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Abstract: Grating cloaks are a variation of dielectric carpet (or ground-
plane) cloaks. The latter were introduced by Li and Pendry. In contrast to 
the numerical work involved in the quasi-conformal carpet cloak, the 
refractive-index profile of a conformal grating cloak follows a closed and 
exact analytical form. We have previously mentioned that finite-size 
conformal grating cloaks may exhibit better cloaking than usual finite-size 
carpet cloaks. In this paper, we directly visualize their performance using 
photorealistic ray-tracing simulations. We employ a Newtonian approach 
that is advantageous compared to conventional ray tracing based on Snell’s 
law. Furthermore, we quantify the achieved cloaking quality by computing 
the cross-correlations of rendered images. The cross-correlations for the 
grating cloak are much closer to 100% (i.e., ideal) than those for the 
Gaussian carpet cloak. 
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1. Introduction 

The concept of transformation optics [1–5] has firmly established that arbitrary objects can be 
made to appear invisible by surrounding them with an appropriately shaped inhomogeneous 
and generally anisotropic optical magneto-dielectric structure. To bring invisibility cloaking 
“down to earth”, researchers now aim at obtaining good cloaking action for finite-size 
structures which are as small as possible compared to the object to be hidden, while obeying 
the following constraints: (i) avoid singularities of the optical properties, (ii) avoid metal 
structures necessary for magnetic resonances if possible (because of losses at optical 
frequencies), (iii) avoid very large anisotropies if possible (because this again requires 
resonances that lead to losses), and (iv) maintain operation over a wide frequency band. 

The so-called carpet cloak [6] introduced by Li and Pendry has already come amazingly 
close to this aim. Corresponding experiments have been presented in Refs [7–12]. However, 
the carpet cloak does suffer from certain limitations, such as a pronounced lateral beam 
displacement [13]. This artifact – which was already visible in previous publications [6,14] – 
makes the cloaking structure detectable. We have recently pointed out [15] that the decay of 
the refractive-index profile away from the hidden object is related to the spatial-frequency 
distribution of the bump in the carpet. In particular, bump profiles with a cut-off at low spatial 
frequencies lead to a much faster decay of the refractive-index profile. Subsequently, the 
lateral beam displacement disappears almost completely for a single non-zero spatial 
frequency component. We have called this configuration the grating cloak [15]. 

However, it is difficult to assess the effect of the remaining imperfections of the finite-size 
cloaking structure from the mere inspection of selected rays in two dimensions (as done in our 
Ref [15].). In contrast, photorealistic ray tracing [16–18] is a well-known rendering technique 
based on ray optics, allowing to simulate images as they would appear to the human eye, and 
thus providing a direct and intuitive impression of their performance. These images can also 
be the basis for a quantitative assessment of the cloaking quality using cross-correlation 
functions (see section 5). 
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In this paper, we present corresponding numerical calculations. To obtain fully converged 
results under these conditions, we employ Newtonian ray tracing in a dedicated home-built 
software program. 

2. The grating cloak 

The refractive-index distribution n of the grating cloak has been given [15] in closed form. 
Replacing the two-dimensional coordinates (u,v) in Eq. (10) in Ref [15]. by (x = u, y = v, z) in 
three dimensions, we have 

 
( )

0

1
( , , ) .

1 ( )ik x iy
n x y z

W icke 



  (1) 

Here, W0 is the Lambert function (or product logarithm). The constant wave number k is given 
by k = 2π /Λ with the real-space grating period Λ; the complex-valued constant c is given by c 
= iA with real-valued A, where 2A is the peak-to-peak vertical grating amplitude (see Eq. (2)). 
Thus, numerical errors in determining the index profile (as, e.g., possible for the quasi-
conformal carpet cloak requiring numerical minimization of the modified-Liao functional) do 
not play any role at all in our present work. We do not consider any frequency dependence of 
n. 

