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Abstract

In metamaterials, electric (magnetic) dipoles can be excited by the electric (magnetic) component of the incident

light field. Moreover, in the description of bianisotropic metamaterials, cross terms occur, i.e., magnetic dipoles can

also be excited by the electric-field component of the incident light and viceversa. For the cross terms, in the general

bianisotropic case, the exciting field and dipole vectors include an arbitraryangle. For the special case of chirality, the

angle is zero. In the spirit of a brief tutorial, a very simple electric-circuit description of the split-ring resonator is used

to give a basic introduction to the cross terms. Mathematical details of the effective parameter retrieval are presented.

Furthermore, we briefly review recent experiments on bianisotropic metamaterials operating at optical frequencies.
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Bianisotropic photonic metamaterials

I. I NTRODUCTION

Optics has traditionally mainly dealt with dielectric

materials. Here, the incident electric-field vector of the

light excites microscopic electric dipoles that re-emit

electromagnetic waves just like a dipole radio antenna.

Other dipoles are excited by this re-emission and so

on. This successive excitation and re-emission clearly

modifies the phase velocity of light and determines the

optical properties of the material, in particular its electric

permittivity ǫ (or dielectric function).

One of the little revolutions in optics that the concept

of artificial effective materials (“metamaterials”) has

brought about is the fact that, similarly, magnetic dipoles

can be excited by the magnetic-field component of the

light, which can be cast into the effective magnetic

permeabilityµ of the material [1]–[8] (or, alternatively,

into spatial dispersion). The interplay ofǫ and µ has

given rise to interesting new aspects of electromagnetism

that have been reviewed several times [9]–[13] and shall

not be repeated here. In general, bothǫ andµ are tensors,

i.e., the dipole direction is not necessarily identical to the

exciting vector direction.

A further set of new possibilities originates from the

“cross terms”. This means that, in general, magnetic

dipoles can not only be excited by the magnetic field

but also by the electric field. Similarly, electric dipoles

can not only be excited by the electric field but also by

the magnetic field. These cross terms are subject of the

present review or brief tutorial. We focus on the special

case that the dipole vectors are orientedperpendicular

to the exciting fields. If the dipole vectors are oriented

parallel to the exciting fields, another special case arises,

namely chirality.

Bianisotropy and chirality are very well established

parts of electromagnetism and a bulk of corresponding

theoretical literature does exist [14]–[31]. Yet, based on

our own experience, some of that literature is somewhat

difficult to digest for an experimentalist. Thus, we start

with a simple and intuitive tutorial based on an example,

namely on split-ring resonators. The discussion aims

at giving an understanding and explaining the physics

rather than at a complete and/or a quantitative descrip-

tion. Next, we derive in detail the formulae required

for retrieving the effective parameters of bianisotropic

metamaterials from transmittance and reflectance data.

Finally, we briefly review recent experiments on bian-

isotropic metamaterials operating at optical frequencies.

II. B IANISOTROPY

A. Split-Ring Resonators

A split-ring resonator (SRR) is a metallic ring with

one or several slits [1]–[8], [32]–[34] (see Fig. 1). The

incident light field can induce a circulating and oscillat-

ing electric current in the metallic wire that gives rise to

a local magnetic field (magnetic dipole) normal to the

SRR plane. The resonance of the SRR can be thought

of as arising from the inductance of an almost closed

loop (inductanceL) and the capacitor formed by the

two ends of the wire (capacitanceC). This leads to an

LC eigenfrequencyωLC = 1/
√

LC. For small SRR, the

kinetic inductance can add toL [35], [36]. Also, a more
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Fig. 1. Illustration of a split-ring resonator and the parameters used

in the calculations. The excitation geometry considered in this section

is also depicted.

detailed modeling would have to account for additional

surface contributions to the SRR capacitanceC [37],

[38]. Furthermore, energy can either be dissipated by

Ohmic losses or can be radiated into free space, leading

to the radiation resistance [39]–[41]. The effect of both

can be lumped into an effective resistanceR of the

circuit.

