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Abstract. A strategy has been proposed recently to design plasmonic nano-
structures capable of efficient harvesting of light over a broadband spectrum.
Applying a singular conformal transformation to a metal–insulator–metal infinite
structure, the optical response of two kissing nanowires can be deduced
analytically. This nanostructure is shown to exhibit a large and continuous
absorption cross-section relative to its physical size over the whole visible
spectrum. Considerable field enhancement and confinement at the nano-scale are
also expected at the touching point. Actually, instead of transporting the energy
out to infinity, like in a metal slab geometry, the surface plasmon modes here
propagate towards the singularity of the structure where their velocity vanishes
and energy accumulates. The field enhancement is then a balance between this
energy accumulation and dissipation losses. The asymptotic case of a nanowire
placed on top of a metal plate is shown to be of great interest for nanofocusing.
Finally, numerical simulations are performed to investigate the effect of radiative
losses when the structure dimension becomes comparable to the wavelength.
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1. Introduction

Metallic nanostructures have shown an unprecedented ability to concentrate light into
subwavelength volumes when surface plasmon modes are excited in these structures at their
resonant wavelengths [1, 2]. In particular, plasmon nanofocusing can be obtained at the tip of
a tapered metallic guiding nanostructure where a dramatic field enhancement may arise [3]. On
the one hand, this extreme light concentration and manipulation at the nanoscale have found
applications in single molecule detection [4, 5], surface enhanced Raman scattering (SERS)
[6, 7] and high-harmonic generation [9], as well as in other nonlinear optics phenomena [10]. On
the other hand, some plasmonic applications, such as photovoltaic devices [8] or photodetectors
[11, 12], require that the involved plasmonic devices can be efficiently operated over a
broadband spectrum instead of several resonant wavelengths.

A recent study has shown how transformation optics can be used to design a plasmonic
nanostructure capable of efficient harvesting of light over a broadband spectrum [13]. The
strategy is as follows: start with an infinite plasmonic system that naturally shows a broadband
spectrum and apply a mathematical transformation that converts the infinite structure into
a finite one while preserving the spectrum. This approach has been illustrated by two
examples: the crescent-shaped cylinder and the kissing cylinders [13]. Some results of the
analytical calculations have been presented to show the power and elegance of the conformal
transformation tool. However, the demonstration has remained very general and no analytical
proof has been provided. In this paper, we focus on the transformation leading to the
kissing cylinders described in figure 1. The corresponding theory is derived in detail and
novel physical insights are provided to explain the broadband harvesting and nanofocusing
properties of this device. Note that this transformation has already been studied in the past
[14, 15], but never in a plasmonics context.
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Figure 1. (a) Two semi-infinite metal slabs support SPPs that couple to a dipole
source, transporting its energy to infinity. (b) The transformed material consists
of kissing cylinders. The dipole source∆ is transformed into a uniform electric
field E0.

In this paper, we first study the coupling of a dipole with surface plasmon polaritons (SPPs)
supported by two semi-infinite slabs of metal. Then, by applying a conformal transformation
to this system, we deduce the behavior of SPPs in kissing cylinders and their coupling with
the external field. An analytical expression of the absorption cross-section is derived. The
kissing cylinders structure is an anisotropic device that may provide an efficient harvesting
of light over a broadband spectrum, depending on the polarization of the incoming beam. The
electric field in the transformed geometry is also expressed analytically. The SPPs propagate
along the surface of the cylinders towards the touching point, where their velocity vanishes
and energy accumulates. Considerable field enhancement and confinement at the nano-scale
are then predicted. The nanofocusing performance results from a balance between energy
accumulation and dissipation losses. The asymptotic case of a nanowire placed on top of a
metal plate is shown to be of great interest for nanofocusing: a drastic field enhancement
occurs over a large part of the nanowire surface and not only in the vicinity of the touching
point. This analytical study relies on the near-field approximation, valid as long as the kissing
cylinders are small compared to the wavelength. Consequently, numerical simulations have
been performed to investigate the effect of radiative losses when the structure dimension
becomes comparable to the wavelength. The cylinder pair is shown to be quite robust relative
to radiation damping, its absorption cross-section remaining in the order of its physical cross-
section, for dimensions up to 300 nm. Significant nanofocusing of light is also obtained for
such dimensions. The case of a nanowire place on top of a metal plate is also investigated
numerically. Although our theory assumes an infinite metal plate, it accurately predicts the field
induced at the nanowire surface provided that the metal plate dimension is larger than half
of the wavelength.

2. Theory

2.1. Conformal transformation

Our canonical system is a line dipole that is contained in a thin slab of insulator of thickness
d = d1 + d2 surrounded by two semi-infinite slabs of plasmonic material for x < −d2 and x > d1
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(figure 1(a)). Now apply the following conformal transformation:

z′
=

g2

z∗
, (1)

where z = x + iy is the usual complex number notation and the superscript ∗ stands for the
complex conjugate. Obviously all points at infinity in z translate to the origin in z′ and planes
translate into cylinders. Hence, the resulting structure consists of two kissing cylinders
(figure 1(b)). The diameters of the two cylinders are, respectively,

D1 =
g2

d1
, D2 =

g2

d2
. (2)

We also define a key parameter

ρ = D1/D =
d2

d
, (3)

which is the ratio between one of the cylinder diameters D1 and the overall size of the device,
D = D1 + D2. The transformation of the source is also of particular importance. The original
dipole ∆ is transformed into a uniform electric field [13], which we will take as due to an
incident plane wave under the electrostatic approximation,

E′

0 =
1

2πε0

∆

g2
. (4)

We shall assume that the dimensions of the kissing cylinders are sufficiently small that the
surface plasmon modes are well described in the near field approximation. In this case, the
dielectric properties of the nanostructure are the same as those of the slab from which it is
derived. Also preserved under the transformation is the electrostatic potential associated with
an excitation:

φ(x, y) = φ′(x ′, y′). (5)

The mathematics of the conformal transformation closely links the physics at work in each of
the very different geometries. We will first solve the relatively tractable slab problem and then
deduce the solution for the kissing cylinders problem.

