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Abstract
A slab of negatively refracting material, thickness d , can focus an image at a
distance 2d from the object. The negative slab cancels an equal thickness of
positive space. This result is a special case of a much wider class of focusing:
any medium can be optically cancelled by an equal thickness of material
constructed to be an inverted mirror image of the medium, with ε, µ reversed
in sign. We introduce the powerful technique of coordinate transformation,
mapping a known system into an equivalent system, to extend the result to a
much wider class of structures including cylinders, spheres and intersecting
planes, and hence show how to produce magnified images. All the images are
‘perfect’ in the sense that both the near and far fields are brought to a focus and
hence reveal sub-wavelength details.

1. Introduction

The transfer of an image from one location to another is conventionally done with lenses. An
electromagnetic signal defined in one plane is refocused by a lens system on another plane
or surface. This well developed technology suffers from some fundamental limitations of
resolution. No details finer than the wavelength of radiation can be resolved. Some time ago
Veselago [1] observed that if it were possible to realize materials with the property

ε = µ = −1 (1)

then a refractive index of n = −1 would result and a slab of the material would focus light.
For example, an object placed a distance d in front of a slab thickness d would be refocused
on the far side of the slab: see figure 1.

The properties of a conventional lens are described by the focal length and, by changing
the position of an object relative to the lens, images of various magnifications can be obtained.
The negative refraction lens works according to quite different principles. Here we build on
the concept that a negatively refracting slab, n = −1, is in some sense complementary to an
equal thickness of vacuum and cancels its presence. Optically speaking, it is as if we were
to remove a slab of space thickness 2d . This cancellation is unusually complete because the
compensating effect of the slab extends not only to the radiative component of the field, but also
to the evanescent near field which conveys the sub-wavelength details of the image. Ordinary
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Figure 1. A slab of n = −1 of thickness d focuses over a distance 2d, as if the slab ‘cancels out’
or compensates for an equal thickness of the vacuum. The slab and the vacuum are complementary
to each other.

lenses do not capture the near field, hence the limitations to their resolution. This extraordinary
property of the Veselago lens was pointed out in 2000 [2]. Lenses with this sub-wavelength
focusing property are referred to as ‘perfect lenses’.

Remarkable as this lens is it suffers from some limitations: its properties depend on the
condition n = −1 being met exactly and this can happen only at a single frequency because
negative values of ε and µ imply dispersion. Furthermore the image is exactly the same size
as the object: no magnification takes place. This latter limitation was partially lifted in [3, 4]
where it was shown how to make a two-dimensional version of the lens in the form of a
cylinder with restricted magnifying powers. Here we show how to lift this restriction and
design a spherical lens.

First we show how the concept of complementary media can be generalized from a
simple slab to more complex situations. We ask the question: are there other instances of
‘complementary media’, one cancelling the optical effects of the other? This proves to be
possible and is an essential first step in designing the perfect spherical lens.

Next we show that a square corner of n = −1 material has some characteristics in common
with a corner reflector: it reverses the direction of light incident upon it. However, it does more
than a mirror can. It also reverses the direction of decay of the evanescent components of the
light and is therefore ‘perfect’ in the same sense that the planar slab is a perfect lens. Something
that is not possible with a corner mirror is to combine two corners of negative material so that
they share the same corner. Notomi has discussed this configuration and shown that classical
rays radiating from an object in one of the quadrants are returned to the same spot. Here we
show an even more powerful result: the returning image is again perfect, in that all components
return, both radiative and evanescent.

Finally we remark that the technique we use in proving these results, the equivalence of
coordinate transformations to a change in ε and µ, is a powerful and widely applicable tool
which we expect to show its value in generating even more results in the future.

2. A generalized lens theorem

The original ‘perfect lens’ envisaged a slab of material with ε = −1, µ = −1. However
focusing can be shown to occur under much more general conditions. We shall show that a
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Figure 2. An alternative pair of complementary media, each cancelling the effect of the other. The
light does not necessarily follow a straight line path in each medium, but the overall effect is as if
a section of space thickness 2d were removed from the experiment.

system for which

ε1 = +ε(x, y), µ1 = +µ(x, y), −d < z < 0

ε2 = −ε(x, y), µ2 = −µ(x, y), 0 < z < d
(2)

will show identical focusing. We need to show that the fields at z = −d are identical to the
fields at z = +d under all circumstances. We shall first do this for a single Bloch wave, and
then generalize by recognizing that any field can be written as a sum over Bloch waves. Note
that we have not defined the medium outside the confines of −d < z < +d as there is no
need. Focusing takes place irrespective of the medium in which the lens is embedded. The
theorem shows that, optically speaking, the medium −d < z < +d behaves as though it had
zero thickness, as if it were removed and the two remaining halves moved together to close
the gap. See figure 2.

