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Theory of light propagation in strongly modulated photonic crystals:
Refractionlike behavior in the vicinity of the photonic band gap

M. Notomi*
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

~Received 7 April 2000!

Although light propagation in weakly modulated photonic crystals is basically similar to propagation in a
diffraction grating in which conventional refractive index loses its meaning, we demonstrate that light propa-
gation in strongly modulated two-dimensional~2D!/3D photonic crystals becomes refractionlike in the vicinity
of the photonic bandgap. Such a crystal behaves as a material having an effective refractive index controllable
by the band structure. This situation is analogous to the effective-mass approximation in electron-band theory.
By utilizing this phenomenon, negatively refractive material can be realized, which has interesting optical
properties such as mirror-image refraction.
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I. INTRODUCTION

A photonic crystal is a structure whose refractive ind
is periodically modulated, and the resultant photonic disp
sion exhibits a band nature analogous to the electronic b
structure in a solid. The one-dimensional~1D! version
of a photonic crystal has long been known as a multila
reflector, but 2D/3D photonic crystals have only recen
started to attract attention after the appearance of a predic
that photonic insulators can be developed by photo
crystals.1 Since then, photonic crystals have become a ma
subject of today’s photonic engineering research.2 So far,
most of the concern has been focused on their potentia
photonic insulators.3 However, they can also be photon
conductors whose conductance is determined by their b
structure.4 In photonic crystals, light travels as Bloch wave
in a similar way to plane waves in continuous materi
Bloch waves travel through crystals with a definite propa
tion direction despite the presence of scattering, but th
propagation is complicated because it is influenced by
band structure.

In this paper, we investigate the situation shown in Fig
A light beam is traveling through different media. If the m
dium is a dielectric material, then we observe conventio
refraction phenomenon. If the medium is a diffraction gr
ing, then we observe diffraction phenomenon. Then, w
kind of light propagation phenomena would be observed
the medium is a photonic crystal? There have been s
works related to this issue in the literature, but system
and consistent way of understanding is still lacking. The
fore, we will now start from the simple cases of a dielect
material and a diffraction grating and then examine photo
crystals with weak and strong periodic modulation effects
order to obtain a systematic view for propagation in perio
structures and, in particular, photonic crystals. We w
clarify features of light propagation in photonic crystals, a
show how a strongly modulated photonic crystal exhib
remarkably interesting propagation characteristics which
be understood as refractionlike phenomenon in standard
metrical optics with unusual refractive index.
PRB 620163-1829/2000/62~16!/10696~10!/$15.00
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II. ANOMALOUS LIGHT PROPAGATION IN PHOTONIC
CRYSTALS?

Unusual light propagation in photonic crystals has be
remarked upon by several authors.5–9 Lin et al. reported that
refraction angle becomes anomalous near the bandgap.6 Ko-
sakaet al. reported that, under certain conditions, the lig
propagation direction in photonic crystals becomes very s
sitive to the incident angle and wavelength, and large be
steering is observed, which they call superpris
phenomenon.7 However, almost the same phenomena w
observed in 1D and 2D grating wave guides,5 and the dis-
tinction between behavior in photonic crystals and that
grating wave guides is not clear. In addition to that, the
have been some theoretical reports that predict unusua
fractive index for photonic crystals.8,9

The essential explanation of these phenomena should
in the photonic band structure because the direction of li
propagation inside the photonic crystal is determined by
equifrequency surface of the photonic bands in th
structures.10 Although this feature of photonic crystals ha
been frequently discussed, there have been very few rep
about quantitative comparison between theory and exp
ment so far.11 Considering this feature, it might be possib
to reconstruct the photonic band structure from measu
ments of the light propagation inside the photonic crys
We recently demonstrated such an experiment
3D Si/SiO2 photonic crystals that were fabricated by aut
cloning technology,12 and a very detailed photonic ban
structure was successfully obtained by the measureme13

This experiment directly shows that the light propagation

FIG. 1. Schematic diagram of light propagation phenomen
through different media.
10 696 ©2000 The American Physical Society
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FIG. 2. ~a! Photonic band diagram of a S
(n53.5)/SiO2(n51.46) multilayer~1D photonic
crystal! structure with a period ofd. The thick-
ness is 0.15d and 0.85d, respectively.~b! De-
duced phase refractive index versus frequency
the multilayer structure.~c! Photonic band dia-
gram of a 1D photonic crystal with a vanishingl
small index modulation~empty lattice!. The av-
erage index is the same as~a!. ~d! Deduced phase
refractive index versus frequency for the emp
lattice. Frequency is normalized asvd/2pc.
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indeed determined by the photonic band structure. T
means that, if we want to investigate the light propagation
photonic crystals, what we have to do is just to calculate
corresponding photonic band structure. However, photo
band structures are fairly complicated and it is thus not e
to understand the light propagation phenomena in photo
crystals in qualitative terms. Moreover, the relation betwe
the light propagation in photonic crystals and that in conv
tional dielectric materials or gratings has yet to be clea
demonstrated. We believe that a simpler way of understa
ing light propagation in photonic crystals is possible a
should be established, which will clarify the difference b
tween behavior in photonic crystals and conventional refr
tion or diffraction phenomena.