2.2. Coupling of a dipole to surface plasmons supported by metallic sheets

The coupling of the dipole to the metallic sheets is first addressed. The near-field approximation
is made; hence we assume that the Laplace equation is obeyed. The dipole ∆ consists of two
line charges. We wish to calculate the potential φ induced on the dielectric sheets by expanding
the incident field φ0 of the dipole as a Fourier series in y:

φ0(r) = −
1

2πε0

∆ · r
r 2

=
1

2π

∫
dk φ0(k) eiky, (6)

where φ0(k) can be found by making a Fourier transform in a transverse plane at an arbitrary
position x :

φ0(k) =

∫
φ0(x, y) e−iky dy =

{
a+(k) e−|k|x , if x > 0,

a−(k) e|k|x , if x < 0,
(7)
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Figure 2. Sketch of the electrostatic potential induced by the metallic slabs when
illuminated by the dipole∆ at x = 0, for ε < −1.

with a±(k) =
∓1x + i sgn(k)1y

2ε0
. (8)

Next we calculate the field φ(k) induced by the metal plates when illuminated by the dipole∆.
As illustrated by figure 2, this field can be expressed as follows:

φ(k) =


b+(k) e−|k|x + b−(k) e|k|x , x > −d2 and x < d1,

c+(k) e−|k|x , x > d1,

c−(k) e|k|x , x < −d2.

(9)

The four unknowns b+(k), b−(k), c+(k) and c−(k) are then determined by the boundary
conditions at the dielectric slab interfaces. Two are derived from the parallel component of
the electric field being conserved at a boundary,

a−(k) e−|k|d2 + b−(k) e−|k|d2 + b+(k) e|k|d2 = c−(k) e−|k|d2,

a+(k) e−|k|d1 + b−(k) e|k|d1 + b+(k) e−|k|d1 = c+(k) e−|k|d1,

and two from conservation of the normal component of the displacement field,

a−(k) e−|k|d2 + b−(k) e−|k|d2 − b+(k) e|k|d2 = εc−(k) e−|k|d2,

a+(k) e−|k|d1 − b−(k) e|k|d1 + b+(k) e−|k|d1 = εc+(k) e−|k|d1 .

Solving these four equations provides the following results:

b+(k) = −
1

2ε0
eα

1x

(
e2|k|d1 + eα

)
+ i sgn[k]1y

(
e2|k|d1 − eα

)
e2|k|d − e2α

, (10)

b−(k) =
1

2ε0
eα

1x

(
e2|k|d2 + eα

)
− i sgn[k]1y

(
e2|k|d2 − eα

)
e2|k|d − e2α

, (11)
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c+(k) = −
1

ε0

e2|k|d1

ε + 1

1x

(
e2|k|d2 + eα

)
− i sgn[k]1y

(
e2|k|d2 − eα

)
e2|k|d − e2α

, (12)

c−(k) =
1

ε0

e2|k|d2

ε + 1

1x

(
e2|k|d1 + eα

)
+ i sgn[k]1y

(
e2|k|d1 − eα

)
e2|k|d − e2α

, (13)

where we have introduced

e2α
=

(
ε − 1

ε + 1

)2

. (14)

The dispersion of the excitations can be found from the condition that b(k) diverges,

|k|d = α =


ln

(
ε − 1

ε + 1

)
, if Re[ε] < −1,

ln

(
1 − ε

ε + 1

)
, if − 1 < Re[ε] < 1.

(15)

This is the classical dispersion relation for SPPs in an insulator–metal–insulator structure under
the near-field approximation.

Now that the induced potential is known in k-space, it can be deduced in real space via an
inverse Fourier transform,

φ(x, y) =
1

2π



∫
c−(k) eiky+|k|x dk, x < −d2,∫ [
b+(k) e−|k|x + b−(k) e|k|x

]
eiky dk, −d2 < x < d1,∫

c+(k) eiky−|k|x dk, x > d1.

(16)

Let us tackle it with the field induced at the dipole, i.e. for −d2 < x < d1. By injecting the
expressions of b+(k) (equation (10)) and b−(k) (equation (11)), we obtain

φ(−d2 < x < d1) =
1

4πε0
eα

[
1x

∫ (
e2|k|d2 + eα

)
e|k|x

−
(
e2|k|d1 + eα

)
e−|k|x

e2|k|d − e2α
eiky dk, (17)

−i1y

∫
sgn[k]

[(
e2|k|d2 − eα

)
e|k|x +

(
e2|k|d1 − eα

)
e−|k|x

]
e2|k|d − e2α

eiky dk

]
. (18)

To perform this integration, we write

|k| = lim
δ→0

(
k2 + δ2

)1/2
.

The analytic structure of equation (17) is shown in figure 3. There are two branch cuts running
from −iδ and +iδ, ensuring the analytical continuity of the integrand. The choice of these
branch cuts is in agreement with the literature dealing with the calculation of Green functions
in stratified media (see e.g. [16]). However, contrary to the general case, the branch cuts here
only lie along the imaginary axis because of the electrostatic approximation. We shall make the
approximation that the integral is dominated by either of the poles close to the real axis that
correspond to surface plasmon modes carrying away energy to infinity. The cuts correspond to
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Figure 3. Analytic structure of the integrand of equation (17). There are two cuts
running from −iδ and +iδ (blue line). There are also two poles if ε < 0 (blue
disks). If ε > 0, these poles vanish in the cuts and give no contribution. Note that
if ε < −1, the poles are correctly placed but they swap to opposite sides of the
real axis if ε > −1.

localized virtual excitations, which, if ε is real, dissipate no energy. Therefore, in the limit of
real ε, our expression for dissipation will be exact, but otherwise only approximate. From now
on, we will only consider the frequency band below the surface plasmon frequency, ω < ωsp,
for which ε < −1. Actually, beyond ωsp, the imaginary part εI of the metal permittivity becomes
comparable to its real part εR and the contribution from the cuts shown in figure 3 is no longer
negligible. The calculation of the integral in equation (17) leads to