Using Kirchhoff’s voltage law, the equation of motion

of the electric currentI in this simple circuit results as

UC + UR + UL =
1

C

∫

Idt + RI + L
dI

dt
= Uind . (1)

The incident light field induces the source voltageUind.

The SRR generally has both an electric and a magnetic

dipole moment. As usual, the electric dipole moment is

given by the charges separated on the capacitor plates,
∫

Idt, times their distanced. The macroscopic electric

polarization,P , is the product of the individual electric

dipole moment times the number density of the dipoles

NLC/V = 1/(a2
xyaz), where axy and az are the in-

plane and out-of-plane lattice constants of the crystal

composed of SRR—provided that we neglect interaction

effects among the SRR in the crystal. This leads to

Px(t) =
1

a2
xyaz

d

∫

Idt . (2)

Similarly, the magnetic dipole density,M , is the

product of the SRR number density and the individual

magnetic dipole moment. Within the quasi-static limit

(no retardation), the latter is given by the currentI times

the area of the loop. This leads to

My(t) =
1

a2
xyaz

I(t) l2 . (3)

Note that we have tacitly neglected the displacement

current at this point. Hence, our reasoning is only strictly

valid provided that the Ohmic current dominates over the

displacement current (i.e., the slit in the SRR must not

be too large).

(i) Let us start by discussing a current that is solely

induced by Faraday’s induction law. In this case, we have

Uind(t) = −∂φ
∂t

with the magnetic fluxφ(t) given by

φ(t) = µ0Hy(t)l2. Assuming a harmonically varying

magnetic fieldHy(t) = Hy exp(−iωt) + c.c., we obtain

My(t) = My exp(−iωt) + c.c. with

My =
F ω2

ω2
LC − ω2 − iγω

Hy . (4)

Here, we have employed the inductance of a long coil

L = µ0l
2/h and have introduced two abbreviations: the

dampingγ = R/L and the SRR volume filling fraction

0 ≤ F ≤ 1 with

F =
l2 h

(a2
xyaz)

. (5)

Notably, induction via Faraday’s law also leads to a

polarizationPx(t) = Px exp(−iωt) + c.c. with

Px =
d

l2
iF ω

ω2
LC − ω2 − iγω

Hy . (6)
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Here, we have employed the capacitanceC = ǫ0wh/d

for a plate capacitor with large plates. Note that~P is

phase delayed by 90 degrees with respect to the exciting

H-field. Otherwise it reveals the same resonance behav-

ior around theLC eigenfrequency as the magnetization

~M . Also note that the induced polarization goes to zero

as the slit widthd of the SRR is made smaller and

smaller.

(ii) Next, we discuss a current that is induced by a

voltage drop over the plate capacitor that arises from the

electric-field component,Ex(t), of the light field. In this

case, we haveUind(t) = Ex(t) d. Assuming a harmoni-

cally varying electric fieldEx(t) = Ex exp(−iωt)+c.c.,

we obtain

My =
1

µ0

d

l2
−iF ω

ω2
LC − ω2 − iγω

Ex (7)

and

Px =
1

µ0

(

d

l2

)2 F
ω2

LC − ω2 − iγω
Ex . (8)

In this case, the 90 degrees phase delay (see imaginary

unit in numerator) occurs for the magnetizationMy.

Provided the displacement current is negligible [27]

(which is usually fulfilled in the vicinity of the reso-

nance), we can identify the macroscopic magnetization

with the magnetic dipole density~M discussed above.