We add a caveat about negative materials. A negative value of ε necessarily implies
dispersion as Smith and Kroll [5] have shown:

∂(ωε)

∂ω
> 0 (3)

which in turn implies that we must be careful about causality, which requires that calculations
are always made including a small imaginary part to ω, iδ, and then the limit δ → 0 taken.
Since ε is dispersive, this implies that calculations must always be made with a small absorptive
imaginary part to ε. In particular the case of ε = µ = −1 is highly singular and erroneous
results may follow if this limiting process is not employed. In all that follows the statement
ε = µ = −1 must always be understood as

lim
δ→0

ε(ω + iδ) = −1, lim
δ→0

µ(ω + iδ) = −1. (4)

We start from Maxwell’s equations:

∇ × E = +iωµ(x, y)µ0H, ∇ × H = −iωε(x, y)ε0E (5)

and decompose the fields into Fourier components:

E1(x, y, z) = exp(+ik1zz)
∑
kx ,ky

E1(kx, ky) exp(ikx x + iky y), −d < z < 0

E2(x, y, z) = exp(+ik2z z)
∑
kx ,ky

E2(kx, ky) exp(ikx x + iky y), 0 < z < d
(6)
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where we have assumed the Bloch theorem in the region −d < z < 0 but need to prove that
the proposed solution meets the boundary conditions at z = 0.

We know that this solution obeys Maxwell’s equations:

k1z ẑ × [E1x(kx, ky)x̂ + E1y(kx, ky)ŷ] + (kx x̂ + kyŷ) × E1z(kx , ky)ẑ
= +ωµ0

∑
k′

x ,k′
y

µ1(kx, ky; k ′
x, k ′

y)[H1x(k
′
x , k ′

y)x̂ + H1y(k
′
x, k ′

y)ŷ]

(kx x̂ + kyŷ) × [E1x(kx, ky)x̂ + E1y(kx, ky)ŷ] = +ωµ0

∑
k′

x ,k′
y

µ1(kx, ky; k ′
x, k ′

y)H1z(k
′
x, k ′

y)ẑ

k1z ẑ × [H1x(kx, ky)x̂ + H1y(kx, ky)ŷ] + (kx x̂ + kyŷ) × H1z(kx, ky)ẑ
= −ωε0

∑
k′

x ,k′
y

ε1(kx, ky; k ′
x, k ′

y)[E1x(k
′
x, k ′

y)x̂ + E1y(k
′
x , k ′

y)ŷ]

(kx x̂ + kyŷ) × [H1x(kx, ky)x̂ + H1y(kx, ky)ŷ] = −ωε0

∑
k′

x ,k′
y

ε1(kx , ky; k ′
x, k ′

y)E1z(k
′
x, k ′

y)ẑ.

(7)

Next substitute

E2x(kx, ky) = E1x(kx, ky), E2y(kx, ky) = E1y(kx, ky),

E2z(kx, ky) = −E1z(kx, ky),

H2x(kx, ky) = H1x(kx, ky), H2y(kx, ky) = H1y(kx, ky),

H2z(kx, ky) = −H1z(kx , ky),

k2z = −k1z, ε2(kx, ky; k ′
x, k ′

y) = −ε1(kx, ky; k ′
x, k ′

y),

µ2(kx, ky; k ′
x, k ′

y) = −µ1(kx, ky; k ′
x, k ′

y)

(8)

and it follows that

−k2z ẑ × [E2x(kx, ky)x̂ + E2y(kx, ky)ŷ] − (kx x̂ + kyŷ) × E2z(kx , ky)ẑ
= −ωµ0

∑
k′

x ,k′
y

µ2(kx, ky; k ′
x, k ′

y)[H2x(k
′
x, k ′

y)x̂ + H2y(k
′
x, k ′

y)ŷ]

(kx x̂ + kyŷ) × [E2x(kx, ky)x̂ + E2y(kx, ky)ŷ] = +ωµ0

∑
k′

x ,k′
y

µ2(kx, ky; k ′
x, k ′

y)H2z(k
′
x, k ′

y)ẑ

−k2z ẑ × [H2x(kx, ky)x̂ + H2y(kx, ky)ŷ] − (kx x̂ + kyŷ) × H2z(kx, ky)ẑ
= +ωε0

∑
k′

x ,k′
y

ε2(kx, ky; k ′
x, k ′

y)[E2x(k
′
x , k ′

y)x̂ + E2y(k
′
x, k ′

y)ŷ]

(kx x̂ + kyŷ) × [H2x(kx, ky)x̂ + H2y(kx, ky)ŷ] = −ωε0

∑
k′

x ,k′
y

ε2(kx, ky; k ′
x, k ′

y)E2z(k
′
x, k ′

y)ẑ

(9)

which rearranges to

+k2z ẑ × [E2x(kx , ky)x̂ + E2y(kx, ky)ŷ] + (kx x̂ + kyŷ) × E2z(kx , ky)ẑ

= +ωµ0

∑
k′

x ,k′
y

µ2(kx, ky; k ′
x, k ′

y)[H2x(k
′
x, k ′

y)x̂ + H2y(k
′
x, k ′

y)ŷ]

(kx x̂ + kyŷ) × [E2x(kx, ky)x̂ + E2y(kx, ky)ŷ] = +ωµ0

∑
k′

x ,k′
y

µ2(kx, ky; k ′
x, k ′

y)H2z(k
′
x, k ′

y)ẑ

+k2z ẑ × [H2x(kx, ky)x̂ + H2y(kx, ky)ŷ] + (kx x̂ + kyŷ) × H2z(kx, ky)ẑ

= −ωε0

∑
k′

x ,k′
y

ε2(kx, ky; k ′
x, k ′

y)[E2x(k
′
x, k ′

y)x̂ + E2y(k
′
x, k ′

y)ŷ]