The profile y(x) of the metal grating off of which light rays are reflected and which is to be 
cloaked by the refractive-index profile given by Eq. (1) has the shape of a trochoid given by 
the parametric form [15] 

 
( ) sin( )
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x A k

y A k
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where the parameter ξ (corresponding to x in Ref [15].) runs from +  to -. The grating 
profile given by Eq. (2) is translationally invariant along the z-direction and can be brought 
into the explicit form 

 2 2( ) arccos ,
2

y
x y A y N

A

  
       

  
  (3) 

with integer N = -, …, +  for the different grating maxima. The “-“ sign in Eq. (3) applies 
for the left-hand-side slope of each maximum, the “+” sign for the right-hand-side slope. In 

the shallow-grating limit defined by 2π A/Λ <<1, hence x ξ in Eq. (2), one gets the 
approximate explicit form 

 ( ) cos( ).y x A kx   (4) 

However, for the numerical evaluation of the ray trajectories we will rather use the exact 
forms of Eqs. (2) and (3) throughout this work. Figure 1(a) shows an example for the 

normalized grating-cloak model parameters Λ = 1 and A = 3/(16π)0.06 that lead to 
experimentally accessible refractive indices. In Figs. 3-7, one normalized unit corresponds to 
an actual 19 cm. 

Since the grating cloak cannot be directly compared to the familiar carpet cloak [6], we 
also generate images for a single-bump Gaussian conformal cloak [15], which is more 
amenable to such a comparison. In the shallow-bump limit its bump shape is given by 

 
2( / )( ) ,x wy x he   (5) 

with the height h and the width w. However, for the actual calculations, we use the exact 
implicit form given in Ref [15]. Figure 1(b) shows an example for the normalized model 
parameters w = 0.306 and h = 0.13. 
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Fig. 1. (a) False-color representation of the normalized refractive-index profile n/nmin of the 
conformal grating cloak in the xy-plane according to Eq. (1). The normalized grating-cloak 

parameters are Λ = 1 and A = 3/(16π)0.06 (leading to nmin = 0.727). The normalized height of 
the cloak is equal to 1.1. In Figs. 3-7, one normalized unit corresponds to 19 cm. (b) Same, but 
for the Gaussian conformal map with w = 0.306 and h = 0.13 (leading to nmin = 0.873). The 
normalized height of the cloak is 1.1. Note that these parameters have been chosen such that 
n/nmin in (a) and (b) varies in the same interval [1.0, 2.2]. This aspect allows for comparing the 
two setups in a meaningful manner. 

3. Newtonian photorealistic ray tracing 

We have previously [14,19] employed ray tracing based on Snell’s law for sceneries involving 
dielectric cloaks. These results have been fully converged. However, later we noticed that 
certain viewing directions, such as a perpendicular view onto a cloaked bump, tend to 
converge only very slowly or not at all within accessible computation times. Sometimes, 
stripes appeared as artifacts in the rendered images. Thus, we started investigating alternative 
ray-tracing approaches. 

It is well established [18,20–29] that ray optics in inhomogeneous optical media can be 
formulated in analogy to Hamiltonian mechanics. Here we use a simple and intuitive 
formulation that is equivalent to Newton’s second law. 

To emphasize the close analogy to mechanics and to aid the derivation, we briefly review 
three important Eqs. (6)-(8) from classical mechanics. We start from Hamilton’s variation 
principle for the action integral for the (generalized) coordinates and the (generalized) 
velocities for physical trajectories 

 
2

1

( , , ) 0.
t

t
L r v t dt    (6) 

As described in many mechanics textbooks, this allows for deriving the Euler-Lagrange 
equations for the components of the coordinate vector ri and the components of the velocity 
vector vi 

 0.
i i

L d L

r dt v

 
 

 
  (7) 

Identifying the first term as the force component Fi, the second term as the temporal 
derivative of the momentum component, and additionally assuming a constant particle mass 
m, one immediately arrives at Newton’s second law for the acceleration 
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We can now simply repeat this procedure for light rays, where Hamilton’s principle (Eq. (6)) 
has to be replaced by Fermat’s principle, i.e., by 
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In analogy to Eq. (7), this leads to 
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and upon inserting the modulus of the local phase velocity of light v = c0/n, which is  
known a priori at each point in space, to the Newtonian equation of motion 
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The effective light-ray acceleration on the right-hand side of Eq. (11) vanishes in 
homogeneous media and thus outside the cloak. Inside the cloak, we solve this ordinary 
second-order differential equation (Eq. (11)) numerically for each ray. At the interface 
between the cloak and the surrounding air (or embedding medium), Snell’s law and the 
Fresnel equations correctly describe the refraction and reflection of the ray due to the 
discontinuity in the refractive index. We neglect rays which are Fresnel reflected more than 
once, because their intensity will be negligible in practice. 

