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We excite low-symmetry planar arrays of nanoscale magnetic split-ring resonators oscillating at around 200
THz frequency under oblique incidence of light. Due to the in-plane coupling of split-ring resonators, classical
magnetic-dipole waves result in the plane. We measure the dispersion relation of “antiferromagnetic” and
“ferromagnetic” modes, revealing backward waves and a wave-vector-dependent damping. The latter provides
evidence for retardation effects, which play no role in the quantum-mechanical counterpart of classical mag-
netization waves, i.e., magnons. Our experiments are in good agreement with both simple heuristic modeling
and microscopic theory.
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A split-ring resonator �SRR� is a tiny resonant electro-
magnet into which the incident light field can induce a cir-
culating and oscillating electrical current, leading to a
magnetic-dipole moment perpendicular to the SRR plane.1

Thus, SRR can be viewed as the classical analog of
magnetic-dipole moments connected with quantum-
mechanical orbital angular momentum or spin. For SRR on
the nanometer scale, the SRR resonance lies in the optical
frequency range.2–4 If many SRR are densely packed into an
artificial material �a “metamaterial”�, the interaction among
the SRR can become important5–10—just like the interaction
of the magnetic-dipole moments of quantum-mechanical or-
bital angular momenta or spins is crucial in usual ferromag-
netic or antiferromagnetic materials.11

Apart from these similarities, there are also obvious fun-
damental differences between classical SRR and quantum-
mechanical spins �or, likewise, quantum-mechanical orbital
angular momenta�: �i� spins exist on their own, whereas the
SRR magnetic-dipole moment disappears as soon as the light
field is switched off. �ii� The spin magnetic-dipole moment
can be static, the SRR magnetic-dipole moment necessarily
oscillates �here beyond 200 THz frequency�. Thus, when we
use the notions “antiferromagnetic” or “ferromagnetic” for
SRR in this Brief Report, we exclusively refer to snapshots
of the SRR magnetic-dipole distribution. �iii� SRR, unlike
spins, also have an electric-dipole moment. Thus, any SRR
magnetic-dipole wave is always connected to an electric-
dipole wave. �iv� The spin magnetic-dipole moments interact
via the quantum-mechanical �indirect� exchange interaction
while the SRR interact via classical electromagnetic fields—
for not too small distances mainly via both their magnetic-
and electric-dipole moments, for small distances via their
actual electromagnetic near fields, which also comprise
higher-order multipole moments beyond the dipole contribu-
tions.

In this Brief Report, we investigate the dispersion relation
of in-plane antiferromagnetic and ferromagnetic magnetiza-
tion waves in a low-symmetry planar SRR arrangement. Our
most important finding is that not only the mode frequency
but also the mode damping increases or decreases with in-

plane wave number depending on the propagation direction.
This behavior indicates direction-dependent retardation ef-
fects and shows that the damping of photonic-metamaterial
modes is significantly influenced by the interaction among
SRR and by their relative oscillation phase.

Spin interaction, e.g., in the Heisenberg Hamiltonian, can
be considered as instantaneous.11 In contrast, the information
propagation over a typical lattice constant, a, of a SRR array
�see below� takes on the order of 1–2 fs, which is comparable
to the SRR oscillation period of 5 fs at about 200 THz fre-
quency. Hence, retardation effects can become relevant �see
Ref. 12 for recent experiments on spherical metal nanopar-
ticles�. In its simplest heuristic one-dimensional classical
form, this leads to the equation of motion of the magnetic-
dipole moment �or some higher-order moment� mn�t� at time
t and site n

m̈n�t� + 2�ṁn�t� + �̃2mn�t� = W��mn−1�t − t0� + mn+1�t − t0�� .

�1�

The dots represent the temporal derivatives. Here, we have

introduced the undamped eigenfrequency �̃, the damped

eigenfrequency �=��̃2−�2, the damping of the individual
harmonic oscillators �, the real coupling frequency W be-
tween nearest neighbors, and the retardation time delay t0.
For time-harmonic behavior �exp�−i�t�, the time delay t0
�t0�0 due to causality� translates into a phase shift �=�t0
��t0=const. The latter approximation is justified under the
below conditions as the actual frequency � will turn out to
differ from � only by a few percent. This leads to the dis-
persion relation ��k� with complex � at real wave number k
given by

Re��� = + � − W cos�ka�cos��� ,

Im��� = − � − W cos�ka�sin��� . �2�

Without retardation, i.e., for �=0, the usual11 cosine-shaped
magnon dispersion relation is recovered and Im���=−�
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=const. In contrast, for finite phase delays �, the mode
damping, −Im���, becomes k dependent. For example, for
�=� /2, Re���=�=const. while Im��� is dispersive. The
sign of the real interaction frequency W determines whether
the mode damping increases or decreases with increasing
wave number k.