As mentioned above, light propagation in photonic cry
tals is represented by Bloch waves. Bloch waves have a d
nite propagation direction in spite of strong scattering by
periodic structure. This character leads us to consider a
metrical optic approach to understand the propagation in
In conventional geometrical optics in dielectric materia
light propagation—as shown in Fig. 1—is described by
phase refractive index and Snell’s law. Therefore, in orde
pursue geometrical approaches for photonic crystals, we
examine the concept of phase refractive index for photo
crystals.

The phase refractive index of photonic crystals has b
discussed by several authors in the long wavelen
limit.14–16 They have homogenized the periodic structu
and deduced an appropriate phase index in the l
frequency limit. However, such a result cannot be exten
to higher frequencies of which wavelength becomes com
rable to, or smaller than, the lattice period. Since most
interesting phenomena, including unusual beam propaga
occur outside the low-frequency limit, we are not satisfi
with this homogenization method to understand the li
propagation in photonic crystals.
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Lin et al. investigated the lowest band of a 2D photon
crystal near its first gap, and argued that the refractive in
is modified from the low-frequency limit value near the g
because the slope of the dispersion curve is reduced.6 This
effect is not significantly large because the control range
index is limited within refractive indices of materials. Th
present photonic crystal effect simply arises as a modifi
tion of the mixing ratio of index values, similar to the way
which the effective refractive index of a conventional sl
wave guide is derived.17 Furthermore, their argument did no
show whether the index they deduced could be meanin
outside the low-frequency limit~we will show later that such
index is generally meaningless except under a certain co
tion!, and it is not clear how this index is related to prop
gation direction.

To investigate the phase index of periodic structures o
side the low-frequency limit, we must first consider th
band-folding effect. To see this, we plot a photonic ba
diagram of a multilayer~1D photonic crystal! structure as in
Fig. 2~a!. If we simply use the textbook formulan5ck/v for
the phase refractive index, we obtain the result shown in F
2~b!. The resultant phase index exhibits very unusual beh
ior as can be seen in the figure. Dowlinget al. used essen-
tially the same argument to predict an ultrasmall index
photonic crystals.8 This effect is due to the reduction of wav
vectork near the zone center as a result of the band foldi
However, this argument leads to an ultrasmalln even for an
empty lattice with the same crystal structure. Figure 2~c! is a
band diagram of a 1D photonic crystal with a infinitely sm
index modulation. The corresponding phase index is sho
in Fig. 2~d!. We know that light propagation in such a
empty-lattice photonic crystal~at least when its frequenc
does not satisfy the Bragg condition! should be normal; how-
ever, this model still predicts abnormal phase index. T
apparent contradiction shows that the deduced smalln does
not posses real meaning and that the band folding itself d
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10 698 PRB 62M. NOTOMI
not lead to unusual beam propagation. This contradic
arises mainly because we have only consideredk in the
above analysis. We must also consider the group velo
vector to study beam propagation in photonic crystals.
thus need to investigate the equifrequency surface~EFS! of
the photonic band structure.

III. LIGHT PROPAGATION IN DIELECTRIC MATERIALS
AND DIFFRACTION GRATINGS

In this section, we reexamine light propagation in diele
tric materials and diffraction gratings by using EFS plo
Firstly, we show a very simple example of EFS analysis
Fig. 3~a!, which describes a light incident problem from a
to a dielectric material. A circle in the figure is an EFS of t
photonic band of a dielectric, namely,v5ck/n. The k vec-
tor in the dielectric medium is determined by the continu
of tangential components of thek vector across the interface
and light always propagates parallel to thek vector in this
case. This is an EFS expression of conventional refrac
phenomenon, and this plot is a graphical representatio
Snell’s law ink space

n1 sinu15n2 sinu2 . ~1!

In Fig. 3~b!, we depict light propagation in a diffractio
grating with a period ofd. In this case, equifrequency circle
are repeated along the periodic axis due to the grating’s
riodicity, and thek-conservation rule has to be generalized
satisfy the periodic boundary condition. As a result of th
applying thek conservation rule, we see that more than o
nonidentical beams can be excited in a grating. In the fig
wave A ~on a circle centered at the origin! corresponds to a
transmitted wave and wave B~on a circle centered at a re
ciprocal lattice point! is a diffracted wave. This is nothing
but beam decomposition by a diffraction grating. Note th
the light propagation direction is not parallel to thek vector
for a diffracted wave, but it is oriented normal to the d
fracted wave circle. This is a graphical representation of
formula for a diffraction grating

ml5d~sinu11sinu2!. ~2!

