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Abstract In this article, we study spiral particles with optimized design parameters,
which can make possible the realization of media with equal dielectric, magnetic, and

chiral susceptibilities. Two different spiral structures are investigated: the canonical
spiral (which consists of a split loop with two straight-wire sections, orthogonal to

the loop plane and connected to the edges of the gap) and the true helix (which
is obtained by bending a wire with a constant pitch angle). The transmission and

reflection coefficients of arrays of spiral particles are obtained under plane wave

excitation by numerical simulation. The properties of slabs formed by periodic chiral
and racemic arrays of spirals are investigated. Good agreement is found between the

presented results and the previously reported theoretical and experimental studies.
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1. Introduction

In the last decade, many published articles were devoted to the investigation of the

electromagnetic properties of spirals as an element of nonreflecting coverings (Priou

et al., 1997; Zoudi et al., 2002; Whites & Chang, 1997; Tretyakov & Sochava, 1993;

Semchenko et al., 1998; Tretyakov et al., 1996; Cloete et al., 1999; Bohren et al., 1992).

Chiral anti-reflection covers were compared with other types of absorbers, and the role

of chirality in comparison with the dielectric, magnetic, and absorbing properties was

investigated, leading to controversial opinions on the necessity of chirality (Tretyakov

et al., 1996; Cloete et al., 1999; Bohren et al., 1992).

At present, the emergence of electromagnetic metamaterials considerably motivates

new research on spiral structures. In particular, the so-called “optimal spirals,” which offer
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equivalent dielectric, magnetic, and chiral properties (equal permittivity, permeability,

and chirality parameter), are of interest. Such materials were proposed, probably for

the first time, in Tretyakov et al. (2002) (see also Tretyakov [2003]) as a possibility to

realize negative-index media with equal permittivity and permeability. For one particle,

the equality of three susceptibilities leads to a wave radiated by the spiral that is circularly

polarized in the orthogonal direction to the axis of the spiral (Semchenko et al., 2004,

2007a, 2007b, 2007c, 2007d; Khakhomov et al., 2006; Samofalov & Tretyakov, 2006).

The circularly polarized wave can be radiated for any polarization of the incident wave.

Another consequence is that an optimal spiral with particular helicity is completely

transparent for circular electromagnetic waves of the same helicity.

When optimal spirals of opposite helicity are paired (i.e., right-handed (RH) and

left-handed (LH) in pair), the chiral properties are compensated. The resulting composite

with equal numbers of LH and RH optimal spirals exhibits equal dielectric and magnetic

responses, which can be utilized to realize metamaterials with unit impedance, i.e.,

matched to free space (Tretyakov et al., 2002; Tretyakov, 2003). In addition, optimal

spirals can be used to create metamaterials with negative refraction of electromagnetic

waves (Tretyakov et al., 2002; Tretyakov, 2003; Semchenko et al., 2007e).

In this article, we model and study optimal spirals with equal dielectric, magnetic,

and chiral properties theoretically and using numerical simulations.

The article is organized as follows. In Section 2, the two spiral designs (canonical and

true spiral) and their geometrical parameters are introduced. The theoretical formulation

of the electromagnetic properties of spirals is given in Section 3. Section 4 discusses

the optimum canonical and true spirals and their transmission and reflection spectra. The

electromagnetic properties of optimal paired spirals is presented in Section 5. The last

section concludes the article.

2. Geometry of the Canonical and True Spirals

In this work, the scattering properties of two spiral structures are investigated. The first

one is the so-called canonical spiral, which consists of a split loop with two wire sections

at the edges of the gap, normal to the loop (see Figure 1). The second one is the

conventional helix, which is obtained by bending a wire with a constant pitch angle one

turn or two turns (see Figure 2). By properly choosing the dimensions of the spirals,

it is possible to have equal dielectric, magnetic, and magnetoelectric polarizabilities.