The SRR array under consideration is shown in Fig. 1. We
have previously13 fabricated such gold nanostructures via
electron-beam lithography and have shown by normal-
incidence transmittance spectroscopy and comparison with
theory that the system reveals two collective eigenmodes: a
low-frequency antiferromagnetic and a high-frequency ferro-
magnetic mode. For a snapshot of the antiferromagnetic
mode, the SRR magnetic-dipole components normal to the
SRR plane are oriented up and down as the black and white
squares on a checkerboard, whereas all point in the same
direction for the ferromagnetic mode. These two eigenmodes
shown in Figs. 1�c� and 1�d� can be excited by the two or-
thogonal linear polarizations oriented along the two diago-
nals. These diagonals coincide with the primitive translation
vectors of the underlying square lattice that we refer to as the
x and y direction in what follows �see Fig. 1�b��. Under
normal incidence of a plane wave of light, further modes can
not be excited as all equivalent SRR in the array are driven
by the same phase of the incident light field.

Investigating quantum-mechanical magnons in normal
materials requires sophisticated experimental techniques
such as inelastic scattering of spin-polarized neutrons11 or
spin-polarized electron-energy-loss spectroscopy.14 The
beauty of classical magnetization waves in metamaterials is
that their in-plane dispersion relation ��k��� can quite easily
be measured directly in an optical experiment:5,10 The angle
of incidence � together with the free-space wavelength 	
immediately allows for determination of the parallel compo-
nent of the incident wave vector. It is conserved at the air-
metamaterial interface hence identical with the in-plane
wave vector k��. This aspect is illustrated in Fig. 2. The cor-
responding angular eigenfrequency � can be obtained via the
resonance position in the extinction spectrum �negative loga-

rithm of the transmittance T�. Selected typical measured ex-
tinction spectra are depicted in Fig. 3�a�. To improve accu-
racy and reliability, we determine the resonance position and
damping by fitting a Lorentzian to the raw data. Indeed, the
above simple modeling leads to Lorentzian line shapes. Re-
peating this procedure for many positive and negative angles
�in steps of 5° from −45° to 45° and with an opening angle
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FIG. 1. �Color online� �a� Electron micrograph of the low-
symmetry gold SRR array under investigation �Ref. 13�. The gold
thickness is 50 nm, sample footprint is 80 
m�80 
m. �b� Illus-
tration of the primitive unit cell �solid� and square lattice with lat-
tice constant a �dashed�. �c� and �d� show snapshots of axial com-
ponent of the magnetic field of the �c� antiferromagnetic and the �d�
ferromagnetic eigenmode that can be excited under normal inci-
dence of light �Ref. 13�.
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FIG. 2. �Color online� Scheme of the different geometries of
oblique incidence of light investigated in this work. In each case, a
certain in-plane wave-vector k�� results. Note that the in-plane com-
ponent of the incident electric-field vector remains strictly parallel
to either the x or the y direction for oblique incidence. Thus, anti-
ferromagnetic and ferromagnetic modes are not mixed for all four
depicted geometries.
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FIG. 3. �a� Selected measured extinction spectra raw data �gray�
together with Lorentz fits �black�. The maximum and median values
of the Lorentzians are indicated by the vertical lines. The geometry
corresponds to Fig. 2 �I� and �II�. The angle of incidence � varies
from 0° to 40° in steps of 10° �from bottom to top�. These spectra
are vertically displaced for clarity. �b� Dispersion relation f�k���
=��k��� / �2�� resulting from the raw data discussed in �a� as well as
the other two configurations illustrated in Fig. 2 �III� and �IV�.
Geometries I and IV correspond to k�� along x direction, II and III
correspond to k�� along y direction.
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of 5°� as well as for several polarization configurations �see
Fig. 2� leads to the measured dispersion relation shown in
Fig. 3�b�. Here, we have plotted k�� in the first Brillouin zone
of the primitive real-space unit cell that has lattice constant
a=�2a�=339 nm �see Fig. 1�b��, where a� is the SRR
center-to-center spacing �note that we have previously13 em-
ployed a unit cell comprising four SRR that is different from
the primitive one and that has had lattice constant 2a��.
Angles � up to �45° with respect to the surface normal
correspond to �k����0.4�� /a. This means that a substantial
fraction of the first Brillouin zone can actually be accessed
experimentally.

Starting from the low-frequency antiferromagnetic and
the high-frequency ferromagnetic mode at k�� =0 in Fig. 3�b�,
four dispersion branches result. The branches are labeled
with numbers that refer to the geometries depicted in Fig. 2.
Although the planar SRR array �Fig. 1�a�� has no center of
inversion, all four dispersion branches show no significant
asymmetry. For two of the four branches in Fig. 3�b�, fre-
quency, i.e., Re���, decreases with increasing modulus of the
in-plane wave vector. Thus, the waves group velocity is op-
posite to its wave vector, hence opposite to its phase velocity,
i.e., backward waves result �in the sense of v�phase ·v�group0�.
This aspect would lead to negative refraction at an interface
in the plane of propagation. The other two dispersion
branches exhibit equal direction of phase and group velocity,
i.e., v�phase ·v�group�0. More importantly, all four branches
shown in Fig. 3�b� exhibit a dependence of the mode damp-
ing, −Im���, on the in-plane wave number. Following our
above simple modeling, this behavior represents evidence for
retardation effects. Consistent with the symmetry of the SRR
array, these retardation effects depend on the direction of
in-plane wave propagation and, furthermore, they are differ-
ent for the antiferromagnetic and the ferromagnetic mode.

