Relations of crystal structure to magnetic properties in the quasi-one-dimensional compound PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$

I. Mastoraki, a A. Lappas, a, * J. Giapintzakis, a, b D. Többens, c and J. Hernández-Velasco c

a Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 711 10 Heraklion, Greece
b Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 710 03 Heraklion, Greece
c Berlin Neutron Scattering Center, Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109 Berlin, Germany

Received 1 October 2003; received in revised form 27 January 2004; accepted 22 February 2004

Abstract

The crystal structure of the quasi-one-dimensional oxide PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ has been studied by Rietveld analysis of combined high-resolution neutron and X-ray powder diffraction data at 300 K and at low temperatures. The (Ni/Mg)O$_6$ octahedral units share a common edge and form spiral chains along the c-axis of the tetragonal unit cell, without deviating the I_4_1 c_d ($Z = 8$) symmetry upon cooling. DC magnetic susceptibility measurements show that the system undergoes a magnetic phase transition below $T_N = 4$ K. Rietveld analysis of the medium resolution neutron powder diffraction data confirms that impurity-induced antiferromagnetic order (with propagation vector, $\mathbf{k} = [000]$) takes over from the Haldane ground state of the parent compound. The power-law [$\beta = 0.31(3)$] temperature evolution of the strongest magnetic Bragg peak intensity indicates three-dimensional Ising-type magnetic interactions, while the reduced magnitude of the Ni$^{2+}$ moment [$\langle \mu \rangle = 0.98(3) \mu_B$] suggests important zero-point spin fluctuations. Structural considerations are consistent with small changes in the interatomic distances around the bridging tetrahedral VO$_4$ entities separating the chains. However, no bulk structural phase transition concurrent to the Néel ordering is found. We show that the modification of intra- and inter-chain Ni-Ni distances upon cooling promotes the magnetic coupling of the end-of-chain liberated $S = 1/2$ spins and leads to antiferromagnetic ordering.

\copyright 2004 Elsevier Inc. All rights reserved.

PACS: 61.10.Nz; 61.12.Ld; 75.; 75.30.-m; 75.30.Hx

Keywords: Low-dimensional; Haldane-gap; Antiferromagnetism; Lattice topology; Neutron diffraction; Rietveld analysis

1. Introduction

A great deal of attention is currently being focused on low-dimensional quantum magnets, which are simple models of magnetism, and demonstrate a broad spectrum of complex quantum-mechanical phenomena. In these systems quantum fluctuations destroy long-range magnetic order (LRO) at any temperature. As such, one-dimensional (1D) quantum antiferromagnets (AF) are particularly interesting and worthy examining the influence of the significant zero-point quantum fluctuations on their magnetic properties. Some intriguing phenomena recently observed in low-dimensional systems include the spin-Peierls (SP) transition in $S = 1/2$ Heisenberg chains with strong spin-lattice interac-
tions [1], the appearance of the Haldane gap in integer spin Heisenberg chains [2] and the high-temperature superconductivity occurring in layered cuprates consisting of two-dimensional (2D) CuO$_2$ planes [3]. Subsequently, several detailed studies have been performed on the doping effects of such ground states and the phenomenon of the impurity-induced phase transition to long-range antiferromagnetic ordering (LRAFO) has been verified. Among these is worth noting the first purely inorganic SP compound, namely CuGeO$_3$ [4]. Indeed, various experiments confirmed that substitution of Cu$^{2+}$ ions by either non-magnetic (e.g., $S = 0$: Mg$^{2+}$, Zn$^{2+}$ [5,6]) or magnetic chemical impurities (e.g., $S = 1$ Ni$^{2+}$ or $S = 5/2$ Mn$^{2+}$ [6]) causes transitions to LRAFO independently of the S value of the impurity.

The search for chemical analogues led to a new low-dimensional $S = 1$ spin system, the PbNi$_2$V$_2$O$_8$ compound, which exhibits a Haldane-type gap in its
magnetic excitation spectrum [7,8]. The PbNi$_2$V$_2$O$_8$ compound is isomorphous to the alkaline rare-earth vanadate SrNi$_2$V$_2$O$_8$ [9]. The distinguishing structural feature is the presence of the screw chains, which consist of edge-shared NiO$_6$ octahedra that run along the c-axis. The chains are separated by non-magnetic VO$_4$ tetrahedra and Pb$^{2+}$ ions. Such a structure results in a quasi-one-dimensional arrangement of the Ni$^{2+}$ ($S = 1$) spins where intra-chain nearest-neighbor Ni–Ni interactions are dominant. The quasi-one-dimensionality of the structure appears to be instrumental in determining the bulk physical properties and especially that of the magnetic behavior.

Furthermore, the problem of the impurity-induced AF order for this new system has been recently put under investigation to explore possible similarities to the doping effects observed in the SP compound CuGeO$_3$. In PbNi$_2$V$_2$O$_8$, the spin vacancy induced LRAFO has been recently confirmed by magnetic susceptibility measurements [7], neutron powder diffraction and muon spin relaxation (μSR) measurements [10]. This material is the first example of an inorganic Haldane chain compound that orders antiferromagnetically by doping with non-magnetic ($S = 0$) ions. It appears that the role of the inter-chain interactions is crucial in this system.