(kx x̂ + kyŷ) × [H2x(kx, ky)x̂ + H2y(kx, ky)ŷ] = −ωε0

∑
k′

x ,k′
y

ε2(kx, ky; k ′
x, k ′

y)E2z(k
′
x, k ′

y)ẑ

(10)
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i.e. the new fields solve Maxwell’s equations for the new ε2, µ2. The fields in the two regions
also match across the boundary since the parallel components of E and H are defined to be
continuous and the z components equal and opposite. Therefore we have

E(x, y, z = +a) = E(x, y) exp(−ikza) = E(x, y, z = −a), a > 0 (11)

and therefore the fields to the left and right are repeated in inverse order exactly as was the
case with our original uniform slab.

In general the fields will be sums over kz , but the result holds for each kz separately and
therefore for any summation.

The result can be generalized to the case where ε and µ are tensors:

ε =
[

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
, µ =

[
µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

]
(12)

except that now the complementary media have the form

ε1 =
[

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
, µ1 =

[
µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

]
, −d < z < 0

ε2 =
[ −εxx −εxy +εxz

−εyx −εyy +εyz

+εzx +εzy −εzz

]
, µ2 =

[ −µxx −µxy +µxz

−µyx −µyy +µyz

+µzx +µzy −µzz

]
, 0 < z < +d.

(13)

We can express our theorem in a graphical fashion: two complementary media have an optical
sum of zero: see figure 3. We calculate the optical response of the rest of the system outside
the lens region by cutting out the complementary media which comprise the lens and closing
the gap between the two remaining halves of the systems.

This enables us to go one step further with the proof. Consider a new system in which

ε1 = +ε(x, y), µ1 = +µ(x, y), − f < z < −d

ε2 = +ε′(x, y), µ2 = +µ′(x, y), −d < z < 0

ε3 = −ε′(x, y), µ3 = −µ′(x, y), 0 < z < +d

ε4 = −ε(x, y), µ4 = −µ(x, y), +d < z < + f

(14)

i.e. the media are piecewise complementary. We apply the lens theorem to the inner
complementary pair and reduce to a new system:

ε1 = +ε(x, y), µ1 = +µ(x, y), −( f − d) < z < 0

ε4 = −ε(x, y), µ4 = −µ(x, y), 0 < z < +( f − d)
(15)

and, as a final step, eliminate the outer pair of complementary media. The process is
demonstrated graphically in figure 4.

As a result we may generalize the lens theorem even further to any region with the property

ε1 = +ε(x, y, z), µ1 = +µ(x, y, z), −d < z < 0

ε2 = −ε(x, y,−z), µ2 = −µ(x, y,−z), 0 < z < d.
(16)

In other words, to any region that is mirror antisymmetric about a plane. Such regions can be
optically eliminated from the system.

Other even more complex systems can be envisaged for which a proof of vanishing can
be concocted, but we leave these as an exercise for the reader.
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Figure 3. A graphical expression of our new theorem: complementary halves sum to zero. The
optical properties of the rest of the system can be calculated by cutting out the media and closing
the gap.

Figure 4. Two sets of optically complementary media can be eliminated in a pairwise fashion
simply by applying twice the process shown in figure 3. Obviously this process can be generalized
to any number of complementary pairs.

3. Some examples of complementary media

To verify the generalized perfect lens theorem above, we carried out numerical simulations of
media where ε, µ vary in the xy plane taken to be transverse to the lens axis. In the first set of
calculations each section of the medium is piecewise translationally invariant along the axis
of the lens, the z direction. In the second set this restriction is relaxed and we treat the more
general case of reflection antisymmetry.
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Figure 5. The geometry assumed for the numerical simulations on complementary media. The
object and image planes are at z = −2d and +2d, respectively, in media that are periodic along the
x axis. λε and λµ are the spatial periodicities for ε and µ, respectively.

The first set of calculations assume periodic on the xy plane defined as follows:

ε =
{−ε1 − ε2 sin2(2πx/λε), |z| < d

+ε1 + ε2 sin2(2πx/λε), d < |z| < 2d

µ =
{−µ1 − µ2 sin2(2πx/λµ), |z| < d

+µ1 + µ2 sin2(2πx/λµ), d < |z| < 2d .

(17)

For simplicity we choose the media to be periodic along the x coordinate and invariant along
the y coordinate. Figure 5 illustrates the situation.

We calculate the transmission and reflection coefficients for plane waves incident on the
system using the PHOTON codes [6] based on the transfer matrix method [7, 8] developed
earlier in our group. The transmittance, |T |2, the reflectance, |R|2, and the phase, arg T , of
the transmitted wave are calculated for both the S- and P-polarized waves as a function of the
transverse wavevector kx . In figure 6 we show the results for

ε1 = 0.5, µ1 = 0.5, ε2 = 1.0, µ2 = 1.0, 2d = 0.45 µm (18)

where λ is the wavelength of radiation in free space and 2d is the thickness of the slab. In
figures 6(a) and (b) we show the results for λε = λµ = 0.9 µm, λ = 4.54 µm and in figures 6(c)
and (d), λε = 1.8 µm, λµ = 0.9 µm, λ = 4.54 µm.

