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Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous
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We present the first treatment of the refraction of physical electromagnetic waves in newly developed
negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation
implies that group fronts refract positively even when phase fronts refract negatively. This difference
results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed al-
ways prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as
“negative light refraction” and “light focusing by plane slabs” are therefore incorrect, and published NIM
experiments can be explained without invoking negative signal refraction.
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Recently developed artificial media with simultane-
ously negative real parts of frequency dependent dielectric
constant e�v� and permeability m�v� have received
much attention in journals [1–5] and press [6]. The main
interest in these media is in the frequency range (Fig. 1a),
where the real part of the phase refractive index np�v� �
�me�1�2 is negative and the loss is small �Im�np� . 0�. In
order to avoid confusion with circular polarization media,
we call them NIM (negative-index media) rather than
left-handed media (while PIM � positive index media).
The electromagnetic properties of NIMs, which do not
occur naturally, take us into new territory, where even
familiar concepts must be handled carefully. Most impor-
tantly, we point out that at a PIM-NIM interface, one must
consider group —rather than just phase—propagation
and refraction, because the refraction angles of phase
velocity �yp � v��k and group velocity �yg � dv�d �k
(� total energy flux�total energy density) have opposite
signs. It is well known [7–10] that, in a dispersive medium
(like NIM), it is the group rather than the phase velocity
that gives the direction and magnitude of the total energy
flow for physically interesting signal-carrying waves.
The concept of group refractive index ng is widely used
[11,12] to distinguish between phase and group refraction
in dispersive media such as optical fibers and plasmas. We
show that ng is positive in NIM, and hence all interpre-
tations of phase refraction as “negative light refraction”
and “light focusing by plane slabs” [1–6] are incorrect.
Further, we argue that, in general, causality and finite
signal speed would be violated if any physically realizable
wave (signal) suffered “negative refraction.”

The NIM dispersion relation requires overlapping reso-
nances of m�v� and e�v� [see Eqs. (1) and (2) of [4]].
The narrow, low-loss NIM region of main interest is
above the two resonance frequencies, where the real parts
of both m and e are simultaneously negative and their
imaginary parts are small, leading to Re�np�v�� , 0
and a small Im�np�v�� . 0 (region III in Fig. 1a). The
low-loss requirement excludes the anomalous dispersion
region near the resonances, to which our causality argu-
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ments and results can be extended following Brillouin
[8]. For simplicity, here we consider only the low-loss
region of interest, where Re�dnp�dv� . 0 even though
Re�np� , 0. The narrow, low-loss resonances also im-
ply jdnp�npj ¿ jdv�vj.

In order to see the difference between the signs of phase
and group refraction at a PIM-NIM interface and show
that ng is positive in NIM, consider a quasimonochromatic
plane wave with a frequency spectrum f�v� of nonzero
width dv. Let all wave vectors �k�v� be in the xz plane,
and the electric field �E in the y direction (treatment of the
other polarization is similar). Let the wave be incident
from vacuum (a PIM) at an angle ui onto a plane NIM
surface at z � 0 (Fig. 1b and 1c). Matching the PIM-NIM
boundary conditions for each v component at z � 0 gives
the complex analytic solution [13] of the linear wave equa-
tion on the NIM side:

E�t, x, z� �
Z

dv f�v�T�v, ui �ei�vt2kxx2kzz�,

kx �
v

c
s, kz �

v

c
s

q
np�v�2 2 s2 ,

s � sinui ,

(1)

where Re�E� gives the fast oscillating electric field, jEj

gives the slowly varying envelope, c is the speed of light in
vacuum, and T�v, ui � is the transmission coefficient. The
surfaces of constant phase of E are the phase fronts and
those of constant jEj are the modulation (group) fronts. To
avoid irrelevant complications, we will set T � 1 for small
ui by assuming e � m (vacuum matching). The sign s �
61 of the square root is chosen to be positive for PIM and
negative for NIM, so that, across the PIM-NIM boundary,
kz changes sign while kx is continuous to satisfy the bound-
ary conditions. Note that Re�np� , 0 and Im�np� . 0
inside the square root for NIM, so that s , 0 for NIM
yields the correct exp�2kziz� with (kzi � Im�kz� . 0) as
required by the Sommerfeld condition [7] that all fields
must vanish at z ! 1`.
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For slowly modulated waves (small dv�v) the integral
in Eq. (1) can be evaluated with good accuracy by noting
that the constructive interference is strongest where the
phase of the integrand is stationary [7]. The locus of such
points is the group front normal to the group velocity yg,
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i.e., to the energy flow direction [9,10]. Since here we are
concerned with wave refraction and dispersion rather than
absorption, we temporarily neglect the small imaginary
part of np�v�. The direction of the group front can be
seen by restricting f�v� to the simple case of two delta
functions at adjacent frequencies vc 6 d, so that
E�t, x,z� � 2 cos�d≠vg�v��eig�v� at v � vc, where g�v� � vt 2 kx�v�x 2 kz�v�z . (2)