The refractive-index profile of the grating cloak is given in the closed mathematical form 
of Eq. (1). Evaluating the gradient yields 

 

0 0
02 3

0 0

2 2

0 0
02 3

0 0

2 Re(1 ) Im( )
Im( )

|1 | |1 |

Im ( ) Re (1 )
Re(1 ) ,

|1 | |1 |

0

W W k
W

W W

W W k
n W

W W

  
   

   
 
        
   
 
 
 
 

  (12) 

with the abbreviation for the Lambert function W0 (see Eq. (1)) 

 ( )

0 0( ).ik x iyW W icke    (13) 

Equation (12) can be inserted on the right-hand side of Eq. (11). We mention that, even 
though the refractive-index profiles used in this work are translationally-invariant in the z-
direction, and thus the z-component of the gradient of n is zero throughout space, the ray 
acceleration in the z-direction in Eq. (11) does in general not vanish. 

4. Rendered images 

The scenery used for the following renderings is illustrated in Figs. 2(a) and 2(b). In essence, 
a model, a physicist, looks at herself in a curved mirror in front of her and observes the 
images depicted in Figs. 3-7. Technically, this means that a virtual point camera with a 
“human” focal field of view (i.e., full opening angles of 50° horizontally and 42° vertically) is 
located between her eyes, which are centered in the photograph in Fig. 2(a). The distance 
between model and mirror is d = 0.5 m (or 2.64 normalized units) – a typical distance for 
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standing in front of your bathroom mirror. The model is 1.7 m (or 9.0 normalized units) tall. 
In the coordinate system shown in Figs. 1(a) and 1(b), the model is located at the top and 
looks downward onto the (a) grating or (b) Gaussian bump. For case (a), she sees three grating 
maxima within her vertical field of view (FOV): one at the center and two at the edges. For 
case (b), the single maximum is at the center of her FOV. 

Corresponding photorealistic images rendered by the Newtonian ray-tracing approach 
described in the preceding section are shown in Fig. 3 for the grating profile and in Fig. 4 for 
the conformal Gaussian map. In both figures, (a) corresponds to a flat mirror and (b) to the 
corrugated mirror – a grating for Fig. 3 and a single bump for Fig. 4. 

We see that panels (b) are distorted versions of panels (a). In both panels (b), a maximum 
of the profile is located in the vertical middle of the image. The maxima act as convex 
mirrors. This makes the model appear right-side-up in this part of the image, but strongly 
compressed along the vertical direction. For the grating mirror in Fig. 3, the minima of the 
profile act as concave mirrors. The next grating maxima appear at the very top and at the very 
bottom of the image in Fig. 3(b), respectively (i.e., tan(42°/2) = Λ/d). Between maxima and 
minima, inflection points of the mirror profile occur. At each inflection point, the image turns 
from right-side-up to upside-down or vice versa. The combination of these aspects leads to 
highly complex and pronounced distortions with respect to the reference, Fig. 3(a). 

In panels (c) of Figs. 3 and 4, a graded-index profile according to Fig. 1 is added onto the 
corrugated mirror profile. For an ideal cloak, panels (c) should be identical to panels (a), i.e., 
all the distortions in the respective panels (b) should be compensated for. This is indeed very 
nearly the case on the vertical line through the center of the images, but increasing deviations 
occur towards the sides. The grating cloak in Fig. 3 appears to perform better than the 
Gaussian conformal map in Fig. 4. We will quantify these aspects by evaluating cross-
correlation coefficients of panels (a) and (c) in the following section. 

