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Abstract. We study the propagation of acoustic and elastic waves in random composites
consisting of spherical inclusions in a homogeneous elastic host (fluid or solid), using various
extensions of the Coherent Potential Approximation (CPA) method, well-known from the
electronic problem. We calculate the phase velocity, the scattering mean free path and the
transport velocity. The results are compared with experimental data and accurate compu-
tational results.
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The Coherent Potential Approximation (CPA) method, well known from the study
of the electron wave propagation in disordered solids, has been extended in recent
years to the problem of classical wave (CW) propagation in random composites. The
attempts to extend the CPA in the CW case gave rise to various versions of the
method which have been applied mainly to simple scalar (SS) and to electromagnetic
(EM) waves, with considerable success.

On the other hand, acoustic’ (AC) and elastic (EL) waves have received less at-
tention. The limited experimental data in connection with computational difficulties
(arising from the mixed longitudinal and transverse vector character of the elastic
waves and the resulting scattering induced mode conversion plus the two or three
parameters characterizing an acoustic or elastic medium) seem to be responsible for
this inattention to the field.

Recently, various versions of the CPA were applied to AC wave propagation in a
random composite consisting of glass spheres in water [1, 2]. They gave results in very
good agreement with recent experimental data [2]. Motivated by this success and by
some older experimental data, we apply in the present work the same CPA versions
as in ref. [1] to the case of AC and mainly EL wave propagation. Our study concerns
binary composites consisting of spheres of radius a (scattering material), randomly
placed in a host material. (In the following discussion the scattering material will be
characterized by the subscript ¢ (=in) and the host by (o (=out).)

Methods: The main idea of the CPA is the replacement of the random medium by a
homogeneous one (effective medium) characterized (in the simplest case of scalar CW)

LWith acoustic we mean density waves in macroscopically fluid systems.



by a complex propagation vector g. (the subscript e denotes the effective medium).
¢e (= |ge|) is calculated self-consistently, by requiring the vanishing of the average
forward scattering amplitude, f(0) = f(# = 0), of a plane wave, scattered by various
scattering units of the actual material (scattering configuration), embedded in the
effective medium.

The different ways of choosing these scattering units give rise to various versions of
the method, e.g. the simple CPA (S-CPA) and the coated CPA (C-CPA) [3] which
are used in the present work. Within the S-CPA two types of scattering units are
considered. The first one is an actual scattering material sphere, which is embedded
in the effective medium with probability p; = fs (fs: volume fraction of the spheres
in the actual composite). The second is a sphere of the same size formed by the host
material, embedded in the effective medium with probability ps = 1 — f;. For the
C-CPA the scattering units are a scattering material sphere coated by a host coating
(coated sphere of external radius ri) and a simple host material sphere (of radius
r9) with corresponding probabilities p; and ps. This choice represents the fact that
in the actual medium the two materials (scattering and host) are not topologically
equivalent. For the radii r1 and ry and the probabilities p1, pa, see ref. [3].

Taking into account the above, the CPA condition for the determination of the ¢.
assumes the form

< f(0) >c=p1f1(0) + p2f2(0) =0 (1)

with f1(0), f2(0) the forward scattering amplitudes when a plane wave is scattered by
the two scattering units.

From ¢., one can calculate immediately the phase velocity, ¢, = w/R(q.), and
the scattering mean free path , I, = 1/[25(g.)]. Our aim here is to calculate these
quantities for acoustic and mainly for elastic wave propagation, testing thus both
S-CPA and C-CPA in these more complicated cases.

Particular features of the AC and EL waves: In the EL wave case a homo-
geneous medium is characterized by two propagation vectors (two velocities), one for
longitudinal waves, q;. = w/¢., and one for transverse, ¢;c = w/c;.. Thus, for the
determination of the elastic effective medium one has to calculate ¢, ¢ plus the
density of the effective medium, p., which is essential for the calculation of ¢, g:e-
This requires at least two more conditions. One additional condition is obtained if
one takes into account that the EL wave forward scattering amplitude is different for
a longitudinal than for a transverse wave. Single scattering study shows that there
is no mode mixing in the forward direction. Applying Eq.(1) to f;(0) and f:(0)?
(the first subscript denotes the type of the incident wave and the second the type of
the scattered), one obtains two complex equations, enough for the calculation of g,
qte- The density of the effective medium, p., can be calculated either self consistently
or can be approximated by either the average density, fsp; + (1 — fs)po, or by the
long wavelength limit results. Our attempts for a self consistent calculation of the p,
didn’t have many successes. We tried this by requiring the vanishing of the converted
scattering amplitude, fi; in a direction other than the forward (fi; o fy; this vanishes
in the forward direction). In most of the cases convergence difficulties appeared. In
the cases in which a result could be obtained, this was very close to what is obtained
by using the approximate expressions for the density. The same problem exists also
in the pure longitudinal AC wave case. For AC waves we use Eq.(1) to calculate the

2For elastic waves the scalar amplitude fi: is given by ff;, where i is the polarization direction
of the incident wave and f;; the vector transverse scattering amplitude.
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Fig. 1: (a) Longitudinal wave phase velocity, clph, for a random system of spheres in an
elastic medium vs volume fraction of the spheres, f.. Long wavelength limit results. For the
system: po/p; = 1/4, cio/c1i = 8.66, Cii(o)/cri(o) = 1.415. (b) Transverse wave phase velocity,
¢P" for the same system as in (a).