Figure 1. Canonical LH spiral, where R is the radius of the loop, l is the length of the arms, r0

is the radius of the wire, and h is the helix pitch.
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Figure 2. Real one-turn LH spiral, where Nc is the number of turns, R is the radius of the turn,

r0 is the radius of the wire, ˛ is the pitch angle, h is the helix pitch, and L is the total wire length.

Properties of artificial materials with such optimal helical inclusions will be studied in

order to realize a chiral material in which two eigenmodes have effective refraction

indices equal to ˙ 1.

3. Theoretical Analysis

The metal spiral is a resonant particle that simultaneously exhibits electric, magnetic, and

chiral responses. In the presence of an electromagnetic field, the response of the spiral

can be described by the following equations (Serdyukov et al. 2001):

p D "0˛eeE C i
p

"0�0˛emH; (1)

m D ˛mmH C i

r

"0

�0

˛meE; (2)

where p and m are the induced electric- and magnetic-dipole moments, E and H are the

external electric and magnetic fields, ˛ee and ˛mm are tensors of dielectric and magnetic

susceptibilities, and ˛em and ˛me are pseudotensors that characterize the chiral properties

of the spiral. From the principle of symmetry of kinetic coefficients, it follows that

(Serdyukov et al. 2001)

˛em D ˛T
me; (3)

where T means transposition.

In Semchenko et al. (2007b), it has been proposed that a metal helix can emit a

circularly polarized wave under a linearly polarized excitation when the electric field

vector E is parallel to the axis of the helix. For x being the axis of the helix, the

projected components of the induced electric p and magnetic m dipole moments can be

written as

px D i

!

Z x2

x1

I.x/dx; (4)

mx D 1

2
R2q

Z x2

x1

I.x/dx; (5)

where ! is the cyclic frequency of the current in the helix, I is the current strength,

r is the helix radius, and q is the relative torsion of a helix, which is related to the
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helix pitch h as

h D 2�

jqj : (6)

The sign of the parameter q determines the direction of rotation of the helix in space. If

q > 0, the helix is RH.

The electric and magnetic components are related through the relation

px D 2i

!R2q
mx : (7)

This relationship is universal, since it is independent from the current distribution along

the helix. The x-components of the helix moments play the main role in the radiation

of a circularly polarized wave in the direction perpendicular to the helix axis. The

universal character of Eq. (7) also applies to an array of helices forming a metamaterial.

Evidently, the current flow in a particular helix is induced by both the incident external

electromagnetic wave and the field scattered by the neighboring helices. Nevertheless,

the px components of the electric dipole moment and mx of the magnetic moment

vary consistently, and Eq. (7) remains valid. Therefore, the geometric parameters of the

helix that are presented below ensure radiation of a circularly polarized wave also for a

metamaterial consisting of helices.

The generation of a circularly polarized wave by such a helix is possible if

jpzj � jpxj; 1

c
jmzj � jpx j; (8)

where c represents the speed of light. Then, the condition for circularly polarized wave

radiation (Semchenko et al., 2007b) reads

jpxj D 1

c
jmx j: (9)

Thus, the components of the electric dipole moment, py; pz , and the magnetic

moment my ; mz, which are orthogonal to the axis of the helix, should not contribute

to the scattered wave. This condition can be achieved in the case of an odd number of

turns of the helix. For this purpose, it is necessary to terminate the ends of the spiral

in the direction of the incident wave, as shown in Figure 3(a). For this configuration,

pz D 0 and mz D 0 due to the symmetry of the current distribution along the helix.

Although the components py and my may not vanish, they do not radiate and, therefore,

do not deform the circularly polarized wave.

In order to determine the values of the helix parameters that ensure radiation of a

circularly polarized wave, the universal relationship in Eq. (7) and the resonance length

condition are used as follows:

�

2
D L; (10)

where � is the wavelength of the incident electromagnetic wave. By taking into account

the relationship between the geometric parameters of the helix,

L cos ˛ D 2�RNc; (11)
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Figure 3. A schematic representation of the current distribution in: (a) a one-turn helix and (b) a

two-turn helix. The arrows indicate the direction of the current flow, and their length is proportional

to the intensity of the current. ' is the polar angle.

the following trigonometric equation for the helix lead angle ˛ is obtained:

4Nc tan ˛ D cos ˛ (12)

or

sin2 ˛ C 4Nc sin ˛ � 1 D 0: (13)

Since angle ˛ takes positive values, the expression for the roots of Eq. (13) can be written

in the form

˛ D arcsin.�2Nc C
q

4N 2
c C 1/: (14)

The values of the helix lead angle at which helices with different numbers of turns can

radiate a circularly polarized wave are listed in Table 1.