Shender and Kivelson [11] were the first who qualitatively discussed the possibility of spin vacancy-induced long-range order (LRO) in a Haldane-gap system. Experimental realization of this theoretical suggestion involved the substitution of nonmagnetic Mg$^{2+}$ ions for Ni$^{2+}$ ions [7]. The temperature dependence of the magnetic susceptibility for a series of PbNi$_{2-x}$Mg$_x$V$_2$O$_8$ powder samples ($x = 0 - 0.24$), showed that the characteristic thermally activated gap behavior observed in the undoped compound is gradually suppressed and a pronounced peak is observed in the low temperature susceptibility, with a maximum of ~ 3.5 K at a composition $x \approx 0.16$ [12]. In addition, an enhancement of the magnetic susceptibility is observed, which scales with Mg concentration, x. This behavior has been attributed to the presence of free $S = 1/2$ spins at the ends of the Ni chains severed by the spin vacancies [13].

The appearance of $S = 1/2$ ‘edge spins’ around both sides of the spin vacancies has been rigorously explained by the valence bond solid (VBS) model [14]. Experimentally Smirnov et al. [15] confirmed this phenomenon, by measuring the electron spin resonance (ESR) above the Néel point for a series of powder samples with $0 \leq x \leq 0.12$. Moreover, Zorko et al. [16] argued that the frequency dependence of the ESR signal observed at low temperatures, in samples with $0 \leq x \leq 0.24$, indicates a magnetic coupling between the chain-end spins on both sides of the Mg$^{2+}$ impurity. This picture explains well the enhancement of the inter-chain coupling through the interaction of the free moments with the Ni$^{2+}$ spins on the neighboring chains and finally the establishment of a LRO state at low temperatures [17].

The purpose of this study is to present a detailed structural analysis of a selected member of the series PbNi$_{2-x}$Mg$_x$V$_2$O$_8$ with $x = 0.12$. We show that this compound undergoes a transition from a paramagnetic state to a 3D LRO AF state below ~ 3.4 K. Structural considerations enabled us to obtain useful insight on the superexchange pathways that govern the magnetic properties. Our data indicate that the magnetic phase transition is not accompanied by a bulk structural phase transformation. However, small changes in the bond lengths occur upon cooling. We discuss how this effect may alter the local geometry and influence the magnetic exchange interactions.

2. Experimental

Polycrystalline powders of the PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ compound (5 g) were synthesized via the citrate sol–gel method using stoichiometric quantities of the following high-purity (99.99%) reagents: V$_2$O$_5$, Ni(NO$_3$)$_2$·6H$_2$O, Pb(NO$_3$)$_2$, Mg(NO$_3$)$_2$·6H$_2$O. After the V$_2$O$_5$ was completely dissolved in a solution of 100 mL distilled water with 10 mL HNO$_3$ under stirring and low heating (~ 60°C), hydrolysis and condensation was promoted by adding 1 mL ethylene glycol for each gram of expected final product, the stoichiometric amount of solid citric acid (C$_6$H$_8$O$_7$) and the remaining starting materials. Gelation took place at ~ 100°C. The resulting gel was dried at 150°C overnight, and then it was heated at 480°C for 16 h to eliminate carbon-containing species. Following the completion of this process, the powder was pressed into a pellet, which was heated at 700°C for a total of 12 days. Every 3 days the sintering procedure was interrupted and the sample was ground. The high-temperature reactions were carried out in an alumina combustion boat. Phase purity of the final compound was checked by X-ray powder diffraction using a Rigaku D/MAX-2000H rotating anode diffractometer with CuK$_\alpha$ radiation and a secondary pyrolytic graphite monochromator. For quantitative analysis, X-ray diffraction (XRD) data were collected at room temperature (300 K) in the interval $10^\circ \leq 2\theta \leq 130^\circ$ with a step of 0.02° and a counting time of 29 s per step. All the peaks were indexed on the basis of the tetragonal space group $I\bar{4}_{1}cd$ except for two peaks at $2\theta \approx 17.78^\circ$ and 27.84°, which have been attributed to a small amount of an unknown additional phase. A Guinier camera at the BENSC facility, with CuK$_\alpha_1$ radiation ($\lambda = 1.54056$ Å) and Si ($a = 5.430881$ Å) as internal standard, was used for the low-temperature study of our samples. High-statistics data were collected at 12 K in transmission geometry, with 20 steps of 0.02°/50 s and within the range of diffraction angle $6^\circ \leq 2\theta \leq 100^\circ$.