Other than beam decomposition, a few points can
drawn from this figure. At point C~this point can be excited

FIG. 3. ~a! EFS plot for light incident problem from air to a
dielectric material.~b! EFS plot for a diffraction grating.
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under certain conditions!, k is very close to the origin, which
leads to very small phase index. However, this phase in
cannot be used to express the light propagation direc
because the propagation direction~indicated by the arrow! is
not parallel to thek vector. In other words, this index i
almost meaningless in terms of the light propagation pr
lem. This directly demonstrates why the previous mod
including Dowling’s8,9 are insufficient to describe the refrac
tion phenomena. To analyze propagation phenomena,
have to examine the curvature of EFS.

Next, look at point D, which is an intersecting point o
two circles. This point is a kind of singular points ink space.
At such a point, the propagating direction becomes un
fined, and generally anticrossing occurs between intersec
circles. Therefore, the propagation direction switches fr
one circle to the other in the vicinity of this point. That i
when we vary the incident angle or wavelength in the vic
ity of this point, the beam propagation direction chang
very rapidly. If we carefully choose the wavelength and
cident angle to excite the vicinity of this intersecting poin
the beam propagation direction becomes very sensitive to
incident angle and wavelength. This is the origin of the lar
beam steering observed in the grating wave guide. This
general phenomenon, which occurs at singular points ik
space, thus we call it singular point diffraction. Conic
refraction17 in anisotropic media apparently has the same o
gin as singular point diffraction. The similar conical sing
larity has also been discussed in the electron band theor
the case of weak periodic modulation.18 In addition to that, to
be precise, a gap opens up at such singular points, and
will discuss its influence in the next section.

From these discussions, it is now clear that we can
define a phase index for a grating in terms of Snell’s law
we define a phase index, the index is strongly dependen
the incident angle ork-vector angle. Therefore, Snell’s law
loses its meaning. This means that the discussed phenom
in a grating cannot be understood within a refraction pictu
and must be understood as diffraction.

IV. LIGHT PROPAGATION IN WEAKLY MODULATED
PHOTONIC CRYSTALS

We now move on to the case for photonic crystals. Fi
we examine a 2D photonic crystal with a weak period
modulation effect. Hereafter, we use a plane-wave expan
method,19 to calculate a photonic band diagram and EFS,
which Bloch waves are expanded by approximately 10
plane waves. Frequency is normalized asva/2pc ~a is the
lattice constant!. We examine mainly TE modes~magnetic
field lies perpendicular to the 2D plane! of the structure, but
the result obtained in this paper is not specific to TE mod

The EFS of a hexagonal 2D photonic crystal with a va
ishingly small index modulation is plotted in Fig. 4~a!. The
EFS in the first Brillouin zone is expanded to the outer
ciprocal space. The EFS consists of repeated circles refl
ing the 2D hexagonal periodicity, by the same mechanism
that in a 1D diffraction grating. If a plane wave is launch
to this photonic crystal from air at a certain incident ang
several phenomena are expected from this figure. Firs
light beam is decomposed into more than one nonident
waves. In the situation in Fig. 4~a!, two waves A and B are
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excited. Wave A corresponds to a transmitted wave,
wave B is a diffracted wave. Second, the propagation dir
tion is apparently not parallel to thek vector for diffracted
waves. The propagation direction is oriented to the gro
velocity vector vg5gradkv which is normal to the EFS
Third, the propagation angle is very sensitive to the incid
angle and wavelength if the launched beam excites the w
near intersecting points~e.g., point C!, which leads to large
beam steering. This is the origin of the superprism effec
reported in Ref. 7. Fourth, in some regions of the EFS n
the G point, k vector becomes very small and it leads to
very small index value. But such an index is not meaning
by the same reason as for a grating. As readers already
have noticed, the situation as a whole is similar to that fo
grating. The anomalous beam propagation in photonic c
tals can be explained by the mechanism outlined above f
diffraction grating. Consequently, we still cannot define
proper phase refractive index for a weakly modulated pho
nic crystal which precisely reflects the light propagation.

In the above discussion, we investigated the effect of b
folding for light propagation, which is mostly sufficient t
understand gratinglike diffraction phenomena. If, howev
the periodic modulation increases, another effect needs t
taken into account; the gap appears in EFS at the interse
points. This is the seed for the photonic band gap. If
further enlarge the periodic modulation, this gap eventua
comes to dominate the whole ofk space and photonic ban
gaps will emerge. For now, however, we still stay with re
tively small index modulation, which is actually the case f
most of grating wave guides or weakly modulated photo
crystals in which anomalous beam propagation was
served. We plot an EFS of a 2D photonic crystal with a fin
but small periodic modulation effect in Fig. 4~b!. Comparing
Fig. 4~b! to Fig. 4~a!, one can observe small gaps that app