φ(−d2 < x < d1) =
i1x

4dε0

[(
e(2ρ−1)α + 1

)
eαx/d

−
(
e(1−2ρ)α + 1

)
e−αx/d

]
eiα|y|/d

+
sgn[y]1y

4dε0

[(
e(2ρ−1)α

− 1
)

eαx/d +
(
e(1−2ρ)α

− 1
)

e−αx/d
]

eiα|y|/d, (19)

where we used the fact that ρ = d2/d. The same technique of integration can be used to compute
the field φ for x > d1 and x < −d2. It yields

φ(x > d1) =
1

2dε0(ε + 1)

[
−i1x

(
1 + e(1−2ρ)α

)
+ sgn[y]1y

(
e(1−2ρ)α

− 1
)]

e−αx/d eiα|y|/d, (20)

φ(x < −d2) =
1

2dε0(ε + 1)

[
i1x

(
1 + e(2ρ−1)α

)
+ sgn[y]1y

(
−1 + e(2ρ−1)α

)]
eαx/d eiα|y|/d . (21)

2.3. Electric field induced at the dipole and dipolar moment of the kissing cylinders

From the expression of the induced potential φ for −d2 < x < d1 (equation (19)), we can deduce
the electric field at the dipole

Ex(z = 0) = −
∂φ

∂x
(z = 0) = −

iα

4d2ε0
1x

[
e(2ρ−1)α + e(1−2ρ)α + 2

]
, (22)
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Ey(z = 0) = −
∂φ

∂y
(z = 0) =

iα

4d2ε0
1y

[
−e(2ρ−1)α

− e(1−2ρ)α + 2
]
. (23)

This electric field induced at the dipole is of particular interest, since it is directly related to the
net dipole moment p of the kissing cylinders in the transformed geometry. Indeed, similarly to
the relation linking the emitting dipole ∆ to a uniform electric field E′

0(z
′
= 0) in the kissing

cylinders geometry (equation (4)), the dipole moment p can be deduced from E(z = 0),

p = 2πε0g2E(z = 0). (24)

Injecting the expression of E(z = 0) (equations (22) and (23)) into the last equation, replacing
∆ by its expression (equation (4)) and using the fact that g2/d = ρ(1 − ρ)D (equations (2) and
(3)), the induced dipole moment can be expressed as the product of the polarizability tensor Γ
with the incident electric field E′

0 in the transformed frame:

p = ΓE′

0, with γxx = −iπ 2ε0αρ2(1 − ρ)2 D2
[
e(2ρ−1)α + e(1−2ρ)α + 2

]
(25)

and γyy = iπ 2ε0αρ2(1 − ρ)2 D2
[
−e(2ρ−1)α

− e(1−2ρ)α + 2
]
. (26)

The kissing cylinders exhibit an anisotropic dipole moment, with a polarizability strongly
depending on the orientation of the incoming field. Typically, for identical cylinders (ρ = 0.5),
the dipole moment is aligned along x ′ whatever the polarization of the incoming beam (γyy = 0).

2.4. Absorption cross-section

Dipoles and fields exchange roles in the two frames, but the product is unchanged. Therefore,
energy dissipation is the same in each geometry. In the slab frame, the dipole energy pumped
into the SPPs in the metal slab(s) (figure 1) can be calculated from the electric field due to the
excited modes evaluated at the dipole [17, 18]:

P = −
ω

2
Im {∆∗

· E(z = 0)} . (27)

This dipole power dissipated maps directly onto the power absorbed by the kissing cylinders
from the uniform electric field E′

0 that we shall take as due to an incident plane wave in the
transformed frame [19]:

P = −
ω

2
Im

{
E′

0
∗
· p

}
. (28)

If we inject the expression of p (equation (25)) into the last equation, renormalize it by the
incoming flux Pin = ε0c0|E′

0|
2/2 and replace α by its expression as a function of the permittivity

ε (equation (15)), then the absorption cross-section of the kissing cylinders can be deduced, for
Re[ε] < −1:

σ x
a = π2k0ρ

2(1 − ρ)2 D2Re

{
ln

(
ε − 1

ε + 1

) [(
ε − 1

ε + 1

)1−2ρ

+

(
ε − 1

ε + 1

)2ρ−1

+ 2

]}
, (29)

σ y
a = π2k0ρ

2(1 − ρ)2 D2 Re

{
ln

(
ε − 1

ε + 1

) [(
ε − 1

ε + 1

)1−2ρ

+

(
ε − 1

ε + 1

)2ρ−1

− 2

]}
, (30)

where σ x
a and σ y

a design the absorption cross-sections associated with the x ′ and y′ components
of the incoming field, respectively. k0 = ω/c0 is the wave number in vacuum. Note that,
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Figure 4. Absorption cross-section normalized by the physical cross-section D
as a function of frequency for kissing cylinders with D = 20 nm. The blue curve
corresponds to the case of identical cylinders (ρ = D1/D = 0.5) for an incident
plane wave polarized along x ′. The continuous and dashed red curves correspond
to the case of a pair of cylinders with ρ = D1/D = 0.25, with an incoming beam
polarized along x ′ and y′, respectively. The metal is assumed to be silver with a
surface plasmon frequency ωsp = 3.67 eV and permittivity taken from the paper
by Johnson and Christy [20]. The absorption spectrum of a single cylinder [21]
with a diameter of 20 nm is also shown for comparison (dashed black line).

rigorously, this expression corresponds to the extinction cross-section of the kissing cylinders.
However, as radiation losses are neglected under the quasi-static approximation, here this
quantity is strictly equivalent to the absorption cross-section. σ x,y

a scales as the square of the
physical size D of the kissing cylinders, which is typical of a two-dimensional configuration.
Figure 4 displays σ x

a and σ y
a as a fraction of the physical cross-section, for D = 20 nm and for

different ratios between the cylinders diameters (ρ = 0.25 and 0.5). For this figure as well as in
the following of the study, the metal is assumed to be silver with a surface plasma frequency
ωsp = 3.67 eV and permittivity taken from the paper by Johnson and Christy [20].

