures,
including two-dimensional sharp edges, rough surfaces, and nanocrescents. These structures are shown to exhibit two distinct features.
First, different from a planar metallic surface, the surface plasmon excitations on the examined structures have a lower bound cutoff
at a finite frequency; second, the electric field diverges below a critical frequency even when metallic losses are considered. For
rough surfaces and open-crescent nanostructures, the influence of the structure shapes on the absorbance characteristics is also
discussed. Our analysis gives a unique insight into the light capture process on singular structures and holds the promise of detection
of single molecules and greatly enhanced nonlinear effects.
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Surface plasmon-polaritons (SPPs) allow for the ma-
nipulation of light and electronic signals at subwave-
length scale.1,2 Various geometries have been

proposed and experimentally studied to demonstrate
subwavelength confinement and nanofocusing of surface
plasmons, among which surfaces with sharp edges or other
types of singularities supporting strongly localized plasmon-
polariton modes are of particular interest.3-21 Research on
these plasmonic structures has already resulted in the
development of practical nanosystems capable of concen-
trating and delivering light energy to nanoscale regions,3-14

and important future practical applications of those devices
are strongly dependent on further theoretical advances in
this area. Indeed, current theoretical studies on this problem
are mostly limited to numerical methods, which have limited
value in studying singularities. Some analytical studies have
been made by some researchers, showing that surface
plasmon polaritons propagating toward the singularity of the
structures are slowed down, and the energy is highly con-
fined to the vicinity of the singularity.7,12 However, to the
best of our knowledge some important issues, such as the
divergent features of the structure and the influence of
source location on the field enhancement, have not been
discussed yet. Therefore, analytical approaches that can
systematically investigate these singular structures are still
in great demand.

Transformation optics22,23 enables the investigation of a
complicated plasmonic system by first analyzing the proper-
ties of a simple well understood canonical structure. Re-
cently, this concept has been applied to design broadband
light harvesting devices. Two simple structures, a pair of
kissing cylinders and a crescent with touching claws have
been considered to illustrate the general approach.14 In fact,
when extended to much more general cases where the

vertex angles (as defined in the latter part of the letter) of
the singular structures are nonzero, numerous new capabili-
ties will emerge. In this letter, we use the method of
transformation optics to study quantitatively the surface
plasmon modes supported by a variety of singular structures
and to systematically investigate their plasmonic properties
in terms of the vertex angle. Different from the two devices
discussed in ref 14, singular plasmonic structures with a
nonzero vertex angle are generally found to exhibit a cutoff
behavior and a divergent feature. The analytical results show
that beyond a cutoff frequency, the electric field diverges at the
vertex (singularity) of the structure even when the material is
highly dissipative. This divergent feature then disappears above
a critical frequency; the electric field vanishes as surface plas-
mons propagate toward the vertex, whereas a considerable
field enhancement is still expected along the metal surface.
Specifically, for metallic wedge/groove structures, we have
found that the field enhancement becomes more and more
sensitive to the source location as the frequency increases. For
open crescents and rough surfaces, a unique absorbance
behavior is observed. The important features above are not
necessarily limited to structures discussed in this letter, and the
proposed strategy may help guide future research on other
singular nanostructures.

Our discussion starts with a line dipole array embedded in
periodic metallic films, as shown in Figure 1a1,a2. Each metal-
lic layer has a thickness d3, and repeats in the y direction with
a period d. Each element of the dipole array is assumed to have
a dipole moment p̄ ) pxx̂ + pyŷ with an induced potential

where m is the index associated with the dipole located
at x ) 0, y ) md. Then by applying a conformal mapping z′
) a exp(2πz/d) (where z ) x + iy, z′ ) x′ + iy′), a metallic
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wedge (Figure 1b1) and a V-shaped metallic groove (Figure
1b2) are obtained. In this process a singularity is created at
the origin in z′. The vertex angle of the wedge or groove is
denoted as θ (θ ) 2πd3/d for wedges; θ ) 2π(d1 + d2)/d for
grooves), and � ) 2πd1/d represents the angular distance
between the dipole and metal surface. The line dipole array
(with each element at the position z ) 0, z )(id, z )(2id...)
is mapped to a single line dipole located at z′ ) a with the
incident potential taking the form

where p′x )(2πa/d)px and p′y )(2πa/d)py are the strength of
the line dipole along x′ and y′ direction, respectively.