FIG. 4. ~a! Schematic EFS plot for a hexagonal 2D photon
crystal with a vanishingly small index modulation. The first Br
louin zone~BZ! is shown as a hexagon.~b! EFS plot for a hexago-
nal 2D photonic crystal with finite index modulation. This EFS
calculated for TE mode in a 2D hexagonal GaAs (n53.6) air-hole
photonic crystal atv50.35 which is far from the gaps, but this typ
of EFS is general for photonic crystals at frequencies far from
gaps or photonic crystals with a small index modulation.~c! Sche-
matic of anomalous diffraction near the singular point.
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near the intersecting points although the overall structur
much the same. The effect of gap opening is that some of
diffracted waves are not excited due to this gap. In ot
words, we can selectively pick up or exclude some of d
fracted waves. This mechanism can be applied to exclud
transmitted wave and excite a diffracted wave only, as ill
trated in Fig. 4~c!. Figure 4~b! shows that, ak-conservation
line is passing through a small gap formed around theK
point and it intersects with a circle~dotted! centered at the
origin. This circle represents aG50 plane wave correspond
ing to a transmitted wave. In this small gap region, a tra
mitted wave@e.g., wave A in Fig. 4~a!# becomes evanescen
and thus only a diffracted wave is excited. Normally, t
propagation direction of a transmitted wave does not dif
greatly from that of conventional refraction in a dielectr
material, and the propagation direction of a diffracted wa
can be very different from that of conventional refractio
So, excluding the transmitted wave, the situation itself m
seem as if the light beam is beingrefractedin a very strange
way. However, this is not a correct view. Such a situati
can only be realized at certain incident angles when
transmitted wave falls into a gap. Otherwise, conventio
refraction or diffraction should occur. This is obvious fro
the EFS shape in Fig. 4~b! that is almost the same as the EF
without gaps shown in Fig. 4~a! except the vicinity of the
intersecting points. Therefore, we still cannot define a refr
tive index for such a situation. This discussion of the g
opening also applies for a 1D grating.

To summarize the preceding discussion, what we h
shown is that light propagation in weakly modulated pho
nic crystals is quite similar to that in 1D grating. The bea
decomposition and large beam steering observed are du
the band folding and singularities at the intersecting points
k space. The anomalous light propagation reported for p
tonic crystals, for example the superprism effect, is easy
understand within this picture. Therefore, the light propa
tion in such photonic crystals cannot be analyzed in term
the phase refractive index, in the way that conventional
fraction in a dielectric can.

V. LIGHT PROPAGATION IN STRONGLY MODULATED
PHOTONIC CRYSTALS

What then happens when the periodic modulation
comes large? We know that propagation is still governed
EFS andk conservation across the interface, but the situat
is now qualitatively different from the weakly modulate
one. Although the gaps influence occurs only near the sin
lar point in the former case, the gap opening now comes
dominate the overall EFS shape. This breaks up the grat
like picture in Sec. IV, which we will show in this section

Bloch modes in photonic crystals are expressed as a m
ture of transmitted plane wave and diffracted waves havin
reciprocal vectorsG:

ck5(
G

cG exp@ i ~k1G!r #. ~3!

In the preceding sections, we assumed that we can cha
terize excited waves as transmitted waves or as diffrac
waves with a certainG. That is, we categorized Bloch wave
in terms of their dominantG component since the degree

e



-
as

10 700 PRB 62M. NOTOMI
FIG. 5. ~Color! Hexagonal~a! and square~b!
2D GaAs air-hole photonic crystals~with a hole
diameter of 0.7a,! and the resulting EFS’s at sev
eral frequencies. Frequency is normalized
va/2pc. vgap>0.48 for ~a! and vgap>0.34 for
~b! wherevgap is a gap edge frequency.
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mixing is not strong. However, excited waves in strong
modulated photonic crystals should be a strong mixture
many diffracted wave components with differentG. In such
cases, the light propagation angle does not follow the
mula for a grating diffraction@Eq. ~2!#. In general, EFS can
not be decomposed into a simple ensemble of circles, wh
excludes a simple gratinglike description or refractionli
description. Seemingly in such cases, the situation can
be characterized as chaotic, and a simple qualitative beha
cannot be extracted.
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To examine this, we plot EFS of 2D hexagonal and squ
GaAs air-hole photonic crystals~with a hole diameter of
0.7a! at several frequencies near one of the band gaps in
5. In both cases, the EFS shape becomes rounded a
frequency approaches to the band gap. This is a rather
eral effect for periodic modulation. The Fermi surface~EFS
of the electronic band structure for a solid! of metal exhibits
a similar starlike shape reflecting the symmetry of the cr
tal, which is sometimes referred to as a ‘‘monster.’’ As
well known in solid-state physics, the crystal effect alwa
y

FIG. 6. ~Color! ~a! EFS plot of TE modes in a
2D GaAs pillar hexagonal photonic crystal~n1