Our theory predicts that the complementary media should have unit transmission and zero
reflection coefficients. Simulations will not reproduce these results exactly but only to within
the accuracy of the simulations, as determined by the finite level of discretization. Figure 6
shows that this is indeed the case for all wavevectors, both for propagating wavevectors,
kx/k0 < 1, and evanescent waves, kx/k0 > 1. There are minor deviations of our calculations
from the unit transmission coefficient for the perfect lens, particularly for wavevectors
kx/k0 ≈ 1.

In the next set of calculations we take a more complicated form of lens where the
components are not translationally invariant in z, but instead obey the less restrictive condition
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Figure 6. The phase of the transmitted wave arg T , the transmittance |T |2 and reflectance |R|2 for
the P- and S-polarized waves for the layered system of figure 5, see equation (17). The figures on
the left, (a) and (b), are for λε = λµ = 0.9 µm, λ = 4.54 µm. (c) and (d) are for λε = 1.8 µm,
λµ = 0.9 µm, λ = 4.54 µm.

of symmetry about z = 0. The test parameters are defined as follows:

ε =




−1.0 − |z|
d

sin2(2πx/λε), |z| < d

+1.0 +
2d − |z|

d
sin2(2πx/λε), d < |z| < 2d

µ =




−1.0 − |z|
d

sin2(2πx/λµ), |z| < d

+1.0 +
2d − |z|

d
sin2(2πx/λµ), d < |z| < 2d .

(19)

Below in figure 7 we show the results. Deviations of the transmittance from unity,
reflectance from zero and the phase of the transmitted wave at the image plane from zero
are small: in this example discontinuities in the parameters are minimized in order to make
the simulations more accurate.

To summarize these calculations: to within the accuracy of our computations, determined
by the level of discretization, we offer clear numerical proof for the generalization of the
perfect lens theorem to media with transverse spatial variation. We have shown it to hold
for periodic media with various arbitrarily chosen periodicities. It follows that it holds in the
general case since any general transverse spatial variation can be Fourier decomposed into
periodic components.
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Figure 7. We show the phase of the transmitted wave, the transmittance |T |2 and reflectance
|R|2 for the P- and S-polarized waves for the case defined by equation (19). (a) and (b) are for
λε = λµ = 0.9 µm, λ = 4.54 µm (low energy). (c) and (d) are for λε = λµ = 1.8 µm, and
λ = 0.617 µm.

4. A perfect spherical lens by coordinate transformation

In the previous sections we have shown how two complementary regions of space optically
cancel: each region is the inverted mirror image of the other. Since the geometry is planar,
images are necessarily the same size as the object. To magnify we must work with curved
surfaces. In the following sections we show how to make a further generalization of the
cancellation principle by using a coordinate transformation to distort the space. We give
examples below of two spherical annuli which cancel to produce magnified images.

Consider a spherically symmetric system into which we wish to introduce a lens. The
lens will comprise two parts, the material in a1 < r < a2 being complementary to the material
a2 < r < a3 so that objects on the surface r = a3 are focused onto the surface r = a1,
but reduced in size by a factor a1/a3, see figure 8. We shall now show how to specify these
materials.

We apply a coordinate transformation:

q1(x, y, z), q2(x, y, z), q3(x, y, z) (20)

so that in the new frame of generalized axes q1, q2, q3 assumed orthogonal:

ε̃i = εi
Q1 Q2 Q3

Q2
i

, µ̃i = µi
Q1 Q2 Q3

Q2
i

(21)

Ẽi = Qi Ei , H̃i = Qi Hi (22)

where

Q2
i =

(
∂x

∂qi

)2

+

(
∂y

∂qi

)2

+

(
∂z

∂qi

)2

. (23)
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Figure 8. A design for a spherical lens. Objects on the surface r = a1 are refocused and magnified
on the outer surface r = a3, provided that the space in between houses optically complementary
media.

Let us define a set of spherical coordinates as follows:

x = r0e�/�0 sin θ cos φ, y = r0e�/�0 sin θ sin φ, z = r0e�/�0 cos θ (24)

so that

Q� = r0/�0e�/�0

√
sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ = r0/�0e�/�0

Qθ = r0e�/�0

√
cos2 θ cos2 φ + cos2 θ sin2 φ + sin2 θ = r0e�/�0

Qφ = r0e�/�0

√
sin2 θ sin2 φ + sin2 θ cos2 φ = r0e�/�0 sin θ

Q� Qθ Qφ = r3
0 /�0e3�/�0 sin θ

(25)

and from (21) and (25)

ε̃� = r0�0e�/�0 sin θε�, ε̃θ = r0e�/�0

�0
sin θεθ , ε̃φ = r0e�/�0

�0 sin θ
εφ,

µ̃� = r0�0e�/�0 sin θµ�, µ̃θ = r0e�/�0

�0
sin θµθ, µ̃φ = r0e�/�0

�0 sin θ
εφ,

(26)

where the � coordinate is oriented along the radial direction. Now if we make the choice of
�0 = 1 and

ε� = εθ = εφ = εe−�/�0 = εr0/r
µ� = µθ = µφ = µe−�/�0 = µr0/r

(27)

then the radial dependence goes away to give

ε̃� = εr0 sin θ, ε̃θ = εr0 sin θ, ε̃φ = ε
r0

sin θ

µ̃� = µr0 sin θ, µ̃θ = µr0 sin θ, µ̃φ = µ
r0

sin θ
.