Hence, we get the macroscopic material equations

~D = ǫ0 ~E + ~P (9)

and

~B = µ0( ~H + ~M) . (10)

We can summarize our findings in (i) and (ii) for the

SRR by




Dx

By



 =





ǫ0ǫ −ic−1
0 ξ

+ic−1
0 ξ µ0µ









Ex

Hy



 . (11)

Here we have introduced the (dimensionless) electric

permittivity

ǫ(ω) = 1 +

(

d c0

l2

)2 F
ω2

LC − ω2 − iγω
, (12)

the (dimensionless) magnetic permeability

µ(ω) = 1 +
F ω2

ω2
LC − ω2 − iγω

, (13)

the (dimensionless) bianisotropy parameter

ξ(ω) = − d c0

l2
F ω

ω2
LC − ω2 − iγω

, (14)

and the vacuum speed of lightc0 = 1/
√

ǫ0µ0. ǫ

describes the excitation of electric dipoles by the electric

field of the light, µ the excitation of magnetic dipoles

by the magnetic field, andξ the excitation of magnetic

dipoles by the electric field and vice versa. Fig. 2 (a)–(d)

illustrates these quantities.

If the slit in the SRR in Fig. 1 is at the lower part rather

than at the top, the current induced by the electric field

flows into the other direction and+ξ → −ξ (whereas

+ǫ → +ǫ and+µ → +µ).

Clearly, for the excitation geometry considered in

Fig. 1, the single-slit SRR has no center of inversion

along the propagation direction of light. If we introduce

a second slit at the bottom of the SRR (i.e., opposite to

the first slit), inversion symmetry is recovered. Provided

we neglect retardation effects, the voltage drop over the

second slit induced by the electric field is opposite in

sign to that of the first slit, i.e.,I = 0. Thus, neither

a magnetization nor a polarization is induced by the

electric field. A magnetic field component normal to the

SRR plane can still induce a circulating and oscillating

current, leading to a magnetic dipole moment. However,

the electric dipole moment of the second slit is opposite

to that of the first slit. Hence, no electric polarization re-

sults from the magnetic field of the incident light. Indeed,

it is straightforward to show within our model that—

under these conditions—the bianisotropy parameterξ is
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Fig. 2. (a) Electric permittivityǫ, (b) magnetic permeabilityµ,

(c) bianisotropy parameterξ, and (d) refractive indexn with n2 =

ǫµ − ξ2 versus normalized angular frequencyω/ωLC for the split-

ring resonator model described in this section (for geometry see Fig. 1).

Real (imaginary) parts of these complex quantities are solid (dashed).

Parameters areγ/ωLC = 0.05, f = 0.3, anddc0/l2 = 0.75×ωLC .

Note that the combination ofRe(ǫ) < 0 and Re(µ) < 0 doesnot

lead toRe(n) < 0 (not even ifγ/ωLC = 0). (e) Normal-incidence

intensity transmittanceT = T+ = T
−

and reflectancesR+ (light

impinging from the left) andR
−

(light impinging from the right)

for a slab of material with parameters as in (a)–(d). Slab thickness is

c0π/ωLC (half of a free-spaceLC eigenwavelength).

strictly zero andǫ = 1, while µ 6= 1. This finding, i.e.,

that a non-zero bianisotropy parameter requires breaking

of inversion symmetry, is also valid beyond our simple

SRR example.

B. Bianisotropic Parameter Retrieval

Light impinging under normal incidence onto such a

slab of effective bianisotropic material will be partially

reflected and partially transmitted according to the gener-

alized version of the Fresnel equations. Owing to the lack

of inversion symmetry, the reflectance does depend on

from which side of the slab light impinges. In contrast,

due to reciprocity, the transmittance doesnot depend

on from which side light impinges. The dependence of

the complex field transmittance and the two complex

field reflectances onǫ, µ, andξ can be inverted, which

forms an important ingredient for retrieving these effec-

tive parameters from numerical calculations and/or from

experimental data. We have previously published the

closed formulae for this retrieval for normal incidence of

light in [42] (also see [19], [23]). In this subsection, we

present the (somewhat lenghty) derivation that we have

not published previously. These formulae are important

when actually working with bianisotropy.

We consider a monochromatic, linearly polarized field

~Ei = Ei
xei(k1z−ωt) ~ex and ~H i = H i

yei(k1z−ωt) ~ey which

impinges under normal incidence from an isotropic ma-

terial of relative impedancez1 (e.g., air or vacuum)

onto a bianisotropic metamaterial slab of thicknessds

and which is transmitted into another isotropic material

of relative impedancez2 (e.g., a glass substrate). The

geometry and the nomenclature used are illustrated in

Fig. 3.