53.6,n251, 2r 50.7a! atv50.5620.635~from
outer to inner!. The colors represent frequenc
indicated in~c!. The first BZ of a hexagonal lat-
tice and the symmetry points are also shown.~b!
Refraction angle versus incident angle atv
50.575 and 0.61.~c! Effective refractive index
as a function of the angle of thek vector at vari-
ous frequencies.
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PRB 62 10 701THEORY OF LIGHT PROPAGATION IN STRONGLY . . .
round out the monster’s sharp corners.20 This can be ex-
plained by the fact that the mixing among differentG com-
ponents becomes more pronounced near the bandgap e
around symmetry points in the reciprocal space, which ev
tually pushes out the sharp corners. This tells that when
periodic modulation effect is not large, the EFS exhibits g
erally a starlike shape consisting of arcs belonging to
fracted waves; but when it becomes strong, the EFS sh
becomes circular or spherical near the gap.21

We will now investigate this effect in more detail by e
amining TE modes of a 2D hexagonal GaAs pillar photo
crystal ~with a pillar diameter of 0.7a! in air. Figure 6~a!
shows the EFS for this 2D photonic crystal atv
50.56– 0.635. Asv approaches 0.635 that corresponds
one of the gap frequenciesv(G3), the shape of EFS be
comes rounded and finally becomes circular. In the cas
Fig. 6~a!, the gap width aroundv(G3) is very small, but this
does not mean the periodic modulation effect is small.
fact, the modulation effect is significantly large as seen in
figure. This means that the gap width itself is generally
directly related to the strength of the periodic modulati
effect but the periodic modulation effect~monster rounding!
is most pronounced near the gap frequency~including a gap
with very small gap width: In such a case, it might be bet
referred as symmetry point frequency!. We will later exam-
ine the strength of the monster rounding for various photo
crystals having different gap width.

From the shape of EFS, we can deduce the propaga
angle using the relationvg5gradkv. We calculated the rela
tion between the incident and propagation angles forv
50.61 andv50.575 as shown in Fig. 6~b!. Though the
propagation angle atv50.575 is complicated as a result o
the complicated shape of EFS, the curve is very simple
v50.61. At v50.61, the EFS consists of a single circl
Note that the EFS plot looks similar to that of a conventio
dielectric material as shown in Fig. 3~a!. The excited wave is
determined by the circular EFS within the first Brillou
zone, and the propagation angle thus should follow Sne
law. This means that we can define an effective refrac
index neff from the radius of the EFS using Snell’s law.
Fig. 6~b!, we confirmed that the curve forv50.61 follows
Snell’s law usingneff520.50. This curve shows that th
propagation angle follows Snell’s law at u in
,arcsin(uneff /n0u), and no waves are excited in the photon
crystal atu in.arcsin(uneff /n0u), which corresponds to total in
ternal reflection for a dielectric material. Note that total i
ternal reflection does not occur when a light beam is incid
from air to a conventional material. In this way, the lig
propagation in this case is properly described by the effec
index derived by using Snell’s law, suggesting that the be
propagation is refractionlike.

We check the applicable range of this effective inde
Figure 6~c! shows the deduced effective index as a funct
of the in-plane angle ofk at various values ofv. This graph
indicates that the deduced index does not depend on tk
angle in the range 0.59,v,0.645. This means that the de
duced index is well defined over this range. This range c
responds to 140 nm at 1.55mm ~the typical wavelength for
optical communication!, which is wide enough for consider
ing real applications.
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Although we have pointed out similarity to convention
refraction, there is a striking difference from convention
refraction, which we have not pointed out in the preced
paragraph. Note that asv increases up tov50.635 the ra-
dius of the monster shrinks. Consideringvg5gradkv, this
means that propagation direction is inward for this mons
though it is always outward for a conventional dielectr
This results in a negative propagation angle for all incid
angles as already shown in Fig. 6~b!, which leads to a nega
tive effective index. This unusual negative refraction is
direct consequence that the gap opening dominates the o
all EFS structure. In contrast to Fig. 4~b! where the EFS can
be approximated by the EFS of an empty lattice, we obse
that this EFS in Fig. 6~a! cannot be traced back to the EF
circles of an empty lattice. That is, a conventional transm
ted wave does not exist at any angle, and the excited Bl
wave cannot be approximated by any single diffracted w
having specificG, but is a strong mixture of diffracted
waves.