(28)

In other words we have a system which is translationally invariant in one of the coordinates,
�. If we insert two slabs of material complementary in the sense of equations (2), the first
between

ln(a2/r0) = �2 < � < �3 = ln(a3/r0) (29)
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and the second between

ln(a1/r0) = �1 < � < �2 = ln(a2/r0) (30)

with the requirement that

�3 − �2 = �2 − �1 (31)

i.e.

a3 = a2
2/a1. (32)

Or, specifically,

ε1 = +ε(θ, φ)
r0

r
, µ1 = +µ(θ, φ)

r0

r
, a1 < r < a2

ε2 = −ε(θ, φ)
r0

r
, µ2 = −µ(θ, φ)

r0

r
, a2 < r < a3 = a2

2/a1.
(33)

Then an object located at �1 will form an image at �3 or, viewed in the original coordinate
frame, objects on the surface

r = a1 (34)

will be reproduced as a perfect image on the surface

r = a3 = a2
2/a1 (35)

but magnified by a factor a2
2/a2

1 .
We have described the region a1 < r < a3 but what of the other regions? In the frame �θφ

it is clear what is meant when we say that the region �1 < � < �3 ‘vanishes’ from an optical
standpoint: the optical properties of the system viewed from a point external to �1 < � < �3

can be calculated by cutting out the vanishing region and closing up the gap, see figure 2.
How is this viewed in the old coordinate frame where the region of space to be eliminated lies
between two spherical shells?

Let us start with the appearance of the system from outside, r > a3. In �θφ we eliminate
the lens region to give an equivalent optical system and we do this by moving all material for
� < �1 a distance �3–�1 along the � axis. On transforming back to the xyz frame the values of
ε, µ also change. For the outer region the equivalent ε, µ are given by

ε+
eq(r) = ε(r), r > a3,

µ+
eq(r) = µ(r), r > a3

(36)

i.e. we have simply undone the original transformation. However, the shifted material does
not go back into the same place it did before and therefore the transformation, which depends
on the radius, is slightly different:

ε+
eq(r) = a1

a3
ε

(
a1

a3
r

)
= a2

1

a2
2

ε

(
a2

1

a2
2

r

)
, r < a3,

µ+
eq(r) = a1

a3
µ

(
a1

a3
r

)
= a2

1

a2
2

µ

(
a2

1

a2
2

r

)
, r < a3

(37)

i.e. as well as shifting the material, we also have to renormalize the magnitude of ε, µ.
Conversely, if we make an optical experiment inside the lensing region the optically equivalent
system is given by

ε−
eq(r) = ε(r), r < a1,

µ−
eq(r) = µ(r), r < a1

(38)
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and

ε−
eq(r) = a3

a1
ε

(
a3

a1
r

)
= a2

2

a2
1

ε

(
a2

2

a2
1

r

)
, r > a1,

µ−
eq(r) = a3

a1
µ

(
a3

a1
r

)
= a2

2

a2
1

µ

(
a2

2

a2
1

r

)
, r > a1.

(39)

These transformations are required thermodynamically because we cannot make a perfect
magnified image in the same material as the source, as that would be equivalent to altering the
temperature through an optical trick. Even negative materials cannot violate thermodynamics.

5. A conventional proof of the spherical lens

We give here a more conventional proof of the spherical lens. For simplicity we give the proof
under more restricted conditions than those above. Let us assume that the system is spherically
symmetric and that ε(r) = µ(r). We shall solve for the radial components of the electric and
magnetic fields as follows:

∇ × E = +iωµ0µ(r)H, ∇ × H = −iωε0ε(r)E, (40)

and hence from the appendix, equation (74):

(∇ × ∇ × E)r = − 1

r3

∂

∂r

(
r2 ∂(r Er )

∂r

)
− 2

r

ε′(r)

ε(r)
Er − ∂

∂r

[
ε′(r)

ε(r)
Er

]
− ∇2

θφ Er

= +ω2c−2
0 ε(r)µ(r)Er (74)

which is an equation involving only the r th component of E and describes a transverse
magnetic (TM) field. An analogous TE equation controls the behaviour of Hr so that the
arguments below can be repeated for the magnetic field component.