Considering the constitutive relations of the bian-

isotropic material (11) and introducing the following

plane-wave ansatz~E± = E±ei(k±z−ωt) ~ex and ~H± =
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Fig. 3. Illustration of field components for the generalized version

of Fresnel’s equations for retrieving effective parametersincluding

bianisotropy. The metamaterial of interest is clad between anisotropic

material #1 (e.g., air) and another isotropic material #2 (e.g., a glass

substrate). A substrate occurs in most metamaterial experiments at

optical frequencies.

H±ei(k±z−ωt) ~ey for both propagation directions(±)

into Maxwell’s equations immediately leads to eigenso-

lutions. This means that no cross polarization is excited

as long as the wave propagates along this axis. A change

in polarization could occur for oblique incidence of light

onto the slab and/or for chiral media (see next section).

The corresponding dispersion relation readsk± = ±nk0,

where k0 = ωc−1
0 is the vacuum wave vector. The

refractive indexn is given by

n2 = ǫµ − ξ2 . (15)

For a passive material, the root has to be chosen such that

Im(n) ≥ 0. Otherwise, exponentially growing solutions

occur, violating energy conservation.

The bulk impedance of the bianisotropic material is

Z+ for propagation in the (+)-direction and−Z− for

propagation in the (−)-direction. These quantities are

given byZ+ = E+/H+ andZ− = E−/H−. We derive

from Maxwell’s equations

z± ≡ Z±/Z0 = µ (±n − iξ)
−1 (16)

whereZ0 =
√

µ0/ǫ0 is the vacuum impedance. We note

that z+ 6= −z−.

Using the boundary condition that the tangential com-

ponentsE and H are continuous and the fact that

HZ0 = E/zi and writing the complex reflectance and

transmittance for a wave incident in the (+)-direction

r+ = Er/Ei and t+ = Et/Ei, we get the following

equations atz = 0:

(1 + r+)Ei = E+ + E− , (17)

(1 − r+)Ei/z1 = E+/z+ + E−/z− (18)

and atz = ds:

E+eink0ds + E−e−ink0ds = t+Ei , (19)

E+eink0ds/z+ + E−e−ink0ds/z− = t+Ei/z2 .(20)

With (17)−(18) (respectively (19)−(20)) we express

E+/Ei and E−/Ei as linear functions ofr+ (respec-

tively t+):

E+/Ei = a+ + b+r+ and E+/Ei = c+ + d+t+ ,

E−/Ei = a− + b−r+ and E−/Ei = c− + d−t+ .

This yields two linear relationships betweenr+ and t+

t+ = α + βr+ and (21)

t+ = γ + δr+ (22)

where

α = eink0ds (1 − z−/z1) (1 − z−/z2)
−1

,

β = eink0ds (1 + z−/z1) (1 − z−/z2)
−1

,

γ = e−ink0ds (1 − z+/z1) (1 − z+/z2)
−1

,

δ = e−ink0ds (1 + z+/z1) (1 − z+/z2)
−1

.

We want to deduce the three complex parameters

ǫ, µ and ξ, which depend directly onn, z+ and z−,
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from the complex transmittance and reflectance of the

material. Therefore, (21) and (22) alone are not sufficient

to solve the problem and we need to consider the case

of propagation in the (−)-direction, too. In this case,

(17)−(20) take the same form as previously, except that

we have to make the following substitutions (see Fig. 3)

(+)-direction: z1 z2 z+ z−

⇓ ⇓ ⇓ ⇓

(−)-direction: −z2 −z1 z− z+

As a consequence, we obtain the following equations,

corresponding to (21) and (22), for the (−)-direction

t− = α′ + β′r− and (23)

t− = γ′ + δ′r− (24)

where

α′ = eink0ds (1 + z+/z2) (1 + z+/z1)
−1

,

β′ = eink0ds (1 − z+/z2) (1 + z+/z1)
−1

,

γ′ = e−ink0ds (1 + z−/z2) (1 + z−/z1)
−1

,

δ′ = e−ink0ds (1 − z−/z2) (1 + z−/z1)
−1

.