Figure 7~a! is a plot of effective index againstv. In the
range where the index is well defined, the effective ind
varies from20.7 to 0.5. We compare thisv dependence to
the photonic band diagram for this structure as shown in F
7~b!. Notice that the sign of the effective index is reversed
v50.635 which corresponds to thev(G3) point in the band
structure. Band I@v.v(G3)# has a positive index and ban
II @v,v(G3)# has a negative index. The same characte
tics are found for bands nearv(G2). Although the positive
and negative index bands are almost touching in both
these cases, touching is not essential. We have confir
that the effective index becomes well defined in the vicin
of open gaps as well. This is trivial because the mons
rounding generally occurs in the vicinity of gaps arou
symmetry points as mentioned earlier. We show another
ample that is TM~electric field lies perpendicular to the 2D
plane! photonic band diagram of a 2D GaAs air-hole pho
nic crystal in Fig. 8~a!. In this case, band I~III ! and band II
~IV ! near the open gap betweenv(G1) @v(G3)# and
v(G2) @v(G4)# are well-defined positive and negative inde
states, respectively. Figure 8~b! shows the effective index o
bands I and II againstv.

FIG. 7. ~a! Effective index versus frequency of TE modes of
2D GaAs pillar hexagonal photonic crystal~n153.6, n251, 2r
50.7a!. The frequency range where the index becomes non-w
defined is indicated by the broken line.~b! Photonic band structure
of the same photonic crystal.
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It is generally known that an air-hole-type 2D photon
crystal has a larger gap in TE modes, and a pillar type
photonic crystal has a larger gap in TM modes. We obse
that the formation of well-defined effective index states h
the opposite tendency. The air-hole-type crystal prefers
modes and the pillar type crystal prefers TE modes,22 which
is probably because available propagating bands do not
when the periodic modulation effect is strong for the ca
optimized for wider gaps due to the efficient gap formatio
but such modes still exist for the case optimized for wid
effective index region even when the periodic modulation
strong.

Concerning these characteristics, there is an interes
analogy with the electronic band in semiconductors,
shown in Fig. 9. In a semiconductor, a negative effect
mass state~the hole band! appears below the energy gap, a
a positive effective mass state~the electron band! appears
above the gap, which is quite similar to the manifestation
effective index states in photonic crystals. This analo
makes sense if we note that the sign of effective mas
semiconductors and the sign of effective index in photo
crystals are both derived from the band curvature. Furth
more, the effective mass approximation is only valid near
bandgap in the electron band theory. This is similar to
case where the effective index state is only valid near

FIG. 8. ~a! Photonic band structure of TM modes for a 2D Ga
air-hole hexagonal photonic crystal~n253.6,n151, 2r 50.8a!. ~b!
Effective index versus frequency.

FIG. 9. Analogy between effective mass approximation
Bloch electron bands and effective index approximation for Blo
photon band.
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photonic gap. A Bloch electron in a solid is generally ve
different from a free electron, but it becomes free-electro
like near the bandgap or band minimum and the effect
mass approximation can be applied in such regions. In
context, the present situation can be understood that a B
photon comes to resemble a free photon~that is, a plane
wave! having an effective refractive index near the bandg
despite of large scattering by the periodic lattice, that is,
geometrical optic approach can work near the photonic ba
gap.

These results indicate that, if there is a substantia
strong periodic modulation in a photonic crystal, it behav
as a continuous isotropic material having an effective refr
tive index at a certain frequency range near the band edg
such cases, exotic light propagation phenomena inside
photonic crystal can be simply described by Snell’s law
ing an effective refractive index. In contrast to the weak
modulated case where the definition of refractive index is
meaningful, this effective refractive index has a clear cor
spondence to the true phase refractive index as far as
index defined in Snell’s law is concerned. The sign and
solute value of the effective index can be artificially vari
by frequency, crystal structure, and refractive indices
composing materials; it is not limited by the range of t
indices of the materials themselves. The effective index
be negative or less than unity. The fundamental limit on t
effective index isuneffu<max(n1,n2). Note that this effective
index is not limited by the Hahin-Shtrikman bounds23 which
only holds in the effective medium regime, corresponding
photonic crystals in the long-wavelength limit.

Although the monster rounding generally occurs in t
vicinity of any gaps, the strength of this rounding diffe
from band to band. Some of the bands retain anisotr
rather close to the band edge. For example, the lower ban
theG2 point ~band V! in Fig. 8~a! forms a surprisingly accu-
rate hexagon in the vicinity of the bandgap. In such case
normal effective index cannot be defined but light propa
tion phenomenon is interesting in itself. Due to its hexago
shape, the beam propagation direction is frozen at eithe
or 60° over a wide incident angle range. In other words, s
a photonic crystal becomes a network of straight wa
guides oriented towards its symmetry axes, and propaga
in other directions is prohibited by a partial photonic gap24