As follows from the table, the radiation of a circularly polarized wave is possible for

both odd and even numbers of helix turns. Experimental results show that the intensity

of the wave radiated by a helix rapidly decreases as the number of turns increases,

i.e., as the helix lead angle decreases. Hence, the optimum number of turns is Nc D 1

or 2. For a single-turn helix, Nc D 1 (Figure 3(a)), and it is necessary to eliminate the

influence of the py and my components of the electric and magnetic moments that are

orthogonal to the helix axis. Therefore, in order to obtain a circularly polarized wave,

the ends of a single-turn helix should be directed towards the incident wave. The current

distribution along a helix with two turns, Nc D 2 (Figure 3(b)) is more symmetric, and a

circularly polarized wave is radiated for any orientation of the helix ends relative to the

wavevector.

Table 1

The optimum values of the helix lead angle (˛) that correspond to radiation of a

circularly polarized wave for different values of the number of turns (Nc)

Nc 1 2 3 4 5 6 7 8

˛ (degrees) 13.7 7.1 4.7 3.6 2.9 2.4 2.0 1.8
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Based on this formulation, the numerical values of the helix parameters that ensure

radiation of a circularly polarized wave when the helix is excited by a linearly polarized

wave can be obtained. As an example, the values for the two-turn helix working at

f D 3 GHz are calculated. The length of the helix wire should correspond to the

condition of the main frequency resonance, i.e., �=2, L D 50 mm. The helix lead angle

that is realized at Nc D 2 is chosen from the table: ˛ D 7:1ı. The helix radius can be

calculated from Eq. (11): R D 3:95 mm. The helix pitch is found from the relationship

h D L sin ˛
Nc

or h D 3:1 mm.

The obtained theoretical results for true spirals were experimentally checked for the

lattice of a spiral with calculated optimal parameters (Semchenko et al., 2004, 2007b;

Khakhomov et al., 2006; Samofalov & Tretyakov, 2006). As was noted before, the results

for lattice are also valid for single spiral due to the universality of relationship in Eq. (7).

The investigation of canonical spirals is also interesting since such a spiral can be

represented as a combination of a wire loop and linear conductors. Taking into account

the input impedance of the wire (ZW ) and the loop (ZL), the resonance occurs when these

admittances cancel out each other, i.e., YW D �YL. After some approximations, explained

in detail in Asghar et al. (2007a, 2007b) and Semchenko et al. (2007e), a simplified

expression for the optimal dimensions of canonical spirals was obtained:

l � k0�R2: (15)

Using the resonant condition for the total length of the spiral being close to �=2,

2�R C 2l D �

2
; (16)

the radius of the spiral in terms of the working frequency reads

R D �

4�
.
p

3 � 1/: (17)

Therefore, for a given frequency, by applying Eqs. (16) and (17), the main constitutive

parameters of the helix R and l can be calculated.

One major advantage of the true and canonical optimal spirals is that their response

is independent from the polarization of the incident field (transverse electric [TE] or

transverse magnetic [TM]). This is demonstrated in the next section through numer-

ical simulation of the electromagnetic response of helices for different incident-field

polarizations.