The group front is the locus of points where the argument of the cosine is zero, i.e., t 2 x≠vkx 2 z≠vkz � 0. Even for
more general f�v� of narrow width, the group front is given by the stationary phase condition ≠vg�v� � 0, i.e.,

0 � ct 2 xs 2 zb, with s � sinui , and b � s

∑q
n2

p 2 s2 1

µ
v

dnp

dv

∂
npq

n2
p 2 s2

∏
. (3)
FIG. 1 (color). (a) np �v� for parameters in Ref. [4]. The low-
loss NIM region (III) above two resonances has negative
real parts of e, m, and hence np , small imaginary parts, and
Re�ng� . 0. The anomalous dispersion region (II) is of less
practical interest. (b) Negative and positive refractions of yp
and yg in NIM. Three v components are shown. (c) Density
plot of Re�E�t, x, z�� showing phase fronts (sharp bands), and
group fronts (wider gray bands). Note signal dispersion at large
z due to nd , and large upg between phase and group fronts.
This group front moves at a positive angle ug to the surface
normal (z axis) given by the “group Snell’s law”

tan�ug� �
�≠vkx�
�≠vkz�

�
sinui

b
. 0 ,

ng�ui� �
sinui

sinug
. 0 .

(4)

For small ui the group refractive index reduces to

ng � np 1 v
dnp

dv
�

d�vnp�
dv

. (5)

Since proximity to narrow resonances is essential for real-
izing the low-loss NIM, the fractional variation Re�vdnp�
dv� . 0 always dominates Re�np� , 0. Therefore Re�b�,
Re�ug�, and Re�ng� are positive for low-loss NIM—
even when s and Re�np� are negative. For example,
at 10.5 GHz, the two-resonance NIM dispersion rela-
tion (Fig. 1a) with e, m, and parameters from Ref. [4]
gives np � 23.665 1 i0.0906, ng � d�vnp��dv �
186.443 2 i6.996, and the “dispersion index” nd �
d�vng��dv � 214288.6 1 i890.65. The wave dis-
perses due to nd and decays due to all imaginary parts,
consistent with Kramers-Kronig relations [14].

The generality of positive signal refraction can be un-
derstood from a simple physical argument. Assume that
Fig. 1b represents a signal front causally moving from BA
to BC to BE. For this, the local signal would have to
travel from A to C to E in zero time (equal to the time
of travel from B to B), i.e., at infinite speed. Since this is
nonphysical, no physical signal or energy front can travel
forward and negatively refract in the “NIM” fashion (BA
to BC to BE) at the interface of any two media. Unlike
group fronts, phase fronts (dotted lines in Fig. 1b) refract
at up , 0 in NIM. However, they go backwards, and they
do not represent causal energy flow.

The ray diagrams and arrows in Refs. [1–5] do not
correctly show either the positive refraction angle of the
forward propagating group fronts or the backward propa-
gation direction of the negatively refracted phase fronts.
Ray diagrams must indicate energy propagation, i.e.,
group fronts that arise from the constructive interference of
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different phase components [11]. Physical rays (normal to group fronts) must refract positively and go forward, as shown
in Fig. 1c. The large difference between phase and group refraction in NIM generates very inhomogeneous waves [7,9]
that disperse rapidly (Fig. 1c). This can be seen in the stationary phase approximation to Eq. (1) for an incident Gaussian
pulse f�v� � exp�2��v 2 v0��d�2	

E�t, x, z� �

s
2

fww
exp

∑
f0 2

f2
w

2fww

∏
, where f�v� � 2

∑
v 2 v0

d

∏2

1 i�vt 2 kxx 2 kzz� , (6)
and f0 � f�v0�, fw � ≠vf�v�, and fww � ≠vfw�v�,
all evaluated at the central frequency v � v0. This result
follows from calculating the small shift of the stationary
phase point ≠vf�v� � 0 from the central v0 to order
d2. Taylor expansion, around v0, of np�v� in fw

and fww shows the positive group refraction direction and
also the effects of NIM dispersion that rapidly spread the
pulse out and decrease its peak intensity as z increases
(Fig. 2). After refraction by NIM, the waves have large
angles p 2 upg between group and phase propagations
(Fig. 1c), starting with p for normal incidence. Such
inhomogeneous waves disperse rapidly. For clarity in
Figs. 1–3, we have suppressed the reflected waves and
used much smaller ng and nd than the NIM of Ref [4].