Such freezing of the propagation direction cannot be
plained by the model for weakly modulated photonic cryst
which we used in Sec. IV, where the EFS can be appro
mated as a sum of circles. It only occurs for strongly mod
lated photonic crystals where EFS is a strong mixture
many diffracted waves. This anisotropy of the effective
dex near the gap seems to resemble the anisotropy of e
tive mass in semiconductors. In semiconductors, this ani
ropy originates in the anisotropy of the atomic orbitals whi
compose a particular electron band~such ass, p, or d or-
bital!. In the usual photonic crystal case, however, such
atomic-orbital-like character25 does not significantly influ-
ence the photonic band because of the weak confineme
the lattice point~photonic atom!. Thus, the anisotropy is
mainly due to the character of the band itself determined
the crystal symmetry at least when the wavelength is co
parable to the lattice constant, which could be analyzed
the group theoretical approach.26
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Although the main concern of this paper is phase ind
here we would like to comment on the group refractive ind
for these photonic crystals. In order to examine it, we have
investigate the frequency dispersion of photonic cryst
Apparently seen from the band diagram, the photonic cr
tals we are discussing have a strong frequency dispers
which significantly influences the group velocity index. A
though the complicated band curvature is indicating a co
plicated group velocity, it can be reduced to a considera
simple relation in the vicinity of the bandgap. This is eas
understood if one compares again the present situation
that of electron bands in a solid, in which the band sho
have a parabolic dispersion near the band edge. This p
bolic dispersion does not result from the parabolic dispers
of free electronsE5\2k2/2m, but is attributed to the fac
that the periodic modulation induces the energy gap in
second-order perturbation. In the case of photonic crys
this can be approximately expressed as follows:

v22v0
2'hk2 ~4!

~v0 is the band edge frequency, andh is an expansion coef
ficient!, which can be reduced to

v'v01
h

2v0
k25v01

c

v
k2. ~5!

This shows that Bloch photons have an electronlike pa
bolic dispersion near the band edge.v (52v0c/h) contains
all information on the band near the gap within this conte
and could be seen as an effectivemassof Bloch photons
because it represents a parabolic~rather than a linear! disper-
sion of bands. This leads to the following dispersion relat
of group indexng :

ng5v/2k. ~6!

A expression for the phase index dispersion is not sim
but if we use a scaled frequencyv85v2v0 in analogy to
the electron band case, we will get the following anoth
phase index dispersion:

np85ck/v85v/k5ng/2, ~7!

which is simply related to the group indexng by a factor of
2 ~due to the parabolicity!. This new expression of phas
index is mostly useless in the present situation, but it co
be meaningful when we discuss the light propagation
tween different photonic crystals sharing a similar crys
structure in common. Some of readers might notice that th
is some similarity to the nonparabolicity problem in th
semiconductor heterostructures consisting of materials w
different effective mass.27

To see how this parabolic representation is relevant,
replot Fig. 7~b! as v versusk2 in Fig. 10. This shows tha
bands near the band edges are very close to parabolic,
the expressions~5! and~6! are relevant under such a regim
A detailed discussion of frequency dispersion is beyond
scope of this paper, but this already shows that altho
Bloch photons propagate like free photons at fixed f
quency, as far as frequency dispersion is concerned they
hibit a unique parabolic dispersion which is quite differe
from that of free photons.
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In this section we have shown that, the monster round
generally occurs near the bandgap, and the effective in
becomes well defined in such regions, and the sign of
indices differs between the upper and lower bands. Bef
moving on to a next section, we would like to point out th
this discussion can naturally be extended to 3D photo
crystals and it is thus basically possible to control the
propagation of light. However, realization of such states
3D photonic crystals are more limited than in 2D photon
crystals, since it requires the existence of full photonic ba
gaps that are known to be more difficult to obtain in 3
structures.28

VI. NEGATIVE REFRACTION

The fact that we can realize an arbitrary refractive ind
state leads to many possibilities for the control of lig
propagation. The most interesting point is that this reali
negative refraction, as illustrated in Fig. 11~a!. This negative
refraction leads to many anomalous light propagation p
nomena. We show some examples: an imaging effect@Fig.
11~b!# and an open cavity formation@Fig. 11~c!#. In the latter

FIG. 11. Schematic diagrams of light propagation in negative
refractive photonic crystals:~a! negative refraction,~b! mirror-
inverted imaging effect, and~c! formation of an open cavity.

FIG. 10. Replotted version of the band diagram shown in Fig
~b! as a function ofk2. Straight lines are guide to the eye fo
indicating the parabolic character of bands near the singular po
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case, there exist many closed optical paths running acros
four interfaces which form a kind of an open cavity desp
the fact that there is no reflecting wall surrounding the c
ity. In the former case, light is emitted from a point source
a negatively refractive photonic crystal. Within the conve
tional paraxial-ray treatment, the refracted wave converge
another point in the photonic crystal. This means that obje
in the left-hand space produce real images in the right-h
space. This imaging is fundamentally different from conve
tional imaging by a lens. Figure 12 schematically illustra
two types of imaging. Imaging by a lens is described
Newton’s formula, in which the focal length is an importa
parameter. Magnification depends on the relative distanc
an object from the lens and focus point. Therefore it o
produces a 2D image on the focal plane and does not
duce a 3D image. On the contrary, a negatively refrac
photonic crystal produces a 3D image~if it is a 3D nega-
tively refractive photonic crystal! by the mirror-inversion
transformation (x,y,z)→(x,y,2bz) where b
5abs(neff /n0), which is different from Newton’s formula. In
addition, the lens imaging has a definite principal axis,
the present imaging has translational symmetry in the bou
ary plane. In this sense, this imaging is rather close to im
ing by a mirror. The apparent difference between a photo
crystal and a mirror is that the former produces a real im
but the latter only produces a virtual image. This uniq
property is suggesting possibilities of 3D photographing
use of negatively refractive photonic crystals.