4. Modeling of Single Spirals

In this section, the scattering properties of slabs formed by periodical arrays of single

spirals is investigated by numerical simulations (Ansoft-HFSS, Spain). Periodic boundary

conditions (PBCs) have been applied in order to simulate a uniform array of helices, i.e.,

RH or LH helices. Notice that this condition is different from the perfect electrical

conductor (PEC) condition imposed on the walls of a regular waveguide, which would

imply a mirror symmetry and, thus, a racemically ordered array of helices. Both the

canonical spiral and true helix are simulated. For the canonical spiral, the optimum

parameters are calculated numerically by taking the input impedance of the wire and

loop elements into account. The respective scattering properties are then compared to

those obtained using some approximations.
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4.1. Canonical Spirals

4.1.1. Optimum Parameters Based on the Input Impedance. In order to analyze the

scattering behavior of canonical spirals, the optimum parameters numerically calculated

in Asghar et al. (2007b) for a resonant frequency of 8 GHz are considered: R D 1:95 mm,

l D 2:85 mm. The reflection and transmission coefficients were calculated with Ansoft-

HFSS for a TE and TM polarization of the incident electric field. In the TE case, the

electric field (E) was polarized along the wire, and the magnetic field (H ) was parallel

to the loop (see the left panel of Figure 4(a)). The resonance frequency is found to

be 7.4 GHz, slightly lower than the design. The same behavior is observed for the TM

polarization of the incident field, i.e., H field axial to the loop. These results are depicted

in Figure 4(b).

In order to check the polarization of the reflected field, the Oy and Oz components of

the reflected field were calculated (see the right panels of Figure 4). It is observed that, at

a certain point around the resonant frequency, both components have the same modulus.

The 90ı phase shift between components required for circular polarization was verified

with Ansoft-HFSS.

4.1.2. Approximation of the Parameters. One approximation in modeling the spiral’s

response is based on the input impedance of the wire and the loop (Eq. (15)). In order to

validate this approximation, the same resonance frequency is set (8 GHz), and applying

Eqs. (16) and (17), the dimensions of the spirals are calculated: R D 2:18 mm and

l D 2:51 mm. The results of the S parameters and the Oy and Oz components of the

Figure 4. Canonical spiral with optimum dimensions R D 1:95 mm, l D 2:85 mm, r0 D 0:1 mm,

and h D 0:3 mm. Transmission (S21) and reflection (S11) spectra and Oy and Oz components of the

reflected field (Ey ; Ez) for: (a) the TE polarization of the incident electric field and (b) the TM

polarization of the incident electric field. The insets represent the polarization of the incident field.
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Figure 5. Canonical spiral with approximated dimensions R D 2:18 mm, l D 2:51 mm, r0 D

0:1 mm, and h D 0:3 mm. Transmission (S21) and reflection (S11) spectra and Oy and Oz components

of the reflected field (Ey ; Ez) for: (a) the TE polarization of the incident electric field and (b) the

TM polarization of the incident electric field.

reflected electric field are shown in Figure 5. Compared with the previous results, the

resonance frequency is shifted downward, but the same resonance is observed for TE or

TM polarization of the incident electric field. The maximum circularity of the reflected

field is obtained around the resonance frequency (see right panels in Figure 5); however,

the Oy and Oz components of the reflected field are not exactly equal.

4.1.3. Scattering Parameters Versus Density of Inclusions. In this section, the effect of

the density of inclusions in a slab on the scattering parameters is analyzed. To do so, the

size (width and height) of the “waveguide” (with PBCs), which contains the spiral, is var-

ied. Initially a square “waveguide” with the dimensions w D 5:62 mm D 0:3�0 at 8 GHz

is considered, and the parameters dy and dz are varied (see Figure 6). The dimensions

of the spiral are R D 2:18 mm, l D 2:51 mm, r0 D 0:05 mm, and h D 0:2 mm.

The influence of the separation between spirals in the Oy and Oz directions has been

analyzed by fixing the parameter dz and varying dy and vice versa. The results are

depicted in Figure 7. It is observed that for a fixed dz, as the lateral distance between

spirals dy increases (direction of the arrows in Figure 7(a)), the resonance frequency

and the strength of the resonance do not change. The decrease in the bandwidth is

the only noticeable effect. For a fixed dy (Figure 7(b)), as dz increases (direction of

the arrows), the resonance frequency increases, and the bandwidth decreases. This is

reasonable because dz defines the gap between different layers of wires, i.e., it affects

the capacitance. Assuming an LC circuit formed by the wire and the gap, if C decreases,

the resonant frequency increases.
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Figure 6. Canonical spiral inside a “waveguide” with PBCs. Initial lattice constant w D 5:62

mm D 0:3�0 at 8 GHz.