As pointed out in previous studies [13, 22, 23], the kissing cylinders form a strongly
anisotropic device. The y-polarization is particularly inefficient: equation (30) shows that σ y

a
vanishes for identical cylinders (ρ = 0.5) and that σ y

a � σ x
a for nanowires of different diameters.

This fact is illustrated by figure 4, which compares σ y
a and σ x

a for ρ = 0.25.
In contrast, the cylinder pair is an efficient light harvesting device over a broadband

spectrum, both in the near-infrared and visible regimes (λ ∼ 340 → 1700 nm), for an incident
wave polarized along x ′ (see figure 4). The broadband feature is highlighted by the comparison
with the single cylinder case in figure 4. The fact that the two cylinders touch each other is
decisive for the continuity of the spectrum. Otherwise, a resonant feature would arise, as shown
by previous studies dealing with nanoparticle dimers [22]–[31]. Physically, the broadband
spectrum comes from the fact that the SPPs’ velocity vanishes at the touching point. SPPs are
thus not reflected within the nanostructure, which prevents any resonant behavior.
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For an incident polarization along x ′, the best efficiency is found for ρ = 0.5, i.e. for two
cylinders of the same size [13]. Even for such a small particle size (D = 20 nm), the absorption
cross-section of kissing cylinders is of the order of the physical cross-section. For a constant
ratio ρ, σa/D scales linearly with D. Thus, cross-sections higher than the physical size could
be obtained for larger diameter kissing cylinders but in this case our near-field analytic theory
may not be valid [13]. The absorption spectrum of larger cylinders will be discussed further in
section 3.2.

2.5. Electric field in the transformed geometry

A pair of kissing cylinders is a nanostructure capable of efficient harvesting of light over a
broadband spectrum. As we will see now, this is also a strong far-field to near-field converter of
energy, providing considerable confinement and amplification of the electric field in the vicinity
of the touching point.

Under the conformal transformation, the potential is preserved (equation (5)). The electric
field E′(x ′, y′) in the kissing cylinders can then be easily deduced from the potential,

E ′

u′ = −
∂φ

∂x

∂x

∂u′
−

∂φ

∂y

∂y

∂u′
, (31)

with u′
= x ′, y′. Using the expression of the potential φ given in equations (19)–(21), the

electric field E′ can be expressed as a function of E′

0 (equation (4)), D (equation (2)) and ρ

(equation (3)). It yields as follows for ε < −1.

• For |z′
− D1/2| > D1/2 and |z′ + D2/2| > D2/2 (outside the cylinders):

E ′

x ′ =
π

2
αρ2(1 − ρ)2 D2

(x ′ − i|y′|)2
exp

[
αρ(1 − ρ)

D

x ′ − i|y′|

]
×

[
iE ′

0x

(
e(2ρ−1)α + 1

)
+ sgn[y′]E ′

0y

(
e(2ρ−1)α

− 1
)]

+
π

2
αρ2(1 − ρ)2 D2

(x ′ + i|y′|)2
exp

[
−αρ(1 − ρ)

D

x ′ + i|y′|

]
×

[
iE ′

0x

(
e(1−2ρ)α + 1

)
− sgn[y′]E ′

0y

(
e(1−2ρ)α

− 1
)]

, (32)

E ′

y′ =
π

2
αρ2(1 − ρ)2 D2

(x ′ − i|y′|)2
exp

[
αρ(1 − ρ)

D

x ′ − i|y′|

]
×

[
sgn[y′]E ′

0x

(
e(2ρ−1)α + 1

)
− iE ′

0y

(
e(2ρ−1)α

− 1
)]

+
π

2
αρ2(1 − ρ)2 D2

(x ′ + i|y′|)2
exp

[
−αρ(1 − ρ)

D

x ′ + i|y′|

]
×

[
−sgn[y′]E ′

0x

(
e(1−2ρ)α + 1

)
− iE ′

0y

(
e(1−2ρ)α

− 1
)]

. (33)

• For |z′
− D1/2| < D1/2 (in the smaller cylinder):

E ′

x ′ = π
α

ε + 1
ρ2(1 − ρ)2 D2

(x ′ + i|y′|)2
exp

[
−αρ(1 − ρ)

D

x ′ + i|y′|

]
×

[
iE ′

0x

(
e(1−2ρ)α + 1

)
− sgn[y′]E ′

0y

(
e(1−2ρ)α

− 1
)]

, (34)
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E ′

y′ = π
α

ε + 1
ρ2(1 − ρ)2 D2

(x ′ + i|y′|)2
exp

[
−αρ(1 − ρ)

D

x ′ + i|y′|

]
×

[
−sgn[y′]E ′

0x

(
e(1−2ρ)α + 1

)
− iE ′

0y

(
e(1−2ρ)α

− 1
)]

. (35)

• For |z′ + D2/2| < D2/2 (inside the larger cylinder):

E ′

x ′ = π
α

ε + 1
ρ2(1 − ρ)2 D2

(x ′ − i|y′|)2
exp

[
αρ(1 − ρ)

D

x ′ − i|y′|

]
×

[
iE ′

0x

(
e(2ρ−1)α + 1

)
+ sgn[y′]E ′

0y

(
e(2ρ−1)α

− 1
)]

, (36)

E ′

y′ = π
α

ε + 1
ρ2(1 − ρ)2 D2

(x ′ − i|y′|)2
exp

[
αρ(1 − ρ)

D

x ′ − i|y′|

]
×

[
sgn[y′]E ′

0x

(
e(2ρ−1)α + 1

)
− iE ′

0y

(
e(2ρ−1)α

− 1
)]

. (37)

Note that in the near-field approximation, which holds when the dimensions of kissing cylinders
are less than the wavelength, the enhancement of electric field is independent of the size of the
system. From now on, we will always consider an incident electric field polarized along x ′, since
this is the most efficient illumination. Figure 5 shows the result of our analytical calculation of
the field distribution for different frequencies and ratios ρ. We consider the cylinder on the right
as the reference (see figure 1) and hence show the field distribution with coordinates normalized
by D1. The metal is assumed to be silver with permittivity taken from the paper by Johnson and
Christy [20].