We have done a similar calculation [15] for a slightly
modulated spherical wave starting from a point source in
vacuum (np � 1) and crossing a plane surface into a NIM
with np�v� � 21 and vdnp�dv . 0 at the central wave
frequency. The results plotted in Fig. 3 show where the
dispersing phase fronts (red and blue curves) construc-
tively interfere to produce a diverging group front (black
and white amplitude contours) with large angles between
refracted �yg and �yp . Further, for a phase ray starting in
PIM at a distance di and angle ui from the interface, using
the phase Snell’s law with np�v� , 0, yields the “phase
focusing distance” dp�ui , v� (see Fig. 3b)

dp�ui , v� � di

q
np�v�2 1 �np�v�2 2 1� tan2ui . (7)

Thus the perfect lens of Ref. [5] has large spherical as well
as chromatic aberrations even for phase rays. This lack of
aberration-free focusing of even phase rays by plane NIM
can also be seen from Fermat’s least-time principle. There

FIG. 2 (color). Dispersion and decay of the forward traveling
signal envelope (jEj) at four successive times (T1 T4), after
entering NIM along the z axis of Fig. 1c. Only the NIM region
is shown for clarity. The faster-varying phase carrier waves,
i.e., Re�E� shown inside the envelope, travel backward while
the envelope travels forward and decays due to NIM dispersion.
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is in general only one phase ray joining any two points on
two sides of a plane boundary because the net optical path
length has only one extremum, i.e., multiple rays starting
from a point cannot be focused by a plane PIM-NIM in-
terface to one point. The only singular exception is for the
nonphysical case of np�v� � 21 with vdnp�dv strictly
zero for all v. For all real NIM, including the physical
np � 21 dispersive case, the signal never focuses but in-
stead diverges and disperses. Note that the Sommerfeld
condition negates superlensing [5], i.e., the amplification
of evanescent modes in the semi-infinite region z . 0 of
passive NIM that has no latent energy or a source of power
to amplify a wave. Therefore, perfect lenses [5] neither fo-
cus nor provide superlensing.

The strongly dispersed, rapidly decaying waves in NIM
can tunnel through only finite, optically small NIM de-
vices such as those used in experiments [3,4] so far. Such
tunneling is not well represented by geometrical ray op-
tics. For calculating the wave tunneling, both decaying and
growing exponentials must be used inside the finite-width
slab. Note that this does not contradict our earlier state-
ments about evanescent waves in semi-infinite NIM slabs,

FIG. 3 (color). Causality precludes the perfect superlens of
[5]. (a) Density plot of jE�t, x, z�j shows how the modulation
envelope does not focus. Surfaces of constant phase are super-
imposed in blue and white, and are seen to refract differently
in NIM. (b) Even phase rays do not focus to a point in NIM,
unless np�v� � 21 for all v, which is nonphysical (violates
causality).
187401-3
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FIG. 4 (color). Simulation of the 18.43± NIM prism experi-
ment with parameters given in Ref [4]. Intensity disperses be-
yond the near-field triangular overlap region of all frequencies.

and is required for solving the wave equation in finite slabs
made from any material. A Laplace transform method has
to be used for the propagation of a finite pulse through a
finite aperture [15]. The results (Fig. 4) are qualitatively
similar to those for infinite apertures, showing the large
angle (upg � 84±) between the output signal �yg and the
average phase velocity 
 �yp�. The resulting inhomogeneous
wave cannot be regarded as a “negatively refracted beam”
because it disperses rapidly along the direction of 
 �yp�. In
the NIM media of Refs. [3,4], the dispersive signal loss is
further enhanced by the large impedance mismatch with
vacuum (e fi m), and the direct loss is due to the imagi-
nary part of np . We expect the intensity to decrease with
distance, negating the interpretation of the data in Ref. [4]
in terms of a propagating output beam that was negatively
refracted by the NIM prism. We interpret the angular inten-
sity profile observed at the short distance of 15 cm � 5l

as near-field effects. We also predict larger attenuation
for the NIM case as compared to the teflon case. We
cannot verify this because the data presented in Fig. 3 of
Ref. [4] are without an absolute scale. Many other poten-
tially misleading issues, such as material anisotropy, edge
diffraction, etc., need to be fully addressed before applying
geometrical optics to such NIM prisms.

In conclusion, we have shown that causality and finite
signal speed preclude negative refraction for any waves
incident on any material, including NIM. The NIM dis-
persion implies positive group refraction even when phase
refraction is negative, and causes large angles upg between
phase and signal fronts and creates inhomogeneous waves
that rapidly decay, during and after passage through NIM.
The strong distortion of the signal puts severe bounds on
187401-4
the bandwidth of the information that can be transmitted
through NIM devices. Negative refraction ray diagrams in
all earlier literature do not represent the correct positive
wave (i.e., signal) refraction by NIM.
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