Figures 3 and 4 remain unrealistic in that we have used the unreferenced refractive-index 
profile, i.e., the index of air is taken as unity and the indices of the cloaks do exhibit values 
below unity, with the minimum values given in Fig. 1. This aspect makes experimental 
realization difficult. If one divides all refractive indices by the minimum value nmin, the results 
remain unchanged. However, it is more realistic to assume that we keep an air refractive index 
of n = 1 (rather than n = 1/nmin>1). It has been pointed out repeatedly [6–14] that this step 
introduces additional imperfections. These imperfections are visualized for the grating cloak 
in Fig. 5 (same cloak height as in Fig. 3, i.e., 1.1 normalized units or 20.8 cm), in Fig. 6 
(smaller cloak height of 0.55 normalized units or 10.4 cm), and in Fig. 7 (yet smaller cloak 
height of 0.41 normalized units or 7.8 cm). The “ideal” images as depicted in panels (a) of 
Figs. 5-7 are equivalent to adding a homogeneous dielectric plate with refractive index n = 
1/nmin>1 and with the same height as the respective cloak onto the flat mirror. These images 
are all different and not identical to Fig. 3(a) because the homogeneous dielectric plate with a 
refractive index larger than that of air effectively reduces the field of view. This effect can be 
seen by comparing the books at the upper right-hand side corner of Fig. 3(a) and Fig. 5(a). It 
decreases with decreasing dielectric-plate thickness from Fig. 5(a) via Fig. 6(a) to Fig. 7(a). 
Furthermore, one can see very faint Fresnel reflections in the high-resolution versions of 
panels (a) of Figs. 5-7 (see, e.g., necklace on light blue shirt in Fig. 5(a)). The Fresnel 
transmissions also make the primary images very slightly dimmer than the reference image in 
Fig. 3(a). 

The lateral beam displacement mentioned above actually depends strongly on the 
asymptotic decay of the refractive-index profile to 1/nmin far away from the corrugation as 
discussed in Ref [15]. This effect is immediately seen in the compressed head of the model as 
in Fig. 4(c) while it is strongly mitigated in Fig. 3(c). 
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Fig. 2. Illustration of the scenery used for all photorealistic images rendered in this work.  
(a) This color image actually serves as the input for the following Newtonian ray-tracing 
calculations. (b) In these calculations, the model looks at the mirror in front of her (compare 
Fig. 1(a)) and observes the images shown in Figs. 3-7. The mirror (gray) is located at a distance 
of d = 0.5 m from the model, the cloak is shown in green. 
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Fig. 3. Color images rendered by the Newtonian ray-tracing approach. The corresponding 
scenery is illustrated in Fig. 2. (a) Flat mirror. (b) Grating profile with Λ = 1 (or 18.9 cm) and A 

= 3/(16π) 0.06 (or 1.1 cm), without cloak. (c) As (b), but with cloak. The cloak height is 1.1 
normalized units (or 20.8 cm). Its refractive-index profile is depicted in Fig. 1(a). Note that this 
profile contains index values below unity with minimum nmin = 0.728. 
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Fig. 4. As Fig. 3, but for the Gaussian conformal map with w = 0.306 and h = 0.13. The 
corresponding refractive-index profile is depicted in Fig. 1(b). Note that this profile contains 
index values below unity with minimum nmin = 0.873. 
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Fig. 5. As Fig. 3, but the refractive-index profile of the grating cloak is divided by nmin (see Fig. 
1(a)) such that the minimum refractive index in the cloaking profile becomes n = 1. In (a) and 
(b), we have added a homogeneous dielectric plate with index n = 1/nmin = 1.37 and with the 
same height as that of the cloak (see Fig. 1(a)), i.e., 1.1 normalized units (or 20.8 cm). The 
cloak height is successively reduced in Figs. 6 and 7. 
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Fig. 6. As Fig. 5, but for a smaller height of the grating-cloak structure of 0.55 normalized units 
(or 10.4 cm). 
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Fig. 7. As Fig. 6, but for a yet smaller height of the grating-cloak structure of 0.41 normalized 
units (or 7.8 cm). 
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5. Correlation function as quantitative measure of cloaking quality 

Early work on electromagnetic cloaking [1–15] has been satisfied with some reasonable level 
of cloaking performance, judged by qualitative assessment. However, as the field of 
invisibility cloaking is getting more advanced, it is interesting to ask: Is there a quantitative 
measure for how good the cloaking performance of a particular cloaking device really is? 
With such a measure, one could quantitatively compare different cloaking approaches. Clearly 
there is no unique measure of this sort, but (cross-)correlation functions appear attractive to us 
as they have proven to be a useful approach in other fields of science and technology [30,31]. 
Let us briefly recall the underlying mathematics. 