Figures 5(a) and (b) represent the field distribution in kissing cylinders of identical and
different size, respectively. These field distributions can be easily interpreted with conformal
transformation, as already discussed in [13]. Here, we briefly recall the main points. In the
slab frame, the surface plasmon modes transport the energy of the dipole out to infinity (see
figure 1). The same modes are excited in the diametrically opposite sides of the kissing cylinders
and then propagate along their surfaces. As SPPs propagate towards the touching point, their
wavelength shortens and velocity decreases in proportion, similarly to what happens in sharp
metallic tips or grooves [32]–[34]. Figure 5(c) represents the field distribution in the limit case of
a cylinder placed on top of a metal slab (ρ = 0). The interpretation is slightly different compared
to the kissing cylinders case. Indeed, the SPPs are excited at infinity in the metal slab and then
propagate along its surface, converging from both sides towards the touching point. Of course,
the infinity of the metal plate raises the question of validity of the electrostatic approximation.
In practice, the metal plate will be of finite size and one can wonder how it affects the behavior
of SPPs near the cylinder. This issue will be tackled with numerical simulations in section 3.4.

This qualitative account is confirmed by our analytical calculation. Considering
equations (32) and (33) at the surface of the cylinder of diameter D1, one can show that the
phase φsp of SPPs along the cylinder surface varies as

φsp(θ) = α(1 − ρ) tan(θ/2), (38)

where the angle θ is defined in the inset of figure 6. This expression confirms that the
SPPs wavelength and velocity, proportional to (dφsp/dθ)−1, vanish at the structure singularity
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Figure 5. Amplitude of the real part of E ′

x ′ normalized by the incoming field
E ′

0 (polarized along x ′) at different frequencies (ω = 0.7ωsp and 0.9ωsp) and
ratios of cylinders diameter (ρ = 0.5, 0.2 and 0). The color scale is restricted to
[−10 10], but note that the field magnitude is by far larger around the singularity
of the structures.

(θ = π ). The dependence in α is related to the dispersion relation of SPPs, which is strictly
equivalent to the one derived in the slab geometry (equation (15)). Finally, the term (1 − ρ)

implies a decreasing of SPPs wavelength and velocity when the cylinder gets smaller than the
other (ρ < 0.5).

In an ideal lossless metal, cancellation of the SPPs’ velocity at the touching point would
lead to accumulation of energy. In practice, finite loss resolves the situation, leading to a balance
between energy accumulation and dissipation [13]. Figure 5 shows that the field confinement
around the structure singularity strongly depends on the frequency ω and on the ratio between
cylinder diameters. The physical mechanisms governing the nanofocusing performance of the
kissing nanowires are discussed in the following subsection.

2.6. Field enhancement along the cylinders’ surface

Figure 6 shows our analytic calculation of the electric field induced at the surface of the identical
cylinders by a plane wave polarized along the x ′-axis. As pointed out previously, the wavelength
of SPPs decreases as they approach the touching point, leading to an enhancement of the
electric field. The growth of the field is then truncated by absorption losses at a finite angle.
A considerable field enhancement of 1.15 × 104 arises here at an angle θ = 179.75 deg. Also
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Figure 6. Blue curve: amplitude of the x ′-component of the electric field at the
surface of identical kissing cylinders (ρ = 0.5), plotted as a function of the angle,
θ , defined in the figure, for ω = 0.7ωsp and ε = −8.3 + 0.29i . Note that the field
enhancement peaks at a finite angle. Red curve: losses are increased by a factor
of two in the calculation: ε = −8.3 + 2 × 0.29i , resulting in less enhancement
and a shift of the maximum to smaller angles. Both curves are normalized to the
incoming field amplitude E ′

0.

shown is a second calculation in which losses are increased by a factor of two, greatly reducing
the enhancement and decreasing the angle at which maximum enhancement occurs.

After this brief qualitative account, a more quantitative analysis about the field enhance-
ment can be given. The evaluation of equations (32) and (33) at the surface of the cylinder of

diameter D1 provides an expression of the field enhancement |E ′
|/E ′

0x =

√
|E ′

x ′|
2 + |E ′

y′|
2/E ′

0x

as a function of the angle θ , defined in figure 6,∣∣∣∣ E ′

E ′

0x

∣∣∣∣ = 2π(1 − ρ)2
|α| |cosh [(ρ − 1/2)α]| |cosh(α)|1/2 exp (−(1 − ρ)Im{α}| tan(θ/2)|)

cos2(θ/2)
. (39)

The exponential term of the last equation shows how the dissipation losses truncate the growth
of the field along the cylinders’ surface. From this expression of |E ′

|/E ′

0x , the angle θmax at
which the maximum field enhancement occurs can be easily deduced:

θmax = π − arcsin ((1 − ρ)Im{α}) . (40)

Using the fact that Im{α} = arctan(2εI/(|ε|
2
− 1)), θmax can be explicitly expressed as a function

of the permittivity imaginary part εI,

θmax ' π −
2(1 − ρ)εI

|ε|2 − 1
, if εI � |ε|2 − 1. (41)

This last equation implies a shift of the maximum field enhancement to smaller angles if the
permittivity imaginary part εI increases. In other words, dissipation losses result in a worse
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confinement of the field around the structure singularity. θmax also depends on the ratio ρ

between cylinder diameters through the term (1 − ρ): when the cylinder gets smaller than the
other one (ρ → 0), the field tends to spread spatially along its surface. This is explained by
the decrease of the SPPs’ wavelength and velocity for the smallest cylinder (equation (38)): the
SPPs are then absorbed before getting close to the touching point.