4.2. Single-Turn True Spirals

In this section, the scattering parameters are investigated for true spirals (see Figure 2).

Following the design formulas presented in the theoretical analysis, the optimum param-

eters of the helix for a resonance frequency of 3 GHz are: Nc D 1, R D 7:75 mm,

˛ D 13:6ı, L D 50 mm, h D 12 mm, and 2r0 D 1:55 mm. Initially, the true helix is

located in a square “waveguide” with the dimensions wy D wz D 25:83 mm D 0:258�

at 3 GHz, and the scattering for a TE and TM polarization of the electric field have been

calculated. In the case of TE polarization, the electric field is axial to the spirals (Ez ; Hy)

and for the TM, the magnetic field is the axial one (Ey ; Hz). The S parameters and the

Oy and Oz components of the reflected field for both polarizations are shown in Figure 8.

For TE and TM polarizations, the resonant frequency is at 3 GHz—exactly at the design

frequency. At this frequency, the Oy and Oz components of the reflected field have the same

magnitude, showing a 90ı phase shift between them, which has been checked with HFSS.

Figure 7. Canonical spiral with approximated dimensions and scattering parameters vs. distance in:

(a) the Oy direction and (b) the Oz direction. The continuous line represents the reflection coefficient

(S11), and the dashed line presents the transmission coefficient (S21). The arrows indicate the trend

of the curves as the parameter increases.
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Figure 8. True spiral with transmission (S21) and reflection (S11) spectra and Oy and Oz components

of the reflected field (Ey ; Ez) for: (a) the TE polarization of the incident electric field and (b) the

TM polarization of the incident electric field.

Therefore, the reflected field is circularly polarized. Out of the resonant frequency, the

behavior of the reflected field differs slightly for both polarizations.

4.2.1. Scattering Parameters Versus Density of Inclusions. Analogous to the canonical

case, the influence of the helix concentration was analyzed by independently varying dz

and dy. The results are depicted in Figure 9. It is observed that for both variations dy and

dz , the density of inclusions does not affect the resonant frequency of the slab, increasing

the reflection bandwidth as the concentration increases. Compared to the canonical spirals,

since there are no wires, no capacitance occurs between the helices, and therefore, the

resonant frequency does not change with dz .

4.3. Two-Turn True Spirals

The stability of the circularly polarized reflected wave of a two-turn helix with respect

to the angle of incidence of the incident field was analyzed. As it was explained in the

theoretical part, the current distribution in a two-turn helix is more symmetrical than

in the one-turn case, and the radiation of circularly polarized wave takes place for any

orientation of the ends of the helix relatively to the wave vector of the incident wave.

Three cases were considered: the end of the helix is rotated 90ı (i.e., perpendicular to the

incident field), 45ı, and 0ı (i.e., oriented toward the incident field). The parameters of the

helix are the ones calculated in the theoretical part: Nc D 2, R D 3:95 mm, ˛ D 7:1ı,

L D 50 mm, h D 3:1 mm, and 2r0 D 0:4 mm.

The transmission and reflection spectra and the Oy and Oz components of the reflected

field for the three positions of the helix are depicted in Figure 10 for TE- or TM-polarized
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Figure 9. True spiral with scattering parameters vs. distance in: (a) the Oy direction and (b) the Oz

direction. S11 is shown by the continuous line; S21 corresponds to the dashed line. The arrows

indicate the trend of the curves as the parameter increases.

Figure 10. Two-turn helix with transmission (S21) and reflection (S11) spectra and Oy and Oz

components of the reflected field (Ey ; Ez) for an angle of the incident field with respect to the end

of the helix of 90ı, 45ı, and 0ı: (a) TE polarization and (b) TM polarization.
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incident fields. In both cases, it is observed that the resonant frequency does not change

with the angle of incidence. Moreover, the frequency of circular polarization coincides

with the resonant frequency and does not depend on the angle of incidence.