Next, another singular transformation z′′ ) g2/(z′ - a)
maps the wedge or groove to a crescent-shaped structure
or convex rough surface (a cylinder overlapped with a semi-
infinite slab). And the two charges comprising the dipole in
z′ are transformed to near infinity in z′′, giving rise to an
uniform electric field

We can also see from Figure 1c1,c2 that there are two
singularities (z′′ ) 0 and z′′ ) -g2/a) in both structures. It is
worth pointing out that the crescent depicted in Figure 1c1
is different from the one discussed in ref 14 since there is a
gap between the two claw tips of the crescent, allowing for
some unique characteristics (demonstrated later).

In all the following discussions, we shall assume that the
dimensions of the structures are sufficiently small compared
with the wavelength of the probe light (e.g., a and g2/a < 50
nm). Thus, we can neglect radiative effects decoupling the
electric and magnetic fields and consider the electrostatic
limit for P-polarized fields. In this case, the dielectric proper-
ties of the structures remain unchanged under conformal
mappings, and the uniform electric field can be considered
as a good approximation to plane wave illumination.14

Because of the form invariance of Laplace’s equation, the
electrostatic potential is preserved φ(x,y) ) φ′(x′,y′) )
φ′′(x′′,y′′), enabling us to calculate the field strength in the
transformed geometries. Thus solving the tractable periodic
slabs problem gives solutions to the problems of metallic
wedges/grooves, crescent structures, and rough surfaces.

By considering periodic boundary conditions, the solution
to the infinite periodic metallic slabs problem can easily be
obtained, and the dispersion of surface plasmon excitations
can be found from the condition that scattering coefficients
diverge (a detailed derivation is provided in Supporting
Information24)

where

Solving eq 4 gives two bounded surface plasmon modes with
symmetric and antisymmetric profiles of the tangential

FIGURE 1. The schematic of the coordinate transformations. (a1),(a2) Periodic metallic thin films support surface plasmons that couple to a
dipole array, transporting energy to infinity. The thickness of each metallic slab is d3. Each element of the dipole array is located in vacuum
with a distance d1 to the upper adjacent slab, d2 to the bottom adjacent slab (in (a2), d1 ) 0). And d ) d1 + d2 + d3 is the period of the
metallo-dielectric structures; the conformal transformation z′ ) a exp(2πz/d) maps the configuration in (a1)/(a2) to a metallic wedge (b1)/V-
shaped metallic groove (b2) excited by a single line dipole, where the energy is transported to infinity as well as the vertex of the structure;
Finally, under the singular transformation z′′ ) g2/(z′ - a), the wedge/groove-like structure in (b1)/(b2) are converted to a metallic crescent
(c1)/metallic rough surface (c2). The single dipole source in (b1) and (b2) is mapped to a uniformed electric field E′′inc in (c1) and (c2).

-φ′in ) 1
2πε0

(x' - a)p'x + y'p'y

(x' - a)2 + y'2
(2)

E''inc )
(x̂p'x - ŷp'y)

2πε0g2
)

a(x̂px - ŷpy)

ε0dg2
(3)

e2α(e|k|(d1+d2) - e|k|d3)2 - (e|k|(d1+d2+d3) - 1)2 ) 0
(4)

α ) ln[(ε - 1)/(ε + 1)] (5)
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electric field Ex.1 The symmetric (or even) mode spans the
frequency range [ωc, ωsp], while the antisymmetric (or odd)
mode spans the range [ωsp, ω′c]. Here, ωsp denotes the
surface plasma frequency (where Re{ε(ωsp)} )-1); ωc and
ω′c are the lower and upper bound cutoff frequencies
determined by the following equations

where ε(ωc) and ε(ω′c) represent the permittivity of the metal
at ωc and ω′c, respectively. Because of their different propa-
gation distances, the odd mode is often termed a long-range
SPP in the literature, while the even mode is related to a
short-range SPP.1