2405

ARTICLE IN PRESS

NEB2000H
Neutron diffraction data were collected on the high-resolution E9 and the medium-resolution E2 and E6 powder diffractometers of the research reactor BER II in Berlin (BENS/HCMI), using wavelengths 1.798, 2.398 and 2.444 Å, respectively. About 4.5 g of the sample contained in a cylindrical vanadium can (Ø = 8 mm), were used in each case. The high-resolution data were obtained both at high (300 K/8 h) and low (12 K/8 h, 2 K data sets of 8 and 7 h each) temperatures, over a wide range of $5^\circ \leq \theta \leq 155^\circ$ (step width $\Delta \theta = 0.078^\circ$). The medium-resolution data (12 h each) were collected over the range $5^\circ \leq \theta \leq 85^\circ$ (step width $\Delta \theta = 0.2^\circ$) at temperatures below (1.58 K) and above (6 K) the transition temperature identified by the peak in the χ vs. T experiment. In order to investigate the temperature evolution of the magnetic phase, additional neutron profiles of limited 20-range (28–48°, step width $\Delta \theta = 0.1^\circ$) and shorter time-duration (∼80 min each) were collected between $1.6<T \leq 3.6$ K, in 11 steps of $\Delta T = 0.17$ K, using a standard He cryostat. All the powder diffraction data were analyzed with the Rietveld method by employing the program FULLPROF [18].

The bulk magnetic behavior of the polycrystalline compound was examined by DC magnetic susceptibility measurements, between 1.8 and 300 K, in an applied magnetic field of 0.1 T using an Oxford Instruments MagLab EXA extraction magnetometer.

3. Results and discussion

3.1. Magnetic susceptibility measurements

The temperature dependence of the DC magnetic susceptibility, χ, for PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ is shown in Fig. 1. The measurements were made upon warming both after zero-field cooling (ZFC) and field cooling (FC) of the sample. In both cases, a prominent peak appears at $T_N \approx 3.39$ K, which is a signature of a magnetic phase transition. The magnitude of the susceptibility presented in Fig. 1 is in a good agreement with that of Ref. [7]. The small thermomagnetic irreversibility observed below T_N, between the ZFC and FC curves, has also been observed in other members of the series and has been discussed in terms of metamagnetic behavior in Ref. [10]. The magnetic susceptibility obeys the Curie-Weiss law, $\chi = C / (T - \theta)$, in the temperature range 150–300 K (inset of Fig. 1). From the Curie-Weiss fit, we estimate the effective magnetic moment per Ni$^{2+}$ ion, $\mu_{\text{eff}} = 3.302(1) \mu_B$ (2.98 μ_B, $x = 0.24$) and the paramagnetic Curie temperature, $\theta = -426(1)$ K (-313 K, $x = 0.24$). The large negative value of θ indicates the existence of strong antiferromagnetic exchange interactions for the Ni atoms in the chains. The experimentally determined value of the effective moment is almost but not quite close to the calculated spin-only value of 2.83 μ_B, for the Ni$^{2+}$ ion. If the spin-orbit coupling (L) is included to calculate the magnetic moment for a free ion, as $\mu_{\text{eff}} = [L(L + 1) + S(S + 1)]^{1/2} \mu_B$, we obtain $\mu_{\text{eff}} = 4.47 \mu_B$. To this extent, the relatively large observed moment can be justified if the orbital angular momentum of the Ni ion is only partially quenched. The inferred non-zero orbital contributions are in line with early ESR work suggesting an enhanced Landé factor, $g \sim 2.2$, for the PbNi$_{2-x}$Mg$_x$V$_2$O$_8$ series ($x \leq 0.24$) [16].

3.2. Magnetic neutron diffraction

In order to elucidate the nature of the magnetically ordered ground state in PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$, we performed medium-resolution neutron powder diffraction studies. We isolated the magnetic Bragg peaks using the subtraction technique, i.e., the nuclear-diffraction pattern (at 6 K) above the ordering temperature is subtracted from the pattern (at 1.58 K) obtained at temperatures below the transition temperature. This technique can be used when there is no significant structural distortion and the temperature variation of the lattice parameters is not considerable compared to the instrumental resolution. The resulting magnetic (1.58–6 K) difference plot (Fig. 2) was analyzed with the Rietveld method by employing a single-phase model accounting for the orientation of the spins and the magnitude of the moment per ion. Some details regarding this procedure have been reported elsewhere with respect to the analysis of neutron data for other members of the Mg-($x \approx 0.24$) [10] or Co-($x \approx 0.08$) [19] substituted PbNi$_2$V$_2$O$_8$ series. In brief, all the magnetic peaks were indexed in the $P1$ space group for a given set of tetragonal lattice constants of the nuclear cell,
meaning that the magnetic unit cell coincides with the chemical one and a magnetic propagation vector $k = [000]$ defines the mode of ordering. The orientation of the ordered moments was determined by finding the best agreement between the integrated intensities of the magnetic Bragg peaks in the experimental difference profile (1.58–6 K) and the patterns calculated for different spin configurations. Since the compound under consideration crystallizes in a uniaxial system, powder neutron diffraction cannot lead to unambiguous determination of the magnetic moment direction [20], only the angle between the spin direction and the unique c axis can be determined. Accordingly, our data would only distinguish if the spin lies in a direction parallel or perpendicular to the unique axis. We note that the 16 Ni atoms of the PbNi$_{2-x}$Mg$_x$V$_2$O$_8$ nuclear unit cell, in the $I4_1cd$ space group, adopt a 4×4 arrangement along a four-fold screw axis. Then, our exploratory analysis examined the coupling of all the symmetric ferromagnetic (F) or antiferromagnetic spin spirals, i.e.