5. Modeling Racemic Pairs of Spirals

In this section, we study and present compensation of chirality in racemic mixtures of

spirals, i.e., mixtures with an equal number of RH and LH helices per unit cell. The

effect of the density of inclusion pairs and the distance between helices in the pair is

analyzed.

5.1. RH-LH Canonical Spirals

The geometry of the RH-LH pair of canonical spirals is shown in Figure 11. Both spirals

are immersed in a “waveguide” and, as in the previous analysis, PBCs are applied. The

initial dimensions of the waveguide are wy D 9:6 mm and hz D 6:5 mm, and the distance

between the spiral’s axis is d D 4:5 mm. The lateral distance between pairs is defined

by wy C dy , the perpendicular distance between parallel layers of pairs is hz C dz , and

the distance between helices is d C dhelix. The dimensions of the spirals are the ones

calculated numerically in Section 4.1.1: R D 1:95 mm, l D 2:85 mm, r0 D 0:1 mm, and

h D 0:3 mm.

The scattering properties of the initial case, i.e., dy D dz D dhelix D 0, have

been calculated for a TE and TM incident field, as shown in Figure 12. The resonance

frequency is found to be 7.3 GHz for both polarizations. Due to the mixing of RH

and LH spirals, compensation of chirality is achieved, and therefore, an enhancement of

the resonance is observed with respect to the case of single spirals: S11 D �0:063 dB

and S21 D �24:02 dB at 7.3 GHz. As a consequence of chirality compensation, the

reflected wave is linearly polarized in the direction of the incident field instead of

being circularly polarized, as it was for single spirals. This can be observed by looking

at the components of the reflected field (the right panel of Figure 12). For the TE-

polarized incident field (Ez), the reflected wave at the resonant frequency is also along

Oz (Ez D 0 dB, Ey D �30 dB), but for TM incident fields (Ey), the reflected wave is

linearly polarized along Oy (Ey D 0 dB, Ez D �35 dB).

Figure 11. Geometry of the RH-LH pair of canonical spirals.
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Figure 12. RH-LH canonical spirals with transmission (S21) and reflection (S11) spectra and Oy

and Oz components of the reflected field (Ey ; Ez) for: (a) TE polarization of the incident electric

field and (b) TM polarization of the incident electric field.

5.1.1. Scattering Parameters Versus Density of Pairs As in the previous cases, the

concentration of RH-LH helices was modified by varying the lateral and perpendicular

distances between pairs. In order to study the influence of the lateral distance between

pairs, the parameters dz and dhelices were fixed to zero, and dy was varied. The results are

depicted in Figure 13(a). It is observed that as the distance between pairs increases, the

resonant frequency slightly decreases and the reflection bandwidth also decreases. This

effect is stronger in the upper part of the frequency band.

The influence of the separation in the z direction was also analyzed (see Fig-

ure 13(b)). For a fixed dy and dhelices, as dz increases, the resonant frequency increases.

Notice that this effect is not linear; for dz equal to 0, 3, and 6 mm, the resonant frequencies

are 7.3, 7.55, and 7.6 GHz, respectively. The reflection bandwidth decreases, and this

effect is stronger in the lower part of the bandwidth.

5.1.2. Distance Between Spirals of the Pair. The influence of the distance between

the RH and LH spirals has been studied (see Figure 14). According to these results,

this separation mainly affects the bandwidth (as the distance increases, the bandwidth

decreases) rather than the resonant frequency. This result is consistent with the one

obtained for single spirals (see Figure 7), where it was observed that the resonant

frequency does not depend on the lateral distance between inclusions.