We note thatt+/z2 = t−/z1 (calculation not detailed

here), which results inT = T+ = T−, i.e., the intensity

transmittanceT does not depend on from which side of

the slab light impinges onto the slab.

We now need to invert (21)−(24) in order to calculate

z+, z− andn for known t+, r+, t− andr−. Multiplying

(21) by (24) and (22) by (23) yields

t+t− = αγ′ + βγ′r+ + αδ′r− + βδ′r+r− and(25)

t+t− = γα′ + δα′r+ + γβ′r− + δβ′r+r− (26)

with

αγ′ =
(1 − z−/z1) (1 + z−/z2)

(1 + z−/z1) (1 − z−/z2)
,

γα′ =
(1 − z+/z1) (1 + z+/z2)

(1 + z+/z1) (1 − z+/z2)
,

βγ′ = (1 + z−/z2) (1 − z−/z2)
−1

,

δα′ = (1 + z+/z2) (1 − z+/z2)
−1

,

αδ′ = (1 − z−/z1) (1 + z−/z1)
−1

,

γβ′ = (1 − z+/z1) (1 + z+/z1)
−1

,

βδ′ = 1 ,

δβ′ = 1 .

It follows that (25) and (26) are the same equation

for z+ and z−. It can be rewritten as a second degree

polynomial equation forz±: az2
± + bz± + c = 0, which

means that

z± = (−b ∓
√

b2 − 4ac)/(2a) (27)

with

a = t+t− − (1 − r+) (1 − r−) ,

b = (z1 − z2) (t+t− + 1 − r+r−) + (z1 + z2) (r+ − r−) ,

c = z1z2 [−t+t− + (1 + r+) (1 + r−)] .

Again assuming a passive medium, the sign in (27) must

be chosen in order to have a positive real part of the

medium impedance. We have already noted thatz+ is

the relative impedance of the bianisotropic medium in

the (+)-direction andz− is the opposite of the relative

impedance in the (−)-direction, which yieldsRe(z+) >

0 andRe(−z−) > 0.

To find the refractive index, we can rewrite (21) and

(22) as

t+ = eink0ds [1 + r+ − (1 − r+)z−/z1] (1 − z−/z2)
−1

,

t+ = e−ink0ds [1 + r+ − (1 − r+)z+/z1] (1 − z+/z2)
−1

.
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Fig. 4. A stack of three purely dielectric materials with (real) dielectric

constantsǫ1 = 2, ǫ2 = 6, andǫ3 = 12 and thicknessesd1 = d2 =

d3 = 10 nm embedded in vacuum breaks inversion symmetry. For

example, at1 µm free-space wavelength (300 THz frequency) and for

normal-incidence of light, the physics can equivalently be described by

a single effective 30-nm thin slab with permittivityǫ = 6.72, magnetic

permeabilityµ = 1.00, and bianisotropy parameterξ = −0.21.

Finally, we get an implicit expression for the (complex)

refractive indexn

cos (nk0ds) =
t+
2

[

1 − z−/z2

1 + r+ − (1 − r+)z−/z1

+
1 − z+/z2

1 + r+ − (1 − r+)z+/z1

]

.(28)

As usual, (28) has infinitely many solutions forn due to

the different branches of the inverse cosine. To choose

the correct one, we proceed as previously described

for the parameter retrieval for structures with inversion

symmetry [13].

Once z± and n are at hand, we deduceǫ, µ and ξ

from (27) and (28) via

ǫ = (n + i ξ) /z+ , (29)

µ = (n − i ξ) z+ , and (30)

ξ = in (z− + z+) (z− − z+)
−1

. (31)

Let us illustrate this retrieval by the simple example

shown in Fig. 4. The three dielectric layers shown there

can be viewed as one (N = 1) unit cell of a periodic

structure that has no center of inversion along the prop-

agation direction of light (just like the SRR depicted

in Fig. 1). Due to the broken inversion symmetry, the

field reflectance clearly depends on from which side

light impinges onto the stack under normal incidence.