\[
\begin{bmatrix} + & + \\ + & - \\ - & + \\ - & -
\end{bmatrix}, \begin{bmatrix} + & - \\ + & + \\ - & - \\ - & +
\end{bmatrix}, \begin{bmatrix} + & - \\ - & + \\ + & - \\ - & +
\end{bmatrix}, \begin{bmatrix} + & - \\ - & + \\ + & - \\ + & +
\end{bmatrix},
\]

that were possible to be formed. This represents helical Ni-chain motifs (projected in the ab plane) propagating along the c axis with + or – indicating spin ‘up’ or ‘down’ orientation with respect to the unique axis. Their coupling in the unit cell, in all possible combinations, results in 6 ($=3 \times 2$) variants or refinable magnetic ordering models. The agreement (R) between the profile refinement were monitored in an effort to verify the suitability of the model. Very poor results, without convergence, conferred with a helical structure where the moments were in the ab-plane and rotated by 90° from Ni to Ni site along the c-axis. More importantly, the absence of characteristic (hkl) classes of reflections in the experimental difference profile, limits the number of probable models. For instance, simple F-chains antiferromagnetically coupled to each other is expected to produce strong Bragg scattering at the $(100)/(010)$ or (110) positions, which however did not appear, making it an unlikely model. This procedure let us conclude that, although of a different doping level, PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ adopts the same magnetic structure as the $x \simeq 0.24$ composition. The Ni moments couple antiferromagnetically (AF) both along the c-direction and within the ab-plane. This spin-configuration results in a Rietveld fit of reasonable quality ($R_{wp} = 8.64\%$, $R_{exp} = 7.69\%$, $\chi^2 = 1.26$) (Fig. 2).

The AF arrangement of the Ni-spin chains is depicted as an inset in Fig. 3. The average magnetic moment per Ni ion in the AF spin configuration is $\langle \mu \rangle = 0.98(3) \mu_B$. This is marginally different from the 0.91(1)μ_B/Ni$^{2+}$ in the PbNi$_{1.76}$Mg$_{0.24}$V$_2$O$_8$ compound, which is located in the heavily doped region of the x vs. T_N phase diagram [12]. In the latter, the T_N against Mg-composition presents a broad maximum at $x \sim 0.16$. However, our neutron data prevent us at this stage from verifying if the staggered moment, $\langle \mu \rangle$/Ni, versus x follows also a similar behavior. It is worth noting though the deviation of $\langle \mu \rangle$ from the theoretical spin-only value $\mu = gS = 2 \mu_B$ for $S = 1$ Ni$^{2+}$ in LRO state. Ni–O covalency effects in addition to quantum-mechanical ‘zero-point’ spin fluctuations can be responsible for this. Reduced experimental values of $\langle \mu \rangle$ for the easy-axis spin-1 antiferromagnetic Heisenberg chain system CsNiCl$_3$ [21], has been shown before to reflect the dimensionality of the magnetic correlations. It is a common feature in prototypical 1D-AF Haldane systems, such as R_2BaNiO$_4$ (R = rare earth), that the Ni$^{2+}$ saturation moment in the 3D magnetically ordered phase to be somewhat reduced from $2 \mu_B$ [22–24].
Fig. 3 displays the temperature evolution of the normalized integrated intensity of the strongest magnetic Bragg peak (031). It was obtained by fitting a Gaussian function to the respective peak at each temperature. In general, the ordered-moment size is \(\langle \mu \rangle \propto (I_{031})^{1/2} \). The data for temperatures between 2.1 and 3.3 K have been fitted to a power-law expression of the type \(I \sim I_0 [1 - (T/T_N)]^{2/3} \). \(T_N \) has been kept fixed at the value obtained from the position of the peak in the DC magnetic susceptibility measurements, namely \(T_N = 3.39 \text{K} \). The least-squares result for the critical exponent, \(\beta = 0.31(3) \), is close to the one predicted by the three-dimensional Ising model, \(\beta_{\text{Ising}} = 0.326 \) [25]. This observation suggests the existence of easy-axis anisotropy in the antiferromagnetic interactions as the spins are aligned either parallel or antiparallel to the \(c \)-axis. The Ising-like character of the spin alignment in this compound, is in agreement with the large negative value (\(D = -0.45 \text{meV} \)), derived from the analysis of the inelastic neutron scattering spectra of the isostructural (vide infra) parent compound PbNi2V2O8 [17].

3.3. Structural refinement

Structural refinements on PbNi1.88Mg0.12V2O8 were carried out by Rietveld analysis of combined X-ray (XRD) and neutron powder diffraction (NPD) data at 300 K and low temperatures (12 K). This procedure offers the advantage to determine simultaneously the position of the vanadium atoms, which have small coherent scattering length for neutrons and the light oxygen atoms, which display relatively small atomic scattering factors for X-rays.