FIG. 12. Schematics of imaging by a negatively-refractive p
tonic crystal and imaging by a lens.
the

-

-
at
ts
d
-
s
y

of
y
o-
e

t
d-
g-
ic
e

e
y

We again point out the difference between this negat
refraction and the situation for a weakly modulated photo
crystal shown in Fig. 4~c!. Although the propagation angl
can become negative at a certain incident angle in a we
modulated photonic crystal, this does not lead to real im
ing because negative refraction only occurs over a limi
incident angle range and even within this region light ra
emitted from the same point but traveling in the differe
orientation do not converge to the same point.

In the bulk of this paper, we have discussed the lig
propagation using EFS plots; in other words we examin
the wavevector conservation across the interface. This tr
ment is adequate for determining the propagation angle,
it is not still clear to what extent such Bloch waves will b
excited by a plane wave incidence since we have not qu
titatively discussed the amplitude continuity across the in
face. In principle, this can be done by a proper handling
the amplitude connection between the allowed Bloch wa
in the photonic crystal and the outside plane waves con
ering the effect of the periodic boundary condition in t
interface plane. This treatment was the same as that has
established in election diffraction theory.29,30 Instead of do-
ing this, we have numerically simulated electromagne
wave propagation~in TE mode! in a hexagonal GaAs pho
tonic crystal by a 2D finite-difference time-domain method31

using a real refractive index distribution profile of the pe
odic structures. We used a perfectly matched-layer absor
condition for the outer boundaries.32 Figure 13~a! shows
negative refraction where an angled Gaussian beam is
dent to the interface. The negative propagation angle
tracted from this result coincides with that is obtained fro
the EFS calculated by the plane wave expansion. Fig
13~b! shows mirror-inverted imaging. A point source is lo
cated in the conventional material, and focusing is clea
observed in the negative-index photonic crystal. These
merical calculations directly solved Maxwell equations i
cluding appropriate amplitude continuity without any simp
fication, and thus these results clearly demonstrate
experimental observability of the phenomena discussed
this paper.

VII. SUMMARY

We have systematically analyzed the light propagat
phenomena in periodic structures and photonic crystals w

-

-

-

d

-

FIG. 13. ~Color! Numerical
simulation of electromagnetic
wave propagation in negatively
refractive photonic crystals. Mag
netic field (Hz) distribution of TE
mode after 23104 steps of calcu-
lation. The lower half is a hexago
nal photonic crystal with 100
357 unit cells. ~a! A slightly
tilted Gaussian beam is launche
from air (n051). ~b! A point
source emitting atv50.62 is lo-
cated in continuous material with
n050.5. @If we replace it with air
(n51.0), the lower half result
will merely be compressed verti
cally.
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the help of the band theory and numerical simulations.
motivation is to examine whether light propagation in p
tonic crystals can be understood by simple geometrical
analogies. First, we have examined the effect of the b
folding that is directly related to the periodic boundary c
dition of the structure. It has been shown that the propag
characteristics of diffraction gratings and weakly modula
photonic crystals are much alike and can be explained w
a similar framework. This explains anomalous propaga
phenomena in grating waveguides and photonic crys
These studies have clarified that the light propagatio
these media is fundamentally different from conventiona
fraction, and therefore we cannot define appropriate re
tive index.

However, subsequent studies showed that the light p
gation in strongly modulated photonic crystals near the
tonic bandgaps, in which the second effect—the
opening—dominates EFS shape, comes to resemble r
tion phenomenon in a dielectric material even in the pres
of strong multiple diffraction. In these cases, we can de
effective phase refractive index to explain the propaga
inside the photonic crystal using the conventional Sn
r
-
ic
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-
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d
in
n
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n
-
c-

a-
-

p
ac-
ce
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n
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law. Since such effective index is determined by the pho
nic band structure, it can be negative or less than un
which leads to unusual refraction phenomena includi
negative refraction. The basic mechanism is similar to t
effective mass model in electron band theory. A Bloch ph
ton becomes free-photon-like in the vicinity of the bandgap
and can be considered to be refracting with an effective
fractive index. Such effective index states only exist near
photonic bandgap, in a similar way to the effective ma
states in a semiconductor. We have shown that negative
dex states lead to interesting propagation phenomena, s
as imaging effect, which have been confirmed by numeri
simulation of electromagnetic wave propagation. The
unique properties of refracting Bloch photons have the p
tential to drastically change the form of optical componen
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