Applying the above bianisotropic retrieval to this case

at, e.g.,λ = 1µm (≫ d1 = d2 = d3 = 10nm)

wavelength, leads to the effective parametersǫ = 6.72,

µ = 1.00, andξ = −0.21 that refer to a fictitious single

homogeneous effective slab with total thicknessds =

d1 + d2 + d3 = 30nm. We have explicitly verified that

the same parameters are retrieved ifN = 2, 3, 4, ..., 20

unit cells of the identical three-layer structure are con-

sidered (i.e., the total slab thickness isN × 30 nm).

Thus, the retrieved quantitiesǫ, µ, and ξ can indeed

be interpreted as effective material parameters. As the

damping is strictly zero in this example, no absorption

occurs. Hence, the sum of transmittance and reflectance

is unity – for each propagation direction. Thus, the two

intensity reflectancesR+ and R− are identical in this

case and differences occur only in the phases of the field

reflectancesr+ andr−.

This simple example clearly shows that one should be

somewhat cautious with using the well known Maxwell

Garnett approximation at this point, as it would cast the

effective behavior of the three subwavelength dielectric

layers in Fig. 4 into just an effective dielectric function

ǫ = 1 +
(ǫ1 − 1)d1 + (ǫ2 − 1)d2 + (ǫ3 − 1)d3

d1 + d2 + d3
= 6.67 ,

(32)

assumingµ = 1 and ξ = 0, leading to a single

impedanceZ =
√

µ/ǫ ×Z0. The Maxwell–Garnett ap-

proximation obviously ignores that the field reflectance

depends on from which side of the slab it is measured.

This may or may not be important, depending on the

problem.
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C. Experiments

Experiments on bianisotropic metamaterials—

including retrieval of the bianisotropy parameter—have

been published for microwave [19], [23], [43], far-

infrared [44], and optical frequencies [42], [45], [46].

Related structures have been fabricated previously

[47], [48] but bianisotropy has not been mentioned.

Fig. 5 shows electron micrographs of three different

optical-regime samples that have been fabricated in our

group by direct laser writing (see, e.g., review in [13])

of a polymeric template and subsequent metallization.

Metallization is accomplished either by chemical vapor

deposition of silver [42], [45] (Fig. 5 (a), (c), and (d))

or by high-vacuum shadow evaporation of silver [46]

(Fig. 5 (b)). The structures in Figs. 5 (c) and (d) are

derived from (a) via post-processing using focused-

ion-beam (FIB) milling [45]. The structures in (a) and

(b) have also been FIB cut to reveal their interior.

Obviously, all four samples in Fig. 5 are variations of

the SRR geometry shown in Fig. 1. In Fig. 5 (a), the

SRR are connected in two directions, in (b) they are

connected along one direction only and an additional

orthogonal set of intentionally elevated metallic wires

has been introduced. The corresponding increased

design freedom has led to a negative phase velocity

[46] (i.e., to Re(n) < 0). In (c), the SRR are also

only connected along one direction, whereas (d) is a

two-dimensional array of disconnected SRR similar to

Fig. 1.

As an example, Fig. 7 (a)–(d) shows the results of

the parameter retrieval (see previous subsection) for

the structure corresponding to Fig. 5 (a), the measured

intensity transmittance and reflectance spectra of which

are depicted in Fig. 6. For computational details see [45].