Fig. 4 illustrates the combined Rietveld analysis of the NPD and XRD data taken at 300 K, with a very good agreement between the observed and calculated patterns. For all refinements of the crystal structure, we used as starting parameters those obtained from single-crystal X-ray diffraction data of the SrNi2V2O8 compound [9]. A pseudo-Voigt profile function convoluted with axial divergence was employed to generate the line shape of the diffraction peaks for the NPD and (Guinier geometry) XRD patterns. In addition, a Thompson-Cox-Hasting pseudo-Voigt profile function was chosen to generate the line shape of the diffraction peaks for the XRD pattern in the Bragg-Brentano geometry. The NPD background was fitted by a polynomial function, while that associated with the XRDs was linearly interpolated through selected points. The refinements allowed us to describe with good confidence the crystal structure, namely the atomic positions, the occupation factors and the lattice parameters. In addition, this gave a good description of the thermal motion for all the atoms, somehow different from that in the isostructural SrNi2V2O8 compound. Data collection conditions and refinement details\(^1\) at 2, 12 and 300 K are summarized in Table 1 while structural parameters are listed in Table 2a–c. The atomic site occupancies, \(\eta \), for the Ni and Mg were also refined within the accuracy of the present work. For example, they were found to be \(\eta_{\text{Ni}} = 1.86(2) \) and \(\eta_{\text{Mg}} = 0.14(2) \) at 300 K, showing only marginal deviation from the nominal values.

The overall crystal structure determined herewith is essentially the same to that reported before [10], however, new insight has been gained due to the higher resolution of the current neutron experiments and the additional statistical accuracy offered by the combined Rietveld analysis. The quasi-one-dimensional character of the PbNi1.88Mg0.12V2O8 structure arises from the spiral-chain arrangement of the distorted, edge-shared (Ni/Mg)O\(_6\) octahedra along the \(c \)-direction and their separation by non-magnetic V\(^{3+}\) and Pb\(^{2+}\) cations. Selected bond distances and angles are given in Tables 3 and 4, for all the temperatures studied. The mean Ni–O distance falls in the range of the average Ni–O bonds observed in other compounds consisting of NiO\(_6\) octahedral units, such as the rhombohedral LaNiO\(_3\) (i.e. 1.935 \(\text{Å} \)) [26] and the orthorhombic La\(_2\)NiO\(_4\) (i.e. 2.105 \(\text{Å} \)) [27] perovskites. For ease in the discussion below, we define the 2 K Ni–O(2), Ni–O(3) short bonds together with the Ni–O(1), Ni–O(4) ones as equatorial (E) distances, while the longer Ni–O(2), Ni–O(3) we assume to indicate the apical (A) oxygen connectivity in the \(c \)-direction (Fig. 5). We suggest that the observed elongation of the NiO\(_6\) octahedra along the \(c \)-axis may be due to the ligand field effect around Ni\(^{2+}\) ion, which lifts the degeneracy of the five \(d^8 \) orbitals giving rise approximately to three degenerate \(t_{2g} \) orbitals that are lower in energy than the other two of \(e_g \) symmetry. The \(e_g \) state consists of two single occupied orbitals, one along the apical axis of the octahedron (\(d_{z^2} \)) and the other perpendicular to \(c \)-axis (\(d_{x^2−y^2} \)). In PbNi1.88Mg0.12V2O8 splitting of the equally occupied, degenerate \(d_{z^2} \) and \(d_{x^2−y^2} \) orbitals (zero-field splitting), may account for the tetragonal distortion of the NiO\(_6\) octahedral units.

In a direct comparison of the raw data for the low-temperature (2 and 12 K) neutron diffraction profiles we observe no significant intensity difference between them, throughout the 2\(\theta\)-range. In addition, all the Bragg peaks for the 2 K (\(< T_N \)) and 12 K (\(> T_N \)) high-resolution neutron data could be indexed by employing the same space group \((I4_1c)\) used at 300 K. That is to say no bulk structural phase transition accompanies the

\(^1\)As the diffraction data were taken with diverse instrumental characteristics, dissimilar profile features, e.g. background treatment (polynomial fit or interpolation), peak-shape function, internal \(\text{Si} \) standard use, were recognized between the patterns. To this extent a different number of Rietveld refinable parameters was required for the optimum description of the diffraction profiles at different temperatures.
magnetic ordering. Scattering at Bragg positions (Fig. 2) associated with the magnetic structure of PbNi\(_{1.88}\)Mg\(_{0.12}\)V\(_2\)O\(_8\) is barely observable in the 2 K data, due to the lower neutron intensity at the E9 diffractometer, which would require extensively long counting statistics to resolve them. Atomic parameters for the V-atom at 2 K were taken from the Rietveld analysis of the combined XRD and NPD 12 K data. The refined fractional atomic coordinates and the isotropic Debye–Waller factors of the atoms in the unit cell at 2 K are shown in Table 2c. Bond distances and selected angles are listed in Tables 3 and 4. It is worth noting that the anisotropic variation of the Ni–O bond lengths between 300 and 12 K results in a less pronounced elongation of the NiO\(_6\) polyhedron at low temperatures. Non-isotropic variation in the remaining metal–oxygen bonds is also observed for the different cation environments.

