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Abstract

In this paper we present calculations for acoustic and elas-
tic waves propagating in periodic composites consisting of
spheres in a host material. Our aim is to examine whether
stop bands appear in these composites and under what con-
ditions. To perform these calculations our methods were
associated with a simple parallelization procedure which is
also presented.

1 Introduction

In recent years considerable attention from the condensed
matter physicists has been given to the study of the classi-
cal wave! propagation in periodic composite systems. The
attention is focused on the question of the existence or
not of spectral gaps (stop bands - frequency regions of for-
bidden propagation) in these periodic systems in analogy
with the gaps in the electron wave propagation in solids.
The similarities between the classical wave equation and
the Schrodinger equation (which governs the electron wave
propagation) gave the idea that we can observe in clas-
sical waves (CW) the same phenomena which have been
observed in electrons and have constituted the heart of the
condensed matter physics over the last 70 years.

One reason for the interest about stop bands in the CW
propagation stems from the possible applications mainly
in filter technology. Another reason is related with what is
called localization: It has been found that if we random-
ize a periodic medium which exhibits a stop band (gap)
this stop band finally becomes a region of localized states
(states which do not correspond to propagating waves but
to waves trapped in a region within the composite and at-
tenuated exponentially) [1, 2]. Thus, by studying periodic
composites (something easier due to the symmetry) we can
locate spectral regions where localized states may appear
as we randomize the composite. This is not surprising as
both gaps and localization are due to the same mechanisms:
scattering and the destructive interference of the multiple
scattered waves.

Electromagnetic waves were the first to attract attention.
Both theoretical results and experimental data showed

IWaves obeying a second order equation in the time domain
(electromagnetic, acoustic, elastic) - in contrast to electrons which
obey Schrddinger’s equation (a first order in the time domain
equation).

that, although the existence of a gap is not something a
priori guaranteed, one can construct structures (photonic
crystals) which exhibit wide gaps; one can also control the
frequency of these gaps. Up to now structures have been
fabricated with gaps up to 10'* Hz.

Acoustic and elastic waves on the other hand only re-
cently attracted some attention, especially for experimental
investigation [3, 4, 5, 6] stimulated by theoretical studies
[7, 8,9, 10, 11].

In this paper we present calculations for acoustic and
elastic waves propagating in periodic composites consist-
ing of spheres in a host material. Our interested is concen-
trated on the question of possible appearance of stop bands
in these composites. This question is examined by calcu-
lating the dispersion relation, w = f(k), of waves in the
composites. For these calculations we have employed two
methods which are associated with a simple parallelization
procedure. In what follows we present first our main equa-
tions, then the methods and the parallelization procedure
and finally we present and discuss our main results.

2 Wave Equations

The starting point for our calculations is the elastic and
acoustic wave equations in isotropic media. The elastic
wave equation can be written in the form
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In the above equation u! are the cartesian components of
the displacement vector, u, p(r) is the mass density and
A(r) and p(r) the Lamé coefficients of the medium.

For fluids the coefficient p is equal to zero and, by in-

troducing the pressure p = —AVu, Equation (1) can be
written as
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For periodic systems the coefficients p(r), A(r) and u(r)
are periodic functions with the periodicity of the struc-
ture. Moreover, the fields, u and p, obey the so called
Bloch’s theorem. Bloch’s theorem states that u or p can
be written as a plane wave but with an amplitude which
is periodic function with the periodicity of the system:
u(r) = uk(£)e, p(r) = pi(r)e,

3 Methods of Calculation

3.1 Plane Wave Method (PW)

The Plane Wave (PW) method is based on the expansion
of the periodic coefficients in the wave equation in Fourier
sums [8, 11]:
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Applying Bloch’s condition to the fields and expanding the
coefficients A (or A71), u, p~!, ux and px according to
Equation (3), both the acoustic and the elastic wave equa-
tion are transformed to matrix eigenvalue equations.

From Equation (1) (for periodic solid composite systems)
one obtains
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For N terms in the Fourier sums, Equation (4) is a
3N x 3N matrix eigenvalue equation of the form AX = w?X.
Its solution gives the 3N permitted frequencies w for a peri-
odic solid composite. For achieving convergence N usually
has to be of the order of 400-500. It means that Equation
(4) will be a system of the order of 1500x1500.
For fluid systems (starting from Equation (2)) the cor-
responding to Equation (4) result is
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For N terms in the Fourier sums Equation (5) is a NxN
matrix equation of the form AX = w?BX.

3.2 Multiple Scattering Method

Although PW is a very direct and easy to apply method, it
is unable to give accurate results for mized composites con-
sisting of solid scatterers in a fluid host. To cover this case
we employed a Multiple Scattering (MS) method based on
a theory known, from the electronic band structure cal-
culations, as the Korringa-Kohn-Rostoker’s (KKR) theory
[12, 13].