This structure is an improved version [45] of the one

Fig. 5. Oblique-view electron micrographs of three different, though

related, recently experimentally fabricated bianisotropic photonic meta-

materials. (a) Taken from [45] (sample similar to but differentfrom

that in [42]), (b) taken from [46], and (c) as well as (d) takenfrom

[45]. The dark parts correspond to the polymeric templates, light grey

parts to the silver films.
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Fig. 6. Measured normal-incidence intensity transmittance (T ) and

reflectances (R+, R
−

) corresponding to the calculated spectrum

shown in Fig. 7(e). The polarization of the incident electromagnetic

field is illustrated on the upper left-hand-side corner of Fig. 5(a). The

rapid oscillations ofR
−

are due to Fabry-Perot interferences in the

170-µm-thick glass substrate. Artifacts at around70 THz are caused

by absorption lines of CO2.

published in [42]. Again (compare Fig. 2 (a)), the real

part of the refractive index is positive (Re(n) > 0)

despite the fact that bothRe(ǫ) < 0 and, at the same

time, Re(µ) < 0 due to the very significant influence

of the bianisotropy parameterξ. The fact thatξ 6= 0 in

Fig. 7 (c) is intimately connected toR+ 6= R− in Fig. 7

(e).

III. C HIRALITY

In the previous section and in particular in (11), we

have used a scalar formulation forξ and the other

quantities (ǫ and µ). Equation (11) has been a special

example of the more general form for reciprocal media




~D

~B



 =





ǫ0ǫ −ic−1
0 ξ

+ic−1
0 ξt µ0µ









~E

~H



 , (33)

where ǫ, µ, and ξ are tensors.ξt is the transposed of

ξ. In this general bianisotropic case, regarding the cross

terms, the electric polarization is no longer necessarily

perpendicular to the exciting magnetic-field vector and,

similarly, the magnetization is no longer necessarily

perpendicular to the exciting electric-field vector.
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Fig. 7. (a)–(d) Retrieved effective parameters from numerical calcu-

lation of the complex transmittance and reflectances of the structure

shown in Fig. 5 (a). (e) Calculated normal-incidence intensity trans-

mittance (T ) and reflectances (R+, R
−

) of this structure.
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Another special example of the general bianisotropic

case (33) is




~D

~B



 =





ǫ0ǫ −ic−1
0 ξ

+ic−1
0 ξ µ0µ









~E

~H



 , (34)

whereǫ, µ, andξ are again scalars. Note that (34) looks

rather similar to (11) at first sight. However, it has a to-

tally different meaning and leads to completely different

behavior, namely to chirality. Chiral metamaterials are

a subclass of bianisotropic metamaterials. Let us briefly

elaborate on the differences with respect to the previous

section.

For a plane wave propagating through a medium,

the incident electric and magnetic vector components

are perpendicular to each other. If, as the wave passes

through the chiral medium following (34), the magnetic

component induces an electric dipoleparallel to the

magnetic field vector, the resulting net local electric field

vector will clearly be rotated a bit. Likewise, magnetic

dipoles are excited by the electric vector component.

Hence, the magnetic field vector rotates as well—

regardless of the incident polarization of light. Thus, the

eigenstates no longer correspond to linear polarization of

light (as in the preceeding section) but rather to circular

polarization of light. In this basis, the refractive index

can be expressed [49] via

n± =
√

ǫµ ∓ ξ. (35)

As usual, the sign of the complex root has to be chosen

appropriately. The other signs in (35) refer to right-

handed (+) and left-handed (−) circular polarization of

light, respectively. The difference of the two refractive

indices becomesn+ − n− = −2ξ. The behavior of (35)

is very different from that for the other special case

of bianisotropy in (15). For example, in principle, (35)

allows for a negative index of refraction (precisely, a

negative phase velocity of light) for one handedness of

light if both ǫ and µ are mainly real and positive—if

only the modulus ofξ is sufficiently large. In this sense, a

large real value ofξ is helpful for pure chirality, whereas

a large real value ofξ works against a negative phase

velocity of light for pure bianisotropy, because a largeξ2

in (15) leads to a negativen2, i.e., to evanescent waves.

Retrieval of the effective parameters of purely chiral

metamaterials (the analogue of our discussion in Sect. II.