Intuitively, the overall behavior in Fig. 3�b� can be under-
stood as follows. Suppose that electric dipole-dipole interac-
tion dominates between adjacent primitive unit cells. For
zero in-plane wave number, the total electric-dipole moment
of the two SRR in each primitive unit cell for the antiferro-
magnetic �ferromagnetic� mode is parallel to the exciting
electric-field vector and, hence, oriented along the y direction
�x direction � �see Fig. 1�. The antiferromagnetic mode
propagating along the x direction �y direction� is a transverse
�longitudinal� electric-dipole wave. Without retardation ��
=0�, it is well known that this leads to a decrease �increase�
in the real part of the frequency for increasing modulus of
the in-plane wave number—exactly opposite to the experi-
mental observation in Fig. 3�b�. However, following the
above simple dispersion formulas, for a retardation phase �
in the interval 90° �270°, the sign of the curvature of
Re��� versus wave number reverses due to cos���0, lead-
ing to an overall agreement of this reasoning with the experi-
mental observations in Fig. 3�b�. For the ferromagnetic
mode, an analogous reasoning applies but x and y direction
have to be interchanged because of the orthogonal orienta-
tion of the total electric-dipole moment compared to that of
the antiferromagnetic mode. This turns transverse into longi-
tudinal waves and vice versa. Provided that the retardation
phase is in the interval 90° �180°, this reasoning also

correctly explains the curvature of the damping, −Im���, for
all four dispersion branches. The analogous argument assum-
ing that magnetic dipole-dipole interaction dominates be-
tween adjacent primitive unit cells does not explain the data
because all dispersion branches correspond to transverse
waves in this case.

Clearly, the retardation phase � plays a crucial role in our
above reasoning. To independently estimate its value, one
can argue that the lattice constant of a=339 nm in Fig. 1 is
larger than a quarter of the free-space resonance wavelength
of about 1.25 
m �equivalent to 240 THz frequency�. This
leads to a retardation phase exceeding 90°, perfectly consis-
tent with our above discussion. This estimate assumes wave
propagation with the vacuum speed of light. Slower propa-
gation than that will increase the estimated retardation phase.

Note that the above reasoning based on electric dipole-
dipole interaction does not explain the frequency splitting of
the antiferromagnetic and the ferromagnetic mode at zero
in-plane momentum. Magnetic dipole-dipole interactions
within each primitive unit cell can qualitatively explain this
aspect. However, interaction via higher-order multipole mo-
ments of the two nearby SRR are likely to play a role as
well.

To rule out experimental artifacts and to further support
our conclusions, we simulate the magnetization waves by
solving Maxwell’s equations for the experimental conditions.
This treatment clearly includes SRR interaction via higher-
order multipole moments, interaction beyond the nearest
neighbors, as well as retardation effects. The sample param-
eters are chosen identical to those for our previous normal-
incidence experiments:13 the lateral geometrical parameters
are taken from the electron micrograph shown in Fig. 1�a�,
the gold thickness is 50 nm. For the description of the per-
mittivity of gold, we use the free-electron Drude model with
plasma frequency �pl=2��2108 THz, collision frequency
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FIG. 4. �a� Selected calculated extinction spectra that can be
compared directly with the experiment shown in Fig. 3�a�. The
angle of incidence � varies from 0° to 70° in steps of 10° �from
bottom to top�. �b� Resulting dispersion relation that can be com-
pared with experiment �Fig. 3�b��.
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�col=2��24 THz, and background dielectric constant �b
=9.07. The refractive index of the glass substrate is taken as
nSiO2

=1.45. We solve Maxwell’s equations using a
frequency-domain finite-element solver �see Ref. 10�. For
achieving converged results we use higher-order, vectorial
finite elements and adaptive mesh refinement.

Selected numerically calculated raw data �Fig. 4�a�� and
the dispersion relation �Fig. 4�b�� derived via the same pro-
cedure as described above for the experiment nicely agree
with the experiment shown in Figs. 3�a� and 3�b�, respec-
tively. Importantly, the behavior of the four dispersion
branches—real parts as well as imaginary parts—evolving
out of the antiferromagnetic and ferromagnetic eigenmode at
k�� =0 qualitatively and almost quantitatively agrees with ex-
periment �compare Figs. 3 and 4�.

In conclusion, we have discussed similarities and differ-
ences of classical and quantum-mechanical magnetization
waves. While dispersive waves appear for both, we find a
significant dispersion of the mode damping in the classical

case. This behavior is a retardation effect, i.e., it takes a finite
time until the change in one magnetic-dipole moment arrives
at an adjacent site. Depending on the relative oscillation
phase between different dipoles, this effect leads to a de-
crease or an increase in the mode damping. Our results imply
that metamaterial damping cannot only be tailored by shap-
ing the unit cell but also by the arrangement of the unit cells
onto a lattice.
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