Substituting the following trial solution:

Er = nrn−1Y�m(θφ), ε(r) = µ(r) = αr p (41)

into equation (74) gives

ω2c−2
0 α2r2p+2 = −n(n + 1 + p) + �(� + 1). (42)

From the left-hand side we require that

p = −1 (43)

and from the right-hand side

n = ±
√

�(� + 1) − ω2c−2
0 α2. (44)

Therefore let us define a system in which

ε1 = +ε
r0

r
, µ1 = +µ

r0

r
, 0 < r < a1

ε2 = +ε
r0

r
, µ1 = +µ

r0

r
, a1 < r < a2

ε3 = −ε
r0

r
, µ2 = −µ

r0

r
, a2 < r < a3

ε4 = +ε
r0

r
, µ1 = +µ

r0

r
, a3 < r < ∞

(45)
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which is a simplified version of the lens prescribed in section 4. The solutions for the radial
fields are given by

Er =




+ [r ]+
√

�(�+1)−ω2c−2
0 α2−1Y�m(θφ), 0 < r < a2

−[
a2

2

]+
√

�(�+1)−ω2c−2
0 α2

[r ]−
√

�(�+1)−ω2c−2
0 α2−1Y�m(θφ), a2 < r < a3

+

[
a2

2

a2
3

]+
√

�(�+1)−ω2c−2
0 α2

[r ]+
√

�(�+1)−ω2c−2
0 α2−1Y�m(θφ), a3 < r < ∞.

(46)

This solution matches the fields at the boundaries. It fulfils the function of a lens as we can
see by rewriting:

Er = +r−1

[
a2

2

a2
3

r

]+
√

�(�+1)−ω2c−2
0 α2

Y�m(θφ), a3 < r < ∞ (47)

so that, apart from a scaling factor of r , the fields on the surface of the sphere r = a3 are
identical with those on the sphere r = a1 = a2

2/a3.
Notice how much more powerful and elegant the proof is by coordinate transformation.

6. Negative corners: a perfect corner reflector by coordinate transformation

Material with refractive index lim n → −1 has some things in common with a mirror: the
angle of refraction inside the medium is equal to the incident angle, just as a ray is reflected
from a mirror with equal incident and reflected angles. One of the tricks to play with mirrors
is the corner reflector which has the property that all incident rays emerge from the corner with
the xy components of their wavevectors reversed, assuming the corner is bent in the xy plane.
A ray construction, figure 9, shows that this is a good analogy: a corner made of lim n → −1
material also reverses the xy components of the wavevectors. This wavevector reversal is quite
distinct from time reversal, as can be seen from the figure: the rays are not returned to their
point of origin but have a different focus. In contrast to the corner mirror, this second focus is
in free space external to the corner. The ray argument establishes the principles of the negative
corner for propagating rays, but does the corner share the ‘perfect’ property of some other
negatively refracting lenses? We use the powerful technique of coordinate transformation to
prove that it does.

We start from the properties of the material in figure 9:

ε(φ) = µ(φ) =
{

+1, −π
2 < φ < π

−1, −π < φ < π
2

(48)

and then introduce a mapping of coordinates that takes the structure of figure 9 into the structure
shown in figure 10:

x = r0 cos φe�/�0 , y = r0 sin φe�/�0 , z = Z . (49)

In the new frame

ε̃i = εi
Q1 Q2 Q3

Q2
i

, µ̃i = µi
Q1 Q2 Q3

Q2
i

(50)

where

Q� = r0/�0

√
e2�/�0 cos2 φ + e2�/�0 sin2 φ = r0/�0e�/�0

Qφ = r0

√
e2�/�0 sin2 φ + e2�/�0 cos2 φ = r0e�/�0

QZ = 1
Q� Qφ QZ = r2

0 /�0e2�/�0

(51)
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Figure 9. A corner reflector constructed from negatively refracting material, n = −1. Note that,
for each incident wave, the direction of the wavevector is reversed. This is not equivalent to time
reversal because the rays do not return to the point of origin, but appear to radiate from point C,
rotated by 180◦ about the corner from the true origin at A. We show that this corner reflector is
‘perfect’ in the sense that the images at B and C include the correct near-field components.

Figure 10. The previous figure can be mapped into a stack of slabs, where every fourth slab in
the stack is complementary to the other three. A point source is included in every fourth layer as
shown so that the whole system is periodic in the direction.

and hence

ε̃� = �0ε�, ε̃φ = �−1
0 εφ, ε̃Z = r2

0 /�0e2�/�0εz

µ̃� = �0µ�, µ̃φ = �−1
0 µφ, µ̃Z = r2

0 /�0e2�/�0µz .
(52)
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Figure 11. A double negative corner constructed from negatively refracting material, n = −1.
Note that this configuration cannot be accomplished with mirrors. A subset of the rays diverging
from a source is eventually returned to the source and circulates around the system for ever. After
three focusing events at B, C and D, the rays return to the source point, A, with the same phase
with which they started out.

Substituting from equation (48) and setting �0 = 1 gives

ε̃� = µ̃� = ε̃φ = µ̃φ =
{

+1; ε̃Z = µ̃Z = +r2
0 e2� −π

2 < φ < π

−1; ε̃Z = µ̃Z = −r2
0 e2� −π < φ < π

2 .
(53)

Therefore the transformed medium satisfies the conditions of complementary media and the
sources shown in figure 10 will each form two perfect images: one in the negative medium
and the other on the far side.

Hence it follows that the images in the corner reflector will also be perfect.