B.) has been published [49]. First chiral negative-index

metamaterials [50] have recently been realized at mi-

crowave [51] and far-infrared [52] frequencies.

IV. SUMMARY AND OUTLOOK

The advance of man-made metamaterials has signifi-

cantly increased our possibilities regarding manipulating

light via optical materials. Light is an electromagnetic

wave with an electric and a magnetic vector component.

Either of them can excite both electric and magnetic

dipoles inside the material. These dipoles can be parallel

or orthogonal to the exciting field component—leading

to a rich variety of cases. If, for example, the magnetic

(electric) dipoles excited by the electric (magnetic) field

vector are perpendicular to each other, the reflectance of

a slab of such material becomes asymmetric. A negative

phase velocity of linearly polarized light (“negative-

index metamaterials”) can still be achieved in this case,

however bianisotropy is not usually helpful. In partic-

ular, the phase velocity of light can be positive even

if both electric permittivity and magnetic permeability

are negative. In contrast, if, for example, the magnetic

(electric) dipoles excited by the electric (magnetic) field

vector are parallel to each other, the medium becomes

chiral. Chirality tends to enable negative phase velocities.

In particular, for strong chirality, the phase velocity of

circularly polarized light can be negative even if both

permittivity and permeability are positive. At optical
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frequencies, special bianisotropic negative-index struc-

tures have been realized experimentally, while chiral

negative-index structures have not. However, interesting

and encouraging results have recently been published at

GHz (microwave) and THz (far-infrared) frequencies.

Results on chiral photonic metamaterials exhibiting a

positive phase velocity of light have been published

previously [53]–[58].

It is rather likely that chiral negative-index metama-

terials operating at optical frequencies will be realized

experimentally in the near future. However, all chiral

photonic metamaterials presented so far are uniaxial and,

hence, highly anisotropic. The design and experimental

realization of isotropic chiral artificial materials operat-

ing at optical frequencies pose a major future challenge,

especially regarding three-dimensional nanofabrication.

For such materials, negative reflection of light has been

predicted theoretically [30]. Finally, further possibilities

arise if Faraday active ingredients are incorporated into

the metamaterial. In this case, not only the reflectance

but also the transmittance can become asymmetric [22],

[31], which might, e.g., give rise to very compact optical

isolators.
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A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn,

K. Busch, and M. Wegener, “Transition between corrugated metal

films and split-ring-resonator arrays,”Appl. Phys. B, submitted,

2009.

[46] M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Lin-

den, and M. Wegener, “Negative-index bianisotropic photonic

metamaterial fabricated by direct laser writing and silver shadow

evaporation,”Opt. Lett., vol. 34, no. 1, pp. 19–21, 2009.

[47] S. Zhang, W. Fang, B. K. Minhas, A. Frauenglass, K. J. Malloy,

and S. R. J. Brueck, “Midinfrared resonant magnetic nanostruc-

tures exhibiting a negative permeability,”Phys. Rev. Lett., vol. 94,

no. 3, p. 037402, 2005.
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male Suṕerieure de Lyon (Lyon, France) and

the Diploma in physics from the Univer-

sität Karlsruhe (TH) (Karlsruhe, Germany) in

2008. She is currently working towards the

Ph.D. degree in physics at the Université de
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Universiẗat Dortmund in June 1990. Since

October 1995, he is a full professor at the Universität Karlsruhe (TH),

since 2001 a group leader at the Institut für Nanotechnologie of the

Forschungszentrum Karlsruhe GmbH, and since 2001 coordinator of

the Karlsruhe DFG-Center for Functional Nanostructures (CFN).

His research interests cover different areas of photonics,such as, e.g.,

nonlinear-optical spectroscopy, ultrafast spectroscopy, extreme nonlin-

ear optics, near-field optical spectroscopy, photonic band-gap materials,

and photonic metamaterials. In 1993, he obtained the ResearchAward

of the Alfried Krupp von Bohlen und Halbach-Stiftung, in 1998 the

Teaching Award of the State of Baden-Württemberg, in 2000 the DFG-
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