The main idea of the method is that the incident wave
at each scatterer has to be equal with the scattered waves
from all the other scatterers (in the absence of an external
incident field). This idea can be expressed mathematically
as

i) = 3 pie(r), (6)
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where the subscript n denotes the scatterer at the lattice
position R,,. We can write the incident and the scattered
wave at each lattice position as a sum of elementary spher-

ical waves:
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(In the above equations j; and h; are the first kind spheri-
cal Bessel function and the first kind spherical Hankel func-
tion respectively [14].) Relating the scattered wave by each
scatterer with the incident wave at the same scatterer (by
solving a simple single scattering problem) one can relate
the coefficients b]  with the af :

bfm = tlaf’m. (9)

(The scattering coefficients ¢; [15] for the case of identical
scatterers are independent on the lattice position.)

Using Bloch’s condition one can relate also the coeffi-
cients a;, of the different lattice sites:
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Substituting all the above in Equation (6) and using the
expansions of the elementary spherical functions h;(k,|r —
R,|)Yim(r — Rp) in terms of the functions centered at R,
(see Equation (Al)), Equation (6) takes the form
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which corresponds to a homogeneous algebraic system.
The condition for this system to have non vanishing solu-
tions (det(A = 0) gives the eigenmodes of a periodic com-
posite in the framework the MS method.

The coefficients gy, ms, which are given in the Appendix,
are dependent only on the elastic parameters of the host
material and on the characteristics of the lattice. The scat-
tering material affects the above equation only through the
scattering coefficients ;. t; can be calculated very easily for
both solid and fluid scatterers [15].

3.3 Parallelization Procedure

In order to examine if a full stop band (forbidden frequency
region for all directions) exists in a periodic system we have
to solve Equation (4) or (5) or (11) for a lot of values of the
parameter (wave vector) k. Taking into account that the
typical running time for 1 k is of the order of 1/2 CPU hour,
one can see that the total calculation can be extremely time
consuming.

There is, however, the advantage that the calculation for
each k is independent. The only restriction is that in order
to obtain a picture of the dispersion relation the results
(wk (7)) have to be printed in the correct sequence of ks.

The independence of the different k calculations helped
us to apply a simple parallelization procedure (see Figure
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Figure 1: Parallelization procedure for a network of 4
processors. The processors are denote with the parallelo-
grams. The corresponding to each processor values of k
are written inside the parallelograms.

1) which reduced the time of our calculation by a factor
almost equal to the number of the processors used. This
parallelization procedure has been applied to both PW and
MS method. The input values of k are stored in an array,
q(i), (in fact three arrays, one for each cartesian compo-
nent of the vector k) and they are sorted in the special way
which we require for the results. The ¢(i)s are distributed
over the different processors (by using cycling distribution
- see Figure 1). Each processor performs the eigenvalue cal-
culation for each own k = ¢(7), sends the resulting eigen-
frequencies, wk(j), to the master processor (with blocking
communication) and continues with its next input k value.
The master processor receives the results from the others
in a way which retains the ks in the same order as in the
array ¢(¢) and prints them.

The above way of parallelization has the important ad-
vantage that there is balancing of the work over the dif-
ferent processors (all the processors have almost the same
work to perform). Moreover, the communications over the
different processors take place only at the end of the calcu-
lation for each k, which means minimum number of com-
munications. These two characteristics have as a result the
maximum reduction of the running time relatively to the
sequential running time. Another advantage of the above
procedure is that in order to apply it one needs minor
changes in the structure of the sequential program. Thus
the program can be easily understood and used by people
not familiar with parallel programming.

For the implementation of the above parallelization pro-
cedure we have used Message Passing Interface (MPI) in a
distributed memory parallel machine.

4 Results

As it has been already mentioned, our interest is focused
on the question of gap formation in acoustic and elastic
periodic composites and on the optimal conditions for the
existence of these gaps. To examine the above question we
calculated the dispersion relation for a variety of compos-
ites and we examined how the dispersion relation depends
on the parameters of the system.

4.0

3.0

PR

kz

1.0

ky

N

0.0

S
X

r R

Figure 2: Dispersion relation along the directions MXI'R
for a sc periodic composite consisting of epoxy spheres of
volume fraction f = 30% in Cu. ¢, is the longitudinal
wave velocity in the Cu and a the lattice constant.

In Figure 2 we show a typical form of the dispersion re-
lation. It concerns a composite consisting of epoxy spheres
in copper. The epoxy spheres are arranged in a simple cu-
bic structure, of volume fraction f = 0.3. The horizontal
axis in Figure 2 is the k axis and the perpendicular axis is
dimensionless frequency axis. k moves along certain direc-
tions in the so called first Brillouin zone. (First Brillouin
zone is the primitive cell of the fourier transformed lattice
and it is shown in the inset graph.) The letters on the k-
axis denote certain points in the first Brillouin zone (see
the inset graph). As can be seen in Figure 2, for each fre-
quency, w, there is at least one wave vector k which can be
a possible channel for propagation. Thus there is no stop
bands. Usually this is the case for most of the periodic
material combinations which we have examined.