7. Two negative corners

Notomi [9] has observed that two negative corners will bend light around a loop and return
rays to exactly the same state from which they started. The light forms a series of images as it
circulates and the fourth image has the identical location and phase as the source; see figure 11.
Given an exact realization of the lim n → −1 condition the light will circulate for ever. We
can easily show that, in addition to the focusing of the propagating rays, all the evanescent
states also focus to give images in the ideal case of lim n → −1

We construct our proof starting from figure 10 in the previous section where we considered
the single corner. Using the same transformation the double corner gives figure 12, the
difference being that every second slab now contains negative material. Since this system
consists of complementary slabs, it exhibits perfect lensing. Therefore we have demonstrated
that the double negative corner produces perfect images. However the fields inside this structure
are unusually singular and, with time, grow to infinity almost everywhere in the limit of zero
absorption.

The ray diagram implies that there is a strict division between states which are trapped
in an infinitely circulating loop and states which head directly into free space. However, this
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Figure 12. The previous figure can be mapped into a stack of slabs, where every succeeding slab
in the stack is complementary to the previous one. A point source is included in every fourth layer
so that the whole system is periodic in the y direction.

is only the case in the classical limit. A wave picture tells us that all states will have a finite
chance of escaping from the corner.

Obviously the consecutive superimposed images lead to some unusual properties of the
double negative corner. These can most simply be analysed in the short wavelength limit where
the problem factorizes into separate electro- and magneto-static problems. We also recognize
that any system taking negative values of ε or µ must also show dispersion with frequency.
Typically we might have a plasma form for

ε = 1 − ω2
p

ω(ω + iη)
(54)

and we are interested in the lim
η→∞ ε.

In the electrostatic limit, Apell et al [10] has proved a theorem for the surface plasmon
modes [11]. If ωsp1 are the surface mode frequencies of our system, and ωsp2 are the modes of
a second system in which the regions of plasma and dielectric are interchanged, then

ω2
sp1 + ω2

sp2 = ω2
p. (55)

In a class of systems where the exchange process maps the system into itself, this result
defines the plasma modes. For example, a half-space filled with plasma and interfaced with
vacuum maps into itself and therefore

ω2
sp1 = ω2

sp2. (56)

Our system also maps onto itself under the exchange and therefore

ωsp = ωp/
√

2. (57)

In other words, in our system in the electrostatic limit all surface plasma modes are degenerate
at ωp/

√
2. At this frequency the density of states must be infinite. Also, this is the frequency

at which the condition ε = −1 is met.
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Figure 13. A sketch of one of the degenerate surface modes showing strong intensity at the
interfaces, and especially in the corners.

In the limit we can easily write down the modes. The electrostatic potential of the modes
has the form

� =




exp(+αx x − αy y + ikzz), x < 0, y > 0

exp(−αx x − αy y + ikzz), x > 0, y > 0

exp(−αx x + αy y + ikzz), x > 0, y < 0

exp(+αx x + αy y + ikzz), x < 0, y < 0

(58)

where

α2
x + α2

y = k2
z (59)

ensures that the modes obey Poisson’s equation.
As described, the modes are not orthonormal, but an alternate orthonormal description is:

� =




exp(+αx x − iky y + ikzz), x < 0, y > 0

exp(−αx x − iky y + ikzz), x > 0, y > 0

exp(−αx x + iky y + ikzz), x > 0, y < 0

exp(+αx x + iky y + ikzz), x < 0, y < 0

(60)

where

α2
x = k2

y + k2
z . (61)

Obviously these modes create a very high density of states near any of the surfaces, and
especially in the corners of the system, see figure 13. This is the origin of the infinite induced
response of the system at the surface plasmon frequency.

8. Conclusions

We have introduced the concept of ‘complementary media’ to describe the action of a perfect
lens. Complementary media optically cancel one another at a specific frequency and, as far
as that frequency is concerned, are invisible to the system. The concept is generalized from
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a planar slab of negatively refracting material to much more complex geometries related to
one another by mirror symmetry. By introducing coordinate transformations the concept is
extended to curved surfaces with a sphere given as a specific example. We discuss the corner
reflector and show how its properties of reflection extend to evanescent as well as propagating
waves. Two corner reflectors combine to make a most unusual cavity containing an infinity
of degenerate resonances. We draw attention to the power of coordinate transformations as a
tool for analysing negatively refracting and other optical materials.
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Appendix

Starting from

∇ × [µ−1(r)∇ × E] = +iωµ0∇ × H = +ω2c−2
0 ε(r)E (62)

we wish to derive an equation for the radial components of E and H. These two components
are sufficient to determine the entire field. Rearranging this equation:

−µ′(r)

µ(r)
r̂ × ∇ × E + ∇ × ∇ × E = +ω2c−2

0 ε(r)µ(r)E. (63)

We note that

∇ × E =



1
r sin θ

[ ∂(sin θ Eφ)

∂θ
− ∂ Eθ

∂φ

]
1

r sin θ

∂ Er
∂φ

− 1
r

∂(r Eφ)

∂r
1
r

[
∂(r Eθ )

∂r − ∂ Er
∂θ

]

 (64)

and

(∇ × ∇ × E)r = 1

r sin θ

[
∂

∂θ

{
sin θ

1

r

[
∂(r Eθ )

∂r
− ∂ Er

∂θ

]}

− ∂

∂φ

{
1

r sin θ

∂ Er

∂φ
− 1

r

∂(r Eφ)

∂r

}]