The crystallographic parameters and bond distances obtained at 300 K by high-resolution NPD provide an
empirical way to discuss the ‘formal’ valences of the different metal ions in PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$. The approach we follow here is the valence bond method as described by Brown and Altermatt [28]. It is a simple but powerful procedure for obtaining an insight into the cation oxidation state as inferred from its observed

Table 1

<table>
<thead>
<tr>
<th>Space group $I4_{1}cd$ ($Z = 8$)</th>
<th>$T = 300$ K</th>
<th>$T = 12$ K</th>
<th>$T = 2$ K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>X-ray</td>
<td>Neutron</td>
<td>X-ray</td>
</tr>
<tr>
<td>$a = b$</td>
<td>12.25008(4)</td>
<td>8.35891(4)</td>
<td>12.23134(7)</td>
</tr>
<tr>
<td>c</td>
<td>1254.374(8)</td>
<td>1249.386(20)</td>
<td>1249.195(13)</td>
</tr>
<tr>
<td>Volume (Å^3)</td>
<td>10–154</td>
<td>10–130</td>
<td>10–154</td>
</tr>
<tr>
<td>Step size (deg)</td>
<td>0.0782</td>
<td>0.02</td>
<td>0.0781</td>
</tr>
<tr>
<td>Counting time (s/step)</td>
<td>—</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>Weighted profile R_{wp} (%)</td>
<td>6.61</td>
<td>5.81</td>
<td>5.82</td>
</tr>
<tr>
<td>Profile R_{p} (%)</td>
<td>5.09</td>
<td>4.38</td>
<td>4.48</td>
</tr>
<tr>
<td>Expected R_{exp} (%)</td>
<td>3.39</td>
<td>4.48</td>
<td>4.49</td>
</tr>
<tr>
<td>χ^2</td>
<td>3.81</td>
<td>1.69</td>
<td>1.78</td>
</tr>
<tr>
<td>Bragg R-factor (%)</td>
<td>6.36</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td>Total no. of Independent Reflections</td>
<td>228</td>
<td>228</td>
<td>228</td>
</tr>
<tr>
<td>$N - P + C$</td>
<td>1814</td>
<td>1807</td>
<td>1812</td>
</tr>
<tr>
<td>No. of refined parameters</td>
<td>38</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Atom</th>
<th>Wyckoff position</th>
<th>x/a</th>
<th>y/b</th>
<th>z/c</th>
<th>Occupancy</th>
<th>B_{iso} (Å^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>(8a)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.67(2)</td>
</tr>
<tr>
<td>Ni</td>
<td>(16b)</td>
<td>0.3307(4)</td>
<td>0.3235(4)</td>
<td>0.1821(4)</td>
<td>0.931(9)</td>
<td>0.36(6)</td>
</tr>
<tr>
<td>Mg</td>
<td>(16b)</td>
<td>0.3287(2)</td>
<td>0.3232(3)</td>
<td>0.1764(6)</td>
<td>0.941(16)</td>
<td>0.24(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>(16b)</td>
<td>0.1472(6)</td>
<td>0.4945(14)</td>
<td>0.04(22)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>O(2)</td>
<td>(16b)</td>
<td>0.3352(11)</td>
<td>0.6741(11)</td>
<td>0.4356(8)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>O(3)</td>
<td>(16b)</td>
<td>0.1579(10)</td>
<td>0.6812(11)</td>
<td>0.6706(10)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>O(4)</td>
<td>(16b)</td>
<td>0.3252(7)</td>
<td>0.4990(15)</td>
<td>0.1610(9)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>Pb</td>
<td>(8a)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.19(6)</td>
</tr>
<tr>
<td>Ni</td>
<td>(16b)</td>
<td>0.3287(2)</td>
<td>0.3323(3)</td>
<td>0.1764(6)</td>
<td>0.941(16)</td>
<td>0.24(5)</td>
</tr>
<tr>
<td>Mg</td>
<td>(16b)</td>
<td>0.3287(2)</td>
<td>0.3232(3)</td>
<td>0.1764(6)</td>
<td>0.059(16)</td>
<td>0.24(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>(16b)</td>
<td>0.1472(6)</td>
<td>0.4945(14)</td>
<td>0.04(22)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>O(2)</td>
<td>(16b)</td>
<td>0.3352(11)</td>
<td>0.6741(11)</td>
<td>0.4356(8)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>O(3)</td>
<td>(16b)</td>
<td>0.1579(10)</td>
<td>0.6812(11)</td>
<td>0.6706(10)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
<tr>
<td>O(4)</td>
<td>(16b)</td>
<td>0.3252(7)</td>
<td>0.4990(15)</td>
<td>0.1610(9)</td>
<td>1.0</td>
<td>0.62(6)</td>
</tr>
</tbody>
</table>

(a) Fractional coordinates and atomic thermal displacements from Rietveld refinement of combined neutron and X-ray powder diffraction data for PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ at 300 K

(b) Fractional coordinates and atomic thermal displacements from Rietveld refinement of combined neutron and X-ray powder diffraction data for PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ at 12 K

(c) Fractional coordinates and atomic thermal displacements from Rietveld refinement of two, combined data sets for the NPD data of PbNi$_{1.88}$Mg$_{0.12}$V$_2$O$_8$ at 2 K. Vanadium parameters are taken from the 12 K structure.
The so-called bond valence sums (BVS) are calculated by the expression: \(\text{BVS} = \sum_i \exp \left(\frac{r_0 - r_i}{B} \right) \). Here, \(B \) is an empirically determined parameter of 0.37 Å, \(r_i \) is the experimentally determined bond length of the particular cation to the \(i \)th anion in its neighborhood and \(r_0 \) is the corresponding theoretically calculated bond distance. We employed the program VALIST [29], with internal tables for \(r_0 \).