5.2. RH-LH One-Turn True Spirals

Analogously, RH-LH pairs of true spirals (see Figure 15) were analyzed. The initial

dimensions of the waveguide are wy D hz D 36:1 mm, and the distance between the
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Figure 13. RH-LH canonical spirals with Scattering parameters vs. distance in (a) the Oy direction

and (b) the Oz direction. S11 is shown by the continuous line, and S21 corresponds to the dashed

line. The arrows indicate the trend of the curves as the parameter increases.

centers of spirals d D 18 mm. The dimensions of one-turn helices are the same as in

the case of single true spirals: f D 3 GHz, R D 7:75 mm, ˛ D 13:6ı, L D 50 mm,

h D 12 mm, and 2r0 D 1:55 mm.

The scattering parameters for the smallest lattice constant, i.e., dy D dz D dhelix D 0,

are shown in Figure 16(a) and 16(b) for TE and TM polarizations of the incident electric

field, respectively. Due to chirality compensation, when the spirals are excited with a TE

incident wave (E field along Oz direction), the resonant frequency is at 2.86 GHz and the

reflected field is linearly polarized along Oz. However, in the case of a TM incident field

(E field along Oy), the resonant frequency is at 2.9 GHz and the reflected field is linearly

polarized along the Oy axis.

Figure 14. RH-LH canonical spirals with scattering parameters vs. distance in the Oz direction for

a TE-polarized incident plane wave. The arrows indicate the trend of the curves as the parameter

increases.
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Figure 15. Geometry of the RH-LH pair of canonical spirals.

5.2.1. Scattering Parameters Versus Density of Pairs. The scattering parameters versus

density of pairs were analyzed, and the results are shown in Figure 17. As the distance

between pairs increases (Figure 17(a)), the resonant frequency slightly decreases (notice

the small frequency band that is plotted). The S11 bandwidth also decreases, and this

effect is stronger in the upper part of the band. The perpendicular distance between spirals

Figure 16. RH-LH true spirals with transmission (S21) and reflection (S11) spectra and Oy and Oz

components of the reflected field (Ey ; Ez) for: (a) TE polarization of the incident electric field and

(b) TM polarization of the incident electric field.
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Figure 17. RH-LH true spirals with scattering parameters vs. density of pairs: (a) lateral distance

in the Oy direction and (b) perpendicular distance in the Oz direction. S11 is shown by the continuous

line; S21 corresponds to the dashed line. The arrows indicate the trend of the curves as the parameter

increases.

(Figure 17(b)) does not change the resonant frequency but only affects the bandwidth.

These results agree with the ones obtained in the analysis of single true spirals.

5.2.2. Distance Between Spirals. The influence of the distance between the RH and

LH spirals was also studied (see Figure 18). As the distance between spiral increases,

the resonant frequency slightly decreases. The bandwidth is also reduced, mainly in the

upper part of the window.

5.2.3. Very Low Density of Pairs. Finally, the scattering parameters for a very low

density of pairs (dy ; dz D 40 mm) were calculated (see Figure 19). Comparing to

Figure 18. RH-LH true spirals with scattering parameters vs. distance in the Oz direction. The

arrows indicate the trend of the curves as the parameter increases.
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Figure 19. RH-LH true spirals with scattering parameters for a very large distance between pairs

(dy ; dz D 40 mm).

Figure 18, it is observed that as the distance between pairs gets close to �, the resonance

gets weaker and narrower but is still noticeable and stable in the frequency; i.e., there is

no frequency shift with respect to the case of higher density of inclusions.

6. Conclusions

In this article, theoretical analysis and modeling of spirals with optimal parameters have

been presented. It has been observed that for the optimal parameters of the spirals, it

is possible to obtain equal dielectric, magnetic, and chiral susceptibilities. Two different

types of spirals have been investigated: canonical helices and single- or two-turn true

helices.

The reflection and transmission coefficients of spirals under plane wave excitation

have been calculated with Ansoft-HFSS. It has been observed that when single spirals

(RH or LH) are arranged in an array configuration, the reflected wave is circularly

polarized around the resonant frequency. However, when RH-LH pairs of helices are

placed together, compensation of the chirality is achieved, and the reflected wave is

linearly polarized. It has been proven that the density of inclusions does not affect the

resonant frequency of the slab, and only a bandwidth reduction is observed as the density

decreases.
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