Examination of a variety of composites showed that gaps
can exist only under rather extreme conditions. To deter-
mine these conditions we examined the role of each of the
parameters of the problem.

We examined first the role of the density contrast p,/p;,
where p, is the mass density of the host material and p;
the mass density of the scatterers. In Figure 3 we show
the inverse periodic arrangement of Figure 2, where copper
spheres are periodically placed in epoxy (copper volume
fraction f = 0.3). The characteristic of this composite is
the very low p,/p; ratio. As one can see in Figure 3 there



is a relatively wide gap with midgap frequency at wa/c, &
2.75. In contrast, in the opposite case (of high p,/p; - see
Figure 2) no gaps exist. In general, we found that for solid
composites (solid scatterers in solid host) gap formation is
favored by high density scatterers in low density host. And
the higher this density contrast is, the wider the gap.
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Figure 3: Dispersion relation along the directions MXI'R
for a sc periodic composite consisting of Cu spheres in
epoxy in volume fraction f = 30%. ¢, is the longitudinal
wave velocity in the epoxy and a the lattice constant.

The opposite is true for fluid composites (fluid scatter-
ers in fluid host). There, gap formation is favored by low
density scatterers in high density host. A composite with
this characteristic is shown in Figure 4. Figure 4 shows the
dispersion relation for air bubbles in water in air volume
fraction f = 0.3. The bubbles are arranged in fcc structure
[16]. Here one can see a succession of very wide gaps al-
ternating with some extremely narrow bands (these bands
correspond to resonance frequencies in the scattering cross
section by a single air sphere in water). In contrast, the
inverse arrangement (water spheres in air) does not exhibit
any gap.

The difference between solid and fluid composites regard-
ing the dependence of the gap on the density contrast can
be understood if one considers the single scattering cross
section: For fluids, it is the isotropic term in the single
scattering which is responsible for the strong scattering and
thus for the gap. This term is almost absent in solids. This
isotropic scattering term becomes very strong when the ra-
tio pi/po is very low, because the low density sphere can
be easily compressed by the surrounding fluid medium.

Another parameter which affects the appearance of gaps
is the velocity contrast between scatterers and host. In the
absence of density contrast we have found that gap forma-
tion is favored by low velocity scatterers in high velocity
host. In the presence of density contrast, however, the role
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Figure 4: Dispersion relation along the directions LI'X for
a fcc periodic composite consisting of air bubbles in water.
Air volume fraction f = 30%. c, is the wave velocity in
the water and a the lattice constant.

of the velocity contrast is more complicated. For large den-
sity contrast it is preferable for the velocity contrast to be
small. Again it can be understood by studying the single
scattering cross-section [17].

Concerning the rigidity of the scatterers: the rigidity of
the scatterers seems to affect the dispersion relation only
when both density and velocity contrasts between scatter-
ers and host are very low. If one of these parameters starts
to become important, then solid scatterers give almost the
same dispersion relation with fluid scatterers of the same
density and velocity.

Finally we examined the dependence of the gap on the
scatterers volume fraction. In Figure 5 we show the width
of the gap over the midgap frequency versus the volume
fraction of the scatterers for a composite consisting of lead
spheres in epoxy in various periodic arrangements. From
Figure 5 and analogous figures one can see that the opti-
mum for gap volume fraction is between 10% and 50%.

5 Conclusions

We studied the propagation of acoustic and elastic waves
in periodic composites consisting of spherical scatterers in
a host material. Our aim was to examine if and under
what conditions one can observe stop bands in these com-
posites. This was done through dispersion relation calcu-
lations. To calculate the dispersion relation we have em-
ployed two methods and a simple parallelization procedure.
We found that gaps can exist under rather extreme condi-
tions, which concern mainly the density and velocity con-
trast of the components of the composites and the volume
fraction of one of the two components. For solid systems
(or for solid host systems) gap formation is favored by high
density scatterers in low density host, while for fluids by
low density scatterers in low density host. Also gap forma-
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Figure 5: The width of the gap over the midgap frequency
versus the volume fraction of the scatterers for a periodic
composites consisting of lead spheres in epoxy.

tion is favored by scatterers with velocity lower than that
of the host and scatterers volume fraction between 10% and
50%.

The training on parallel programming was done in the
Edinburgh Parallel Computing Center (EPCC) under the
TMR-TRACS programme. Work supported by EU grands.

APPENDIX: Transformations of elementary spherical
functions.
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CirmitmrLm are the Gaunt numbers [19]:
Com'imLm = /ﬁ’m'(r)Yzfn(r)YLM(r)er- (A3)

For given I,m,l',m' the only value of M that gives non
7er0 Cyrmrimim 18 M = m — m/'. Thus, the double sum in
(A.2) is in fact a sum only over L, with M =m —m'.
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