The results of the BVS calculations are listed in Table 3. The BVS value and the formal oxidation state for each atom are in reasonable agreement, as they deviate no more than 0.1 valence units (v.u.). The Ni/Mg BVS value has been averaged taking into account their occupation factors and their random distribution into the same crystallographic position. To this extent, the consistency of the results produces additional confidence regarding the accuracy of the experimentally determined bond-lengths that are used in the following discussion.

3.4. Lattice topology effects

In the PbNi\(_{1.88}\)Mg\(_{0.12}\)V\(_2\)O\(_8\) compound the presence of impurities stabilizes the \(S = 1/2 \) end-of-chain spins [7,11,13] at either side of the randomly distributed Mg ions (\(S = 0 \); spin vacancies). The enhancement of intrachain coupling with decreasing temperature together with the inter-chain interaction of the vacancy-induced free spins could act in ‘synergy’ to stabilize a LRO ground state. According to our analysis, the nearest-neighbor (nn) Ni–Ni distance within the chains contracts from 2.892(6) Å (300 K) to 2.869(5) Å (12 K) when the temperature is reduced towards the \(T_N \). Below \(T_N \) this nn distance remains unchanged within the accuracy of the experiment, i.e. 2.871(5) Å (2 K). Although the 300–12 K change is a relatively small one, namely \(-0.80 \pm 0.27\%\), it can be expected to affect the intra-chain coordination to nearby anions and the associated bond lengths.
antiferromagnetic coupling, \(J \), between \(nn \) Ni-spins. We note that, in simple terms, the magnitude of the superexchange interaction for overlapping \(3d-2p \) orbitals depends strongly on the hopping integral, \(t_{pd} \), namely, \(J \sim t_{pd}^n \) [30]. In powder experiments such as the present one, it is difficult to estimate the absolute value of \(J \); however, qualitatively we expect an increase in the hopping integral, as it depends strongly on the superexchange path-length, \(R \), according to the relation \(t_{pd} \sim 1/R^n \). Since the exponent, \(n \), in insulating oxides is generally found to be a large number (i.e., \(10 < n < 12 \)) [31], we anticipate that the local geometry plays a major role in determining the ground state magnetic properties of the \(\text{PbNi}_{1.88}\text{Mg}_{0.12}\text{V}_2\text{O}_8 \).

As such it is worth examining an extra factor, that is, the \(V^{5+} \) (\(d^0 \)) atoms as mediators of the inter-chain interactions, \(J' \). It has been mentioned before [8] that this vanadate system provides two pathways of coupling between Ni ions in different chains (Fig. 5). One of them couples two Ni\(^{2+} \) ions on adjacent chains with the same \(c \)-axis fractional coordinate. The other one couples two Ni\(^{2+} \) ions offset relative to each other by \(c/4 \) along the \(c \)-axis. Nevertheless, inelastic neutron scattering work [8] on the parent \(\text{PbNi}_2\text{V}_2\text{O}_8 \) material has pointed out that in such a polycrystalline quasi-one-dimensional solid it cannot be definitely determined which one of the above-mentioned next-nearest neighbor (\(nnn \)) inter-chain magnetic exchange pathways is the most favorable one. The static average magnetic structure, shown as an inset of Fig. 3, indicates that the localized \(nnn \) interaction for the Mg-doped compound produces an ‘effective’ antiferromagnetic coupling for the first type of pathway and a ferromagnetic one for the second. In order to get some clues we focus on the latter Ni–Ni interaction which takes place through \(O(3)A-V-O(4)E \) or \(O(1)E-V-O(2)A \) pathways (Fig. 5).

The observed V–O bonds between 300 and 12 K change anisotropically and suggest an apparent ‘balancing’ of the bonding interactions around the \(\text{VO}_4 \) tetrahedra. That is to say, within the standard errors of the refinements, the \(O(1)E-V-O(2)A \) length expands as much as the \(O(3)A-V-O(4)E \) pathway contracts. The refined values of relevant bond lengths are compiled in Table 3. Furthermore, between the 12 and 2 K structures there are no significant differences for any of the atomic positions in the unit cell, thus we assume that the position of V does not change as well. We can infer for its role below \(T_N \) through the ‘shifts’ of the surrounding metal–oxygen atomic positions. As the Ni–O and Pb–O distances between 12 and 2 K do not change significantly, when cooling through \(T_N \), it is reasonable to assume that the size and shape of \(\text{VO}_4 \) tetrahedron is not changed below \(T_N \). Then we can base our arguments on the modifications of the corresponding Ni–O distances along the magnetic exchange pathways \([\text{Ni}–O(1)E–V–O(2)A, \text{Ni}–O(3)A–V–O(4)E–\text{Ni}]\), that effectively alter the \(nnn \) Ni–Ni separation.