Suppose the functions f(x,y)0 and g(x,y)0 represent the intensity or gray levels of two 
monochrome two-dimensional finite-size photographs (like, e.g., the images in Figs. 3-7) on 
an arbitrary scale, where x and y are the orthogonal coordinates in the photographic plane. 
(More generally, you can consider three such functions for the three principal colors in color 
photographs.) For example, let f(x,y) be the unperturbed or reference image (i.e., no object and 
no cloak) and g(x,y) be the image taken with object and cloak. Thus, we will assume that the 
spatial average value of g is not larger than the spatial average value of f. First, we subtract 
their respective spatial average values 

 
( , ) ( , )

( , ) ( , ) .

f x y f x y f

g x y g x y g

  

  
  (14) 

Next, we define a two-dimensional image cross-correlation function, C, according to 
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  (15) 

For the case of ideal cloaking, i.e., for f(x,y) = g(x,y)  (x,y), we obtain the autocorrelation 
C(0,0) =  + 100%. The value of C will decay away from the maximum at (Δx = 0,Δy = 0) 
towards 0% depending on the special properties of the photographic image f(x,y). For 
example, periodic patterns in f(x,y) will give rise to multiple maxima of C(Δx,Δy). Non-
periodic images f(x,y) generally only lead to a single pronounced global maximum of 

C(Δx,Δy) at (Δx = 0,Δy = 0). If the image g(x,y) = a × f(x,y) with factor 0a1 is just dimmer 
than the reference image f(x,y), e.g., due to some absorption or scattering of the cloaking 

device, we get C(0,0) = a100%. If g(x,y) is the “inverse” or complement (i.e., black replaced 
by white and vice versa) of f(x,y), we get C(0,0) = –100%. If the image g(x,y) is identical to 
the original f(x,y), but shifted within the photographic xy-plane, a correlation maximum with a 
value approaching 100% (or strictly equal to + 100% for infinitely large photographs) appears 

at some shifted position (Δx0,Δy0). If g(x,y) has nothing to do with f(x,y), the correlation 
function will exhibit values near 0% for all (Δx, Δy). 

Thus, we could either declare C(0,0) or the peak value of C(Δx0,Δy0) as the requested 
single-number measure for cloaking quality. The former is stringent, the latter is more 
generous with respect to possible shifts in the images (like, e.g., for the beam displacement of 
the carpet cloak). This shift could also be quoted. Note that either of the two measures based 
on Eq. (15) takes advantage of the entire images and is not based on individual points of the 
images only. 

Ideally, one could finally average over the resulting cross-correlation functions for 
different reference images fi(x,y) and corresponding cloaked images gi(x,y) with index i to 
eliminate any dependence on the particular image scenery. 

Let us now apply the cross-correlation function given in Eq. (15) to the images shown in 
the previous section. The results are summarized in Table 1. There, “2D” refers to a near-zero 
field of view (FOV) in the horizontal direction, i.e., to a vertical line through the center of the 
images in Figs. 3-7. Note that the grating cloak (like the carpet cloak) is exact in this two-

dimensional (2D) world only. Indeed, under these conditions, the correlation is C(0,0) = 20% 
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without cloak and as large as 99% with cloak – essentially perfect cloaking is achieved. Going 
to a three-dimensional setting reduces the value for the cloaked case to 91% for 10° FOV, to 
73% for 25° FOV and to a mere 51% for 50° FOV; whereas, the values for the uncloaked case 
are all very small or even negative, indicating strongly distorted images. 

Table 1. Cross-Correlation Coefficients C: = C(0,0) According to Eq. (15) for Different 
Combinations of Images, f and g, As Indicated in the Two Left-Hand Side Columns for 

Different Horizontal Field of Views (FOV) 

f g FOV = 0° FOV = 10° FOV = 25° FOV = 50° 

Figure 
3(a) 

Figure 
3(b) 

C = 20% C = 1% C =  + 7% C =  + 6% 

Figure 
3(a) 

Figure 3(c) C =  + 99% C =  + 91% C =  + 73% C =  + 51% 

Figure 
4(a) 

Figure 
4(b) 

C =  + 17% C =  + 46% C =  + 42% C =  + 43% 

Figure 
4(a) 