The spectrum of surface plasmon modes in a single
metallic slab system has a lower bound cutoff at zero
frequency and an upper bound cutoff at the bulk plasma
frequency.1 However, eqs 6a and 6b indicate that when the
number of metallic films increases to infinity, the hybridiza-
tion of surface plasmons on each interface of the slabs will
create two band gaps respectively at the lower and higher
frequency range, resulting in a nonzero lower bound cutoff
and an upper bound cutoff below the bulk plasma frequency.
Consequently, the transformed singular structures (shown
in Figure 1b1,b2,c1,c2) exhibit similar behavior with a lower
bound cutoff frequency ωc and an upper bound cutoff
frequency ω′c determined by

Equation 7 shows that the two cutoff frequencies of a
singular structure only depend on the vertex angle θ.

The optical parameters of noble metals25 indicate that the
odd mode (namely, the surface plasmon excitation above
the surface plasma frequency) is relatively narrow-band.
(e.g., for silver with a surface plasma frequency ωsp ) 880
THz and a bulk plasma frequency ωp ) 910 THz, the
bandwidth of the odd mode is at most 30 THz.) Therefore,
in the following discussions we shall focus on the frequency
range below the surface plasma frequency, where only the
even mode needs to be considered. To understand further

the surface plasmon modes supported by the transformed
singular structures, we calculate the scattered field strength
for the metallic wedge/groove

where F′ ) (x′2 + y′2)1/2; A and B are coefficients given in ref
24. Here the time dependence eiωt is implicit. fR,θ is a
complex number determined by θ and R (R is defined by
eq 5) through the following equation

The first factor on the right side of eq 8 is a result of the
distortion of space under the transformation, while the
second and third factors represent the propagation of surface
plasmon mode along the radial F′ and angular �′ directions,
respectively. The surface plasmon mode is excited at the
position F′ ) a and propagates to infinity as well as to the
vertex of the structure. Normally, we expect that the surface
wave amplitude decreases along its propagating direction
due to dissipation in the material. Nevertheless, the situation
is different here, since the field can be enhanced at the
vertex of the structure. This phenomenon can be understood
by checking eq 8. Although the metallic losses will cause a
decrease of the field by a factor F′Im{fR,θ}/π (see the second
factor on the right side of eq 8) as the surface wave
propagates to the vertex (F′ ) 0), the compression of surface
plasmons would enhance the electric field by F′-1 (see the
first factor on the right side of eq 8) as F′f 0. Thus, whether
the electric field is enhanced or decreased at the vertex is
determined by the values of the two factors. Hence the
critical condition is deduced as

Considering the first order approximation of fR,θ, eq 10
can be simplified to

At the frequency that satisfies eq 11, the electric field at the
vertex converges to a nonzero value. Accordingly, we refer
to it as the critical frequency ω0. Below ω0 (where Im{R} <
θ), the electric field diverges at the vertex of the structure,
even if the metal is highly dissipative. In contrast, above ω0

(where Im{R} > θ), the electric field decreases and finally
vanishes as surface plasmons propagate toward the vertex.

Re{ε(ωc)} ) -
d1 + d2

d3
, Re{ε(ω′c)} )

-
d3

d1 + d2
, when d1 + d2 > d3 (6a)

Re{ε(ωc)} ) -
d3

d1 + d2
, Re{ε(ω′c)} )

-
d1 + d2

d3
, when d1 + d2 < d3 (6b)

Re{ε(ωc)} ) θ - 2π
θ

, Re{ε(ω′c)} ) θ
θ - 2π

(7)

eα sinh[(1 - θ/π)fα,θ] ) sinh fα,θ (9)

Im{fα,θ} ) π (10)

Im{α} ) θ (11)
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The above analysis is summarized in Figure 2, which shows
the relation between the plasmonic properties of the metallic
wedge and the vertex angle θ. The metal is assumed to be
silver, and the permittivity is taken from experimental
results.25 The cutoff frequency ωc and the critical frequency
ω0 are denoted by the blue dash-dot line and black solid line,
respectively. From the figure we can see that the frequency
band [ωc, ω0] increases as the vertex angle θ decreases. Also,
it gets relatively broadband for small θ angles (e.g., when θ
) 9°, ω0 - ωc ) 450 THz). Here we emphasize that
numerical methods could never get accurate results in this
frequency band since dealing with the divergence of electric
fields requires infinitely dense meshes.