By injecting the expression of θmax (equation (41)) into equation (39) and replacing α by its
expression (equation (15)), one can deduce the maximum field enhancement, |E ′

max|/E ′

0x , that
can be expected at the surface of the kissing cylinders, for εI � |ε|2 − 1:

∣∣∣∣ E ′

max

E ′

0x

∣∣∣∣ '
π

e2

∣∣∣∣∣∣ln
(

ε − 1

ε + 1

) [(
ε − 1

ε + 1

)ρ−(1/2)

+

(
ε + 1

ε − 1

)ρ−(1/2)
] √

ε2 + 1

ε2 − 1

∣∣∣∣∣∣ (|ε|2 − 1)2

ε2
I

. (42)

The dissipation losses reduce the field enhancement as the inverse square of the permittivity
imaginary part εI. This explains the ratio 4 observed between the blue and red curves in figure 6.
This scaling law is of particular importance if non-local effects are not negligible and give rise
to an increase of εI [36, 37].

Figure 7(a) displays the field enhancement along the cylinders surface (equation (39))
as a function of frequency, calculated using the Johnson and Christy data [20]. At low
frequencies, the field is strongly confined in the vicinity of the touching point and a
spectacular field enhancement superior to 104 is predicted. Then, when ω → ωsp, the
electric field spreads spatially and the field enhancement decreases due to higher dissipation
losses.

Figure 7(b) displays the field enhancement along the cylinder surface (equation (39)) as
a function of the ratio ρ. As explained previously, the velocity of SPPs decreases when the
cylinder is smaller than the other one (ρ < 0.5). It implies a spatial spreading of the electric
field along its surface. On the contrary, the electric field is strongly confined at the touching
point in the largest cylinder frame. Interestingly, figure 7(b) shows that the magnitude of the
field enhancement does not depend on the ratio ρ. The case of a single nanowire placed on top of
a metal slab (ρ = 0) is thus of special interest since the field enhancement remains considerable
while spreading spatially over a large part of the nanowire surface. This configuration, related
to the case of rough surfaces, may find applications in SERS experiments, as already pointed
out in [35].

Note that the field enhancement displayed by figure 7 may be unrealistic in practice. There
are indeed two limits to our electrostatic model, as follows.

• A micro-scale limit: when the size of the device becomes comparable with the wave length,
radiation losses are no longer negligible and will reduce the field enhancement induced by
the nanostructure. This point will be discussed in section 3.3.

• A nano-scale limit: at small length scales, continuum electrodynamics is no longer valid
and non-local effects can result in an increase of the permittivity imaginary part [36, 37].
As shown by equation (42), this increase of εI would reduce the field enhancement
compared to our theoretical prediction. Furthermore, quantum mechanical effects, such
as electron tunneling or screening, have to be taken into account in the vicinity of the
structure singularity and may also reduce the field enhancement relative to classical
predictions [38].
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Figure 7. (a) Field enhancement, |E ′
|/E ′

0, along the cylinder surface as a func-
tion of the angle θ and frequency, for identical cylinders. (b) Field enhancement,
|E ′

|/E ′

0, along the surface of the cylinder with diameter D1 as a function of the
angle θ and ρ, for ω = 0.75ωsp. For both panels, the color bar is in log-scale.

3. Numerical simulations

We now investigate the effect of radiation losses on the harvesting and nanofocusing perfor-
mances of the kissing nanowires. As already shown in [13], radiation losses make the absorption
cross-section fall compared to our theoretical predictions when the structure dimension becomes
comparable to the wavelength. Nevertheless, we will show, by means of numerical simulations,
that the kissing cylinders structure is quite robust to radiation losses.

3.1. Methods

All the numerical results presented have been obtained using COMSOL Multiphysics™, a
commercial software implementing the finite element method. Two-dimensional simulations
were performed within the harmonic propagation analysis mode in the frequency domain.
Highly non-uniform adaptive meshes were used in order to model accurately the propagation
of electromagnetic fields at the geometrical singularities of the nanostructures under study. The
convergence of the numerical calculations with respect to the mesh size and the total simulation
area has been checked. Mesh sides below 10−4 nm and simulation areas above 4 µm2 were
considered. As in the analytical calculations, the optical response of silver was modeled through
the fit of Johnson and Christy experimental data [20].
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Figure 8. Absorption cross-section of identical kissing cylinders (ρ = 0.5)
normalized by the physical cross-section as a function of frequency. The incident
field is polarized along x ′. The numerical absorption spectra (dots) are displayed
for different structure dimensions (20, 100, 200 and 300 nm). The theoretical
absorption spectrum for D = 20 nm is also displayed (continuous black line).

3.2. Kissing cylinders: absorption cross-section

Figure 8 compares the absorption spectra obtained numerically for different sizes of kissing
cylinders. For a dimension of 20 nm, the quasi-static approximation is verified and good
agreement is found between numerical and analytical results. Slight disagreement occurs around
the surface plasmon frequency. This is due to dissipation losses that are important in this range
of frequency, whereas our theoretical model is valid in the limit Im(ε) � −Re(ε) (see the cuts
neglected in figure 3). For larger dimensions (>100 nm), radiation damping becomes important
and the absorption cross-section falls compared to the theoretical prediction: electrostatic theory
predicts a scaling of σa as D2 (equation (29)), which is clearly not the case here [13]. However,
figure 8 shows that the absorption cross-section remains at least of the order of the physical
cross-section, whatever the structure dimension, and can be even larger for D = 100 nm. As
already pointed out in the literature [1], retardation effects lead to a shift of the absorption
spectrum towards red compared to the electrostatic predictions. Interestingly, figure 8 indicates
that the broadband behavior of the kissing cylinders is improved for large structure dimensions.