= 1

r sin θ

[
+

∂

∂θ

{
sin θ

1

r

∂(r Eθ )

∂r

}
− 1

r

∂

∂θ
sin θ

∂ Er

∂θ

− 1

r sin θ

∂2 Er

∂2φ
+

1

r

∂2(r Eφ)

∂φ∂r

]

= +
1

r2 sin θ

∂

∂θ

{
sin θ

∂(r Eθ )

∂r

}
+

1

r2 sin θ

∂2(r Eφ)

∂φ∂r

− 1

r2 sin θ

∂

∂θ
sin θ

∂ Er

∂θ
− 1

r2 sin2 θ

∂2 Er

∂2φ

= − 1

r3

∂

∂r

(
r2 ∂(r Er )

∂r

)
+

1

r
∇ · ∂(rE)

∂r
− ∇2

θφ Er . (65)

Calculating ∇ · ∂E/∂r
Consider

∇ · D = ∇ · ε(r)E = ε′(r)r̂ · E + ε(r)∇ · E = 0. (66)
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Explicitly

∂

∂r
∇ · E =

[
∂

∂r
∇

]
· E + ∇ ·

[
∂

∂r
E
]

=
[−2

r3

∂

∂r
r2 Er +

2

r2

∂

∂r
r Er +

−1

r2 sin θ

∂

∂θ
sin θ Eθ

+
−1

r2 sin θ

∂

∂φ
Eφ

]
+ ∇ ·

[
∂

∂r
E
]

=
[−1

r3

∂

∂r
r2 Er +

2

r2

∂

∂r
r Er

]
+ ∇ ·

[
∂

∂r
E
]

+

[−1

r3

∂

∂r
r2 Er +

−1

r2 sin θ

∂

∂θ
sin θ Eθ +

−1

r2 sin θ

∂

∂φ
Eφ

]

=
[
− 2

r2
Er − 1

r

∂

∂r
Er +

2

r2
Er +

2

r

∂

∂r
Er

]
+ ∇ ·

[
∂

∂r
E
]

− 1

r
∇ · E

= 1

r

∂

∂r
Er + ∇ · ∂

∂r
E − 1

r
∇ · E. (67)

Substituting for

∇ · E = −ε′(r)

ε(r)
Er (68)

gives

− ∂

∂r

[
ε′(r)

ε(r)
Er

]
= 1

r

∂

∂r
Er + ∇ · ∂

∂r
E +

1

r

[
ε′(r)

ε(r)
Er

]
. (69)

Rearranging

∇ · ∂

∂r
E = −1

r

∂

∂r
Er − ∂

∂r

[
ε′(r)

ε(r)
Er

]
− 1

r

[
ε′(r)

ε(r)
Er

]
. (70)

Recalling that

(∇ × ∇ × E)r = − 1

r3

∂

∂r

(
r2 ∂(r Er )

∂r

)
+

1

r
∇ · ∂(rE)

∂r
− ∇2

θφ Er (71)

we have
1

r
∇ · ∂(rE)

∂r
= 1

r
∇ · E +

1

r

∂ Er

∂r
+ ∇ · ∂E

∂r

= −1

r

ε′(r)

ε(r)
Er +

1

r

∂ Er

∂r
− 1

r

∂

∂r
Er − ∂

∂r

[
ε′(r)

ε(r)
Er

]
− 1

r

[
ε′(r)

ε(r)
Er

]

= −2

r

ε′(r)

ε(r)
Er − ∂

∂r

[
ε′(r)

ε(r)
Er

]
(72)

and hence

(∇ × ∇ × E)r = − 1

r3

∂

∂r

(
r2 ∂(r Er )

∂r

)
− 2

r

ε′(r)

ε(r)
Er − ∂

∂r

[
ε′(r)

ε(r)
Er

]
− ∇2

θφ Er . (73)

Substituting into (63)

(∇ × ∇ × E)r = − 1

r3

∂

∂r

(
r2 ∂(r Er )

∂r

)
− 2

r

ε′(r)

ε(r)
Er − ∂

∂r

[
ε′(r)

ε(r)
Er

]
− ∇2

θφ Er

= +ω2c−2
0 ε(r)µ(r)Er (74)

which is the equation for Er which we sought. By symmetry there is a similar equation for
Hr .



6364 J B Pendry and S A Ramakrishna

References

[1] Veselago V G 1968 Sov. Phys.—Usp 10 509
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Pendry J B and Ramakrishna S A 2002 J. Phys.: Condens. Matter 14 1
[4] Pendry J B 2003 Opt. Express 11 755
[5] Smith D R and Kroll N 2000 Phys. Rev. Lett. 85 2933
[6] Pendry J B and MacKinnon A 1992 Phys. Rev. Lett. 69 2772
[7] Pendry J B 1993 J. Mod. Opt. 41 209
[8] Bell P M, Pendry J B, Martı́n-Moreno L and Ward A J 1995 Comput. Phys. Commun. 85 306
[9] Notomi M 2002 Opt. Quantum Electron. 34 133

[10] Apell S P, Echenique P M and Ritchie R H 1996 Ultramicroscopy 65 53
[11] Ritchie R H 1957 Phys. Rev. 106 874