Despite the infinite field strength below the critical fre-
quency, a detailed calculation shows that the total power in
a volume always converges to a finite value.24 In other
words, the divergence of the electric field does not conflict
with the conservation of energy. Another relevant quantity
from the perspective of single molecule detection is the
Raman signal (defined as the power density scattered by
molecules on the surface of the structure). To a first ap-
proximation, it is proportional to |E′scatt|4. Interestingly, our
analytical results show that the total Raman signal in a
volume diverges under the condition 2 Im{fR,θ} < π (or 2
Im{R} < θ). We refer to the frequency at which 2 Im{R} )
θ as ω1 (the red dashed line in Figure 2). It is worth noticing
that ω1 is slightly different from the critical frequency ω0. In
the frequency range [ω1, ω0] (the gray region in Figure 2)
the electric field blows up at the vertex while the total Raman
signal integrated over volume still remains finite. On the
other hand, when ωc < ω < ω1 (the yellow region in Figure
2), both the electric field and total Raman signal diverge. It
should be pointed out that in practical designs, a perfect

wedge can never be fabricated. In addition, the nonlocal
properties of ε encountered at small length scales26 will also
prevent the electric field from increasing to infinity. How-
ever, our approach does indicate that a sharp wedge is still
capable of enhancing the field to the atomic field scale.
Therefore, closer to the vertex, a molecule will experience
a considerably larger power density. This property is poten-
tially applicable in the optical characterization of single
molecules.13,15,27

Another interesting phenomenon associated with the
wedgelike structures is the influence of the source location
on the surface plasmon excitations. To illustrate this point,
Figure 3 depicts the calculated electric field distribution of a
metallic wedge with a vertex angle of 9°. A line dipole is
placed at two different angular positions around the vertex.
Figure 3a,b shows the electric field distributions at 350 THz
(the cutoff frequency where ε ) -38.49 + 3.33i). We can
see that most of the energy is confined to the vicinity of the
vertex, irrespective of where the source is located. Figure
3c,d corresponds to a frequency of 800 THz (the critical
frequency where ε ) -3.07 + 0.79i). A considerable field
enhancement (up to 100) can be observed along the edge
of the structure when the dipole is placed close to the metal
surface (Figure 3c). In contrast, the coupling to surface
plasmons is very weak (|E′scatt| ∼ 10-3) if the dipole is located
on the other side of the vertex (Figure 3d). The field distribu-
tions for 875 THz (close to the surface plasmon frequency,
where ε ) -1.09 + 0.51i), shown in Figure 3e,f, confirm
this trend. At this frequency, the energy is confined around
the point where the surface plasma is excited (F′ ) a) and
the influence of the dipole position is even more drastic; the
field enhancement increases to 800 when the dipole is
placed close to the metal surface (Figure 3e) whereas the
coupling to surface plasmons becomes extremely low
(|E′scatt| ∼ 10-9) in the other configuration (Figure 3f). In other
words, as the frequency increases, the surface plasmon
excitations get more and more sensitive to the position of
the dipole, which is a remarkable property for potential
sensing applications.