Figure 4(c) C =  + 90% C =  + 87% C =  + 73% C = 61% 

Figure 
5(a) 

Figure 
5(b) 

C =  + 17% C =  + 2% C =  + 8% C =  + 8% 

Figure 
5(a) 

Figure 5(c) C =  + 97% C =  + 91% C =  + 76% C =  + 55% 

Figure 
3(a) 

Figure 5(c) C =  + 74% C =  + 60% C =  + 40% C =  + 28% 

Figure 
6(a) 

Figure 
6(b) 

C =  + 25% C =  + 4% C =  + 10% C =  + 9% 

Figure 
6(a) 

Figure 6(c) C =  + 71% C =  + 81% C =  + 73% C =  + 60% 

Figure 
3(a) 

Figure 6(c) C =  + 75% C =  + 69% C =  + 52% C =  + 42% 

Figure 
7(a) 

Figure 
7(b) 

C =  + 25% C =  + 3% C =  + 10% C =  + 8% 

Figure 
7(a) 

Figure 7(c) C =  + 40% C =  + 64% C =  + 54% C =  + 51% 

Figure 
3(a) 

Figure 7(c) C =  + 40% C =  + 61% C =  + 49% C =  + 41% 

FOV = 0 corresponds to a vertical line in the middle of the images or to an effectively 2D situation, whereas 
increasing FOV corresponds to a more and more three-dimensional viewpoint. The full horizontal (vertical) width in 
Fig. 3 corresponds to a FOV = 50° (FOV = 42°) full opening angle. The rows in white are reference results for which 
the correlation should ideally be C = 0%; the rows in light gray are cloaking results for which the correlation should 
ideally be C = 100%. Cloaking action better than C = 90% is highlighted in yellow. 

For the referenced cloaks in Figs. 5-7, one can either compare the cloaked images in  
Figs. 5(c)-7(c) with the flat mirror in air in Fig. 3(a) or with the flat mirror plus a dielectric 
plate in Figs. 5(a)-7(a). The former comparison is stricter, the latter is more forgiving. The 
choice is ambiguous, however, because an observer will likely not be able to make a direct 
comparison between the two images. In any case, both options are listed in Table 1. 
Referencing to the flat mirror plus dielectric plate for the thick cloak in Fig. 5 leads to 
excellent correlations of 97% and 91% for 0° and 10° FOV, respectively. The correlation 
values are substantially lower when referencing to the flat mirror in air. The correlation values 
are yet smaller for the thinner cloaks in Figs. 6 and 7. Here, the lateral beam displacement 
[13,15], which also depends on the angle of incidence of the rays onto the mirror and hence on 
the model’s viewing direction, leads to large image distortions even for small vertical FOV 
and for referencing to the case with dielectric plate. 

The Gaussian conformal map shown in Fig. 4 suffers from the same lateral-beam-
displacement problem [15] – even for large cloak heights – leading to much lower correlation 
values in Table 1 than for the grating cloak of the same height (Fig. 3) despite the fact that 
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only the middle part along the vertical of the image in Fig. 4(b) is actually distorted due to the 
single bump (compare Fig. 1). The latter fact can also be seen from the fairly large correlation 
values for the Gaussian uncloaked case (Fig. 4(b)). If one narrows the cross-correlation 
analysis down to the middle parts of Fig. 4(a) and 4(c) only, the corresponding C further 
decreases. 

6. Conclusion 

We have visualized and quantified the performance of the grating cloak, which is an improved 
variation of the dielectric carpet cloak. While cloaking does exhibit cross-correlation 
coefficients near 100% (equivalent to perfect cloaking) for the finite-size grating cloak in 2D 
(or for small fields of view resembling 2D), the cross-correlation coefficients for the more 
realistic referenced 3D case with large fields of view are substantially smaller, although 
cloaking does appear reasonable at first sight. Our results should challenge others to obtain 
better cloaking as quantified by the cross-correlation coefficient under realistic conditions. We 
emphasize that the parameter choices in our work correspond to locally isotropic refractive 
indices between a minimum of 1.0 and a maximum of 2.2. These values are accessible 
throughout the entire visible spectral region with little dispersion, e.g., by nanostructuring 
titania along the lines of Ref [11]. 
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