3.3. Kissing cylinders: field enhancement

Figure 9 compares the field enhancement along the cylinder surface (ρ = 0.5) obtained
numerically for different structure dimensions with our theoretical prediction. The electrostatic
theory states that the field enhancement does not depend on the size of the device; hence each
curve can be compared on the same basis. As observed for the absorption cross-section, there
is remarkable agreement between theory and the numerical result for D = 20 nm. For larger
structure dimension (D > 100 nm), radiation damping is no longer negligible and the field
enhancement falls compared to our analytical prediction. However, the device still provides
a significant nanofocusing of light with a maximum enhancement factor equal to 6 × 103 for
D = 300 nm, whereas electrostatic theory predicts 1.5 × 104. The nanofocusing properties of
the device are thus quite robust to radiation losses.
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Figure 9. Amplitude of the x ′-component of the electric field at the surface of
one of the kissing cylinders (ρ = 0.5), plotted as a function of the angle, θ ,
defined in the figure, for ω = 0.68ωsp. The incident field is polarized along x ′.
The theoretical electric field (continuous red line, equation (32)) is compared to
numerical results for different structure dimensions: 20 nm (dashed black curve),
100 nm (blue curve), 200 nm (green curve) and 300 nm (purple curve).

3.4. Nanowire on top of a metal plate

As pointed out previously, the asymptotic case of a nanowire placed on top of a metal plate is
of particular interest for light nanofocusing. However, our theory assumes a semi-infinite metal
slab, whereas, experimentally, this metal plate will be of course of finite size. Consequently,
numerical simulations have been performed to test the influence of the metal plate dimension.
Figure 10 shows the field enhancement obtained numerically along the surface of a 10 nm
cylinder for different sizes of silver plates. The numerical simulations are in good agreement
with our theoretical prediction for metal plates whose characteristic size is larger than λ/2 (see
the result obtained for a metal plate of 100 × 200 nm2). Below this limit, the metal plate is
too small to harvest the incident energy efficiently, resulting in a lower energy density along
the nanowire surface. However, even for the limit case of a 5 × 5 nm2 plate, a significant field
enhancement by a factor of 5 × 103 is still obtained.

4. Conclusion

To conclude briefly, this study shows how a singular conformal transformation provides an
elegant tool to design a plasmonic structure capable of efficient harvesting of light over the
visible and near-infrared spectra. Surface plasmon modes are shown to be excited in the
diametrically opposite sides of kissing cylinders and then propagate towards the touching point
where the group velocity vanishes and energy accumulates. Strong field enhancement (∼104)
and confinement are predicted within the classical approach. The nanofocusing properties of
kissing nanowires have been discussed in detail. The field enhancement and confinement are the
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Figure 10. Amplitude of the x ′-component of the electric field at the surface of
the cylinder placed on top of a metal plate, plotted as a function of the angle,
θ , for ω = 0.68ωsp. The incident field is polarized along x ′. The theoretical
electric field (continuous red line, equation (32)) is compared to numerical
results for different dimensions L x × L y of the metal plate: 480 × 960 nm2

(blue curve), 100 × 200 nm2 (green curve), 20 × 40 nm2 (black curve) and
5 × 5 nm2 (cyan curve).

result of a balance between dissipation losses and SPPs’ velocity. Numerical simulations have
shown that such plasmonic structures are robust to radiation losses: the absorption cross-section
is of the order of the physical cross-section over the whole visible spectrum for a structure
dimension up to 300 nm. The asymptotic case of a nanowire placed on top of a metal plate has
also been investigated. This configuration is of particular interest since our theory predicts a
considerable field enhancement over a large part of the nanowire surface and not only in the
vicinity of the touching point. Numerical simulations have shown that our theoretical prediction
is valid when the metal plate characteristic dimension is, by and large, superior to half of the
wavelength. The proposed plasmonic nanostructure would find great potential applications in
solar cells, SERS, single molecular detection and high-harmonic generation. The experimental
challenge lies in the fabrication of such a nanostructure with a nicely shaped singularity.

Acknowledgments

This work was supported by the European Community project PHOME (contract no. 213390)
and by the UK Engineering and Physical Sciences Research Council (EPSRC).

References

[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[2] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Plasmonics for extreme

light concentration and manipulation Nature Mater. 9 193
[3] Gramotnev D K and Bozhevolnyi S I 2010 Plasmonics beyond the diffraction limit Nature Photon. 4 83
[4] Nie S and Emory S R 1997 Probing single molecules and single nanoparticles by surface-enhanced Raman

scattering Science 275 1102

New Journal of Physics 12 (2010) 093030 (http://www.njp.org/)

http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1126/science.275.5303.1102
http://www.njp.org/


19

[5] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Single molecule
detection using surface-enhanced Raman scattering (SERS) Phys. Rev. Lett. 78 1667

[6] Moskovits M 1985 Surface-enhanced spectroscopy Rev. Mod. Phys. 57 783–826
[7] Campion A and Kambhampati P 1998 Surface-enhanced Raman scattering Chem. Soc. Rev. 27 241–50
[8] Atwater H A and Polman A 2010 Plasmonics for improved photovoltaic devices Nature Mater. 9 205
[9] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 High-harmonic generation by resonant plasmon

field enhancement Nature 453 757
[10] Bergman D J and Stockman M I 2003 Surface plasmon amplification by stimulated emission of radiation:

quantum generation of coherent surface plasmons in nanosystems Phys. Rev. Lett. 90 027402
[11] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D S, Saraswat K C and Miller D A B 2008

Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna Nature Photon.
2 226

[12] Neutens P, Van Dorpe P, Vlaminck I D, Lagae L and Borghs G 2009 Electrical detection of confined gap
plasmons in metal–insulator–metal waveguides Nature Photon. 3 283

[13] Aubry A, Lei D Y, Fernández-Domínguez A I, Sonnefraud Y, Maier S A and Pendry J B 2010 Plasmonic
light harvesting devices over the whole visible spectrum Nano Lett. 10 2574–9

[14] Mc Phedran R C and Perrins W T 1981 Electrostatic and optical resonances of cylinder pairs Appl. Phys.
24 311–8