Since the vertex angle is preserved after conformal
transformations, the crescents15-18 and rough surfaces19,20

are found to exhibit similar properties (e.g., similar cutoff
and divergent features) with the metallic wedgelike struc-
tures. Further analysis is made by calculating the absorption
cross sections of these structures. Since the total energy is
conserved under transformations, the power absorbed by
the nanostructure in the transformed coordinate system z′′
is equivalent to the power dissipated by the dipole in the
original geometry z.14 The calculated absorption cross sec-
tions σa

x and σa
y associated with x′′ and y′′ polarizations are

depicted in Figure 4. The top three panels of Figure 4 show
the results for the crescent with θ ) 9° as a function of �
and frequency (θ and � are defined in Figure 1c1). Different
from the crescent case discussed in ref 14 where only one
continuous and broadband absorbance is observed, Figure

FIGURE 2. For a certain vertex angle, there are three crucial
frequencies. The black solid line denotes the critical frequency ω0

where Im{r} ) θ; the red dashed line corresponds to ω1 where 2
Im{r} ) θ; and the blue dot dashed line is the cutoff frequency ωc

where Re{ε} ) 1 - 2π/θ. In the range [ωc, ω1], both the electric field
and total Raman signal in a volume diverge; in the range [ω1, ω0],
the electric field blows up at the vertex, while the total Raman signal
in a volume converges to a finite value; in the range [ω0, ωsp], the
electric field vanishes at the vertex.
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4a indicates that the crescents with untouched claws exhibit
two distinct absorbance bands for the x′′ polarization, one
close to the cutoff frequency ωc, the other close to the surface
plasma frequency ωsp. Near ωc, surface plasmons are highly
concentrated at the singularities of the two claws. Hence,
the cutoff frequency absorbance is associated with a dipole-
like resonance, and the equivalent dipole moment is pro-
portional to the distance between the two tips of the
crescent. As shown in Figure 4a, this resonance strongly
depends on the angle �; the cutoff frequency absorbance
dominates for large �-angles (or large distance between the
two crescent tips), and vanishes as � decreases. On the other
hand, the absorbance band close to ωsp corresponds to the
overall structure resonance. It is relatively broadband, but
only appears for a narrow range of small �-angles. When �
increases, the hybridization of the surface plasmon with the
tip resonance results in a red shift of the absorbance band.

Moving on to Figure 4b, we find the cutoff frequency
absorbance disappears, since the dipole-like resonance is
suppressed for y-polarized illumination. Figure 4c depicts the
absorption cross sections for three special cases (where � )
9, 45, and 120°, respectively). In particular, when � ) 45°,
a large and continuous absorption cross-section over a wide
band spectrum can be observed.

The bottom panels of Figure 4 correspond to the results
for convex rough surfaces. The absorption cross-section
increases as the vertex angle θ decreases, and the maximum
always occurs at the surface plasma frequency ωsp. Apart
from that, Figure 4f indicates that the Raman intensity is
significantly enhanced for y-polarized illumination. This is
due to the coupling between the cylinder and the semi-
infinite plane plasmons, similar to the case discussed in ref
21.

FIGURE 3. The normalized electric field for a 9° silver wedge with x-polarized dipole sources placed at different positions around the vicinity
of the vertex. Panels in the three columns from left to right correspond to the cutoff frequency 350 THz, the critical frequency 800 THz, and
the surface plasma frequency 875 THz, respectively. These field distributions have been normalized by the field magnitude that would be
obtained at the vertex in absence of the metallic wedge.

FIGURE 4. Absorption cross sections for crescent (top panels) and convex (bottom panels) rough surfaces. The left column corresponds to the
horizontal polarized illumination and the middle column corresponds to the vertical polarized illumination. For the purpose of a clearer
observation, we plot the absorption cross-section as a function of the frequency for structures with different �- (or θ) angles in the right
column. Here the solid lines denote the horizontal polarized cases and the dashed lines denote the vertical polarized cases.
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To conclude, we have established analytical relationships
between a canonical two-dimensional metallo-dielectric
system and a variety of singular plasmonic structures. The
divergence conditions of the electric field, total power, and
total Raman signal as well as the influence of the source
location and incident wave polarization on the surface
plasmon excitations have been discussed in detail. Our
approach can be generalized to investigate some other
complicated plasmonic systems containing singularities and
therefore may provide guidance in a number of practical
applications with metallic nanostructures.
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