An important observation here is that when the system is cooled from 300 to 2 K, the shortest Ni–Ni separation for atoms on the twinned chains remains unchanged, i.e. at \(d_{\text{Ni}–\text{Ni}} = 5.04 \text{ Å} \) (magnetically coupled nickels by direct exchange) (Fig. 5). However, when we inspect how the longer Ni–Ni distances, \(\langle d_{\text{Ni}–\text{Ni}} \rangle \sim 6.4 \text{ Å} \), evolve upon cooling we find that there is a reduction (\(\Delta d_{\text{Ni}–\text{Ni}}^{\text{max}} \approx -0.45\% \)) in all the inter-chain \(nnn \) distances (magnetically coupled nickels by superexchange via \(\text{VO}_4 \) tetrahedra). The Ni–Ni lengths shown in Table 3 correspond to distances pairing Ni ions (on twinned chains running parallel to the \(ac \)-plane; Fig. 5) along the [100] direction and Ni ions (on consecutive twinned chains) along [010] direction. The estimated standard deviations for the \(nnn \) Ni distances, calculated from the errors on the refined atomic positions, are between 0.005 \(\leq \Delta d_{\text{Ni}–\text{Ni}} \leq 0.01 \text{ Å} \). Such a small deviation on the \(nnn \) separations adds to the statistical accuracy of the quoted changes. When we examine the \(nnn \) distances connecting Ni ions with the same \(z \)-coordinate (Table 3), we note a comparable contraction.

We postulate that the subtle modification of the Ni separation on adjacent chains (\(nnn \)) indicates the proximity for the chains upon cooling. This in effect may bring on enhanced inter-chain coupling, \(J' \), for the \(S = 1/2 \) ‘edge spins’ around the Mg-impurities of this low-dimensional system. The findings are in agreement with recent ESR experiments [16], which have probed such a coupling and theoretical arguments [17], which...
have suggested a possible microscopic mechanism. The highlighted changes in the topology of the nuclear structure establish an improved inter-chain coupling, which together with the enhancement of the intra-chain coupling, \(J \), and reduction of thermal fluctuations at low-temperatures are essential for inducing LRAFO in PbNi\(_{1.88}\)Mg\(_{0.12}\)V\(_2\)O\(_8\).

However, in another well-known Haldane gap system, the Y\(_2\)BaNiO\(_4\), generating topological disorder by severing the Ni-chains when non-magnetic cations, such as Zn\(^{2+}\) or Mg\(^{2+}\), are substituted at the Ni-sites does not support a transition to LRO\([32–34]\). This is despite the existence of \(S = 1/2 \) degrees of freedom created by breaking up the \(S = 1 \) spin-chains\([35]\), similarly to the PbNi\(_{1.88}\)Mg\(_{0.12}\)V\(_2\)O\(_8\) compound, which however illustrates the unusual effect of LRAFO induced by non-magnetic doping. Only in cases where Y\(^{3+}\) is replaced by a magnetic rare earth ion the system crosses over from the 1D disordered ground state to 3D magnetic order\([24,36]\). The model quasi-one-dimensional Y\(_2\)BaNiO\(_4\) material\([37]\), which shows Haldane gap behavior and strong intra-chain interactions along very short – Ni–O–Ni– bonds, in vertex sharing octahedra, does not promote LRAFO due to long pathways for inter-chain magnetic exchange.

4. Conclusions

We have studied the crystal structure and magnetic properties of the quasi-one-dimensional compound PbNi\(_{1.88}\)Mg\(_{0.12}\)V\(_2\)O\(_8\) by employing Rietveld analysis of combined X-ray and neutron powder diffraction data as well as magnetic susceptibility measurements. The Haldane gap in the magnetic excitation spectrum of the undoped PbNi\(_2\)V\(_2\)O\(_8\) compound is suppressed in the Mg-substituted (\(x \approx 0.12 \)) system and a long-range antiferromagnetic ordering takes place below \(T_{\text{Néel}} \approx 3.4 \) K. The critical behavior of the sublattice magnetization [exponent \(\beta = 0.31(3) \)] postulates the existence of an Ising-like, easy-axis anisotropy for the resolved spin-configuration. Also the reduced magnitude of the staggered moment \([0.98(3) \mu_B/\text{Ni}^{2+}]\) points to the importance of ‘zero-point’ spin fluctuations in this system. The Rietveld analysis of the powder diffraction data indicates that the magnetic transition at \(T_N \approx 3.4 \) K is not accompanied by a structural phase transformation. The subtle lattice topology plays a major role in determining the ground state magnetic properties. We have investigated the modification of the bond distances upon cooling and their role in stabilizing the long-range ordered state. The pathway involving the VO\(_4\) tetrahedra mediates the magnetic exchange interaction between adjacent chains (inter-chain coupling, \(J' \)). We suggest that the magnetic coupling of the free \(S = 1/2 \) spins at the end of Ni chains is assisted by the modification of Ni–Ni distances. The latter indicates that the NiO\(_6\) chains show a tendency to approach each other at low temperatures. These factors together with the enhancement of the intra-chain Ni–Ni correlations most likely drive the system to Néel ordering.

Acknowledgments

The work was partially supported by the EU through the Human Potential Programme under contract no. HPRI-CT-1999-00020. We thank the Hahn-Meitner-Institut (BENSC) for the provision of neutron beamtime and N. Stüßer for useful discussions and help during the neutron experiments.

References