[15] Mc Phedran R C and Milton G W 1987 Transport properties of touching cylinder pairs of the square array of
touching cylinders Proc. R. Soc. A 411 313–26

[16] Paulus M, Gay-Balmaz P and Martin O J F 2000 Accurate and efficient computation of the Green’s tensor for
stratified media Phys. Rev. E 62 5797–807

[17] Ford G W and Weber W H 1984 Electromagnetic interactions of molecules with metal surfaces Phys. Rep.
113 195–287

[18] Jun Y C, Kekatpure R D, White J S and Brongersma M L 2008 Nonresonant enhancement of spontaneous
emission in metal–dielectric–metal plasmon waveguide structures Phys. Rev. B 78 153111

[19] Draine B T 1988 The discrete-dipole approximation and its application to interstellar graphite grains
Astrophys. J. 333 848–72

[20] Johnson P B and Christy R W 1972 Optical constants of the noble metals Phys. Rev. B 6 4370–9
[21] Bohren C H and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[22] Kottmann J P and Martin O J F 2001 Plasmon resonant coupling in metallic nanowires Opt. Express 8 655–63
[23] Kottmann J P and Martin O J F 2001 Retardation-induced plasmon resonances in coupled nanoparticles

Opt. Lett. 26 1096–8
[24] Hao E and Schatz G C 2004 Electromagnetic fields around silver nanoparticles and dimers J. Chem. Phys.

120 357–66
[25] Enoch S, Quidant R and Badenes G 2004 Optical sensing based on plasmon coupling in nanoparticle arrays

Opt. Express 12 3422–7
[26] Atay T, Song J-H and Nurmikko V 2004 Strongly interacting plasmon nanoparticle pairs: from dipole–dipole

interaction to conductively coupled regime Nano Lett. 4 1627–31
[27] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Plasmon hybridization in nanoparticle dimers

Nano Lett. 4 899–903
[28] Sweatlock L A, Maier S A, Atwater H A, Penninkhof J J, Polman A and Wats T J 2005 Highly confined

electromagnetic fields in arrays of strongly coupled Ag nanoparticles Phys. Rev. B 71 235408
[29] Romero I, Aizpurua J, Bryant G W and García de Abajo F J 2006 Plasmons in nearly touching metallic

nanoparticles Opt. Express 14 9988–99
[30] Romero I, Teperik T V and García de Abajo F J 2008 Plasmon molecules in overlapping nanovoids

Phys. Rev. B 77 125403
[31] Britt Lassiter J, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P and

Halas N J 2008 Close encounters between two nanoshells Nano Lett. 8 1212–8

New Journal of Physics 12 (2010) 093030 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.78.1667
http://dx.doi.org/10.1103/RevModPhys.57.783
http://dx.doi.org/10.1039/a827241z
http://dx.doi.org/10.1038/nmat2629
http://dx.doi.org/10.1038/nature07012
http://dx.doi.org/10.1103/PhysRevLett.90.027402
http://dx.doi.org/10.1038/nphoton.2008.30
http://dx.doi.org/10.1038/nphoton.2009.47
http://dx.doi.org/10.1021/nl101235d
http://dx.doi.org/10.1007/BF00899728
http://dx.doi.org/10.1098/rspa.1987.0069
http://dx.doi.org/10.1103/PhysRevE.62.5797
http://dx.doi.org/10.1016/0370-1573(84)90098-X
http://dx.doi.org/10.1103/PhysRevB.78.153111
http://dx.doi.org/10.1086/166795
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1364/OE.8.000655
http://dx.doi.org/10.1364/OL.26.001096
http://dx.doi.org/10.1063/1.1629280
http://dx.doi.org/10.1364/OPEX.12.003422
http://dx.doi.org/10.1021/nl049215n
http://dx.doi.org/10.1021/nl049681c
http://dx.doi.org/10.1103/PhysRevB.71.235408
http://dx.doi.org/10.1364/OE.14.009988
http://dx.doi.org/10.1103/PhysRevB.77.125403
http://dx.doi.org/10.1021/nl080271o
http://www.njp.org/


20

[32] Nerkararyan Kh V 1997 Superfocusing of a surface polariton in a wedge-like structure Phys. Lett. A
237 103–5

[33] Stockman M I 2004 Nanofocusing of optical energy in tapered plasmonic waveguides Phys. Rev. Lett.
93 137404

[34] Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M and Matsuo S 2005 Theoretical and
experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength
waveguiding Appl. Phys. Lett. 87 061106

[35] García-Vidal F J and Pendry J B 1996 Collective theory of surface enhanced Raman scattering Phys.
Rev. Lett. 77 1163–6

[36] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[37] de Abajo F J G 2008 Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and

waveguides J. Phys. Chem. C 112 17983–7
[38] Zuloaga J, Prodan E and Nordlander P 2009 Quantum description of the plasmon resonances of a nanoparticle

dimer Nano Lett. 9 887–91

New Journal of Physics 12 (2010) 093030 (http://www.njp.org/)

http://dx.doi.org/10.1016/S0375-9601(97)00722-6
http://dx.doi.org/10.1103/PhysRevLett.93.137404
http://dx.doi.org/10.1063/1.1991990
http://dx.doi.org/10.1103/PhysRevLett.77.1163
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1021/nl803811g
http://www.njp.org/

	1. Introduction
	2. Theory
	2.1. Conformal transformation
	2.2. Coupling of a dipole to surface plasmons supported by metallic sheets
	2.3. Electric field induced at the dipole and dipolar moment of the kissing cylinders
	2.4. Absorption cross-section
	2.5. Electric field in the transformed geometry
	2.6. Field enhancement along the cylinders' surface

	3. Numerical simulations
	3.1. Methods
	3.2. Kissing cylinders: absorption cross-section
	3.3. Kissing cylinders: field enhancement
	3.4. Nanowire on top of a metal plate

	4. Conclusion
	Acknowledgments
	References