¢e = q while for the determination of the p, we use the corresponding to the elastic
case approximations.

Results: We compare, first, results based on the C-CPA and S-CPA in the EL wave
case as shown in Fig.1. Fig.1(a) shows the phase velocity as a function of the volume
fraction of the scatterers for longitudinal waves propagating in a random system of
solid spheres in a solid host. Fig.1(b) presents the similar results for transverse waves.
These results have been obtained in the long wavelength limit. The S-CPA (dashed
line) and the C-CPA (solid line) curves are compared with accurate results (circles)
concerning the fce periodic system formed by the same material combination. Due
to the long wavelength, A (A > the characteristic lengths of the system), the wave
can not distinguish a periodic from a random system. Thus, the CPA results ought
to coincide with the accurate results of the periodic system. As one can see in Fig.1,
this is the case for the coated CPA. Moreover, S-CPA, while it doesn’t fail, seems to
be less successful.

In Fig.2 we show the phase velocities for longitudinal and transverse waves, propa-
gating in a random system consisting of Pb spheres (of volume fraction 5%) in epoxy
host (for Pb (epoxy): p = 11.3(1.202) g/cm?, ¢; = 2.21(2.64) km/s, ¢; = 0.86(1.2)
km/s). Here, both S-CPA results (dashed line) and C-CPA results (solid line) are in
very good agreement with the corresponding experimental data (triangles in Fig.2(a))
[4]. The dips in the phase velocities at kj,a ~ 0.3 (kj, = w/¢,) are close to the first
resonance in the Pb in epoxy single scattering cross section [5]. Moreover, the CPA re-
sults exhibit some small peaks which are not present in the experimental data. These
peaks are also due to the single scattering resonances which apparently are wiped out
by multiple scattering effects.

Going to higher concentrations CPAs become less successful. As the concentration
increases the enhanced multiple scattering effects become more pronounced.

Limiting case results: Applying Eq.(1) in the low concentration and the long
wavelength limit, we retrieve well known analytical results for these two limiting
cases.

Low concentration limit: In low concentrations of the scatterers we can take the
effective medium parameters to be equal to the host medium parameters plus small
correction terms. Expanding Eq.(1) in these terms (for the full elastic case) the follow-
ing relations result, connecting the scattering mean free paths, i) = 1/[23(qi(1). )],
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Fig. 2: Longitudinal (a) and transverse (b) phase velocity as a function of kj,a = wa/clo for
Pb spheres in epoxy. a spheres radius, c¢;, longitudinal velocity in Pb.

with the single sphere scattering cross sections:
lt = 1/n5 T¢.

(2)

ns is the number density of the scatterers and o;, o the single scattering cross

lz = 1/7150'1,

section, supposing longitudinal and transverse incident wave, respectively. Relations
(2) are quite analogous to the SS and EM wave case. The new feature is that, in low
concentrations, the [;(l;) is related only with o;(oy).

Long wavelength limit: Analyzing a plane wave in spherical waves, the scattering
amplitudes fi;, fiz can be written as a sum of partial scattering amplitudes, foi, fnte
each one from the scattering of each partial spherical wave (n). In the long wavelength
limit, fi; and f;; — 0 as w?. The w? contribution comes from the n = 0 and n = 1
partlal waves for the fi, and from the n = 1 for the f;;. Applying the CPA condition
(Eq.(1)), in the long wavelength limit, for the n = 0 and n = 1 partial forward
scattering amplitudes and for the configuration of the simple CPA, we obtain:

(a) For a random system of solids:

~ B, B, — B,

3B Tau, +(1_fs)330+4u6 =0

pe:fspi+(1_fs)po; fs (3)

B is the bulk modulus and g the shear modulus.
(b) For a random system of fluids:

B;

e 1 5 ]-_s
Po=Pe g L 125

f)2p0+/7@ n BO

Pi = Pe
fsp,i (1 ) B. (4)

The second equation in (4) is the well known Wood’s low.

Energy velocity - Energy CPA (E-CPA): In the case of enhanced multiple
scattering the coherent part of the wave becomes negligible. Thus, the phase velocity
- velocity related with coherent propagation - has no meaning. In that case the
propagation is described by the energy transport velocity, vg, defined by D = vgl*/3
(D: diffusion coefficient, [* transport mean free path). Experimental results in SS
and EM wave propagation have shown that vg, as a function of frequency, exhibits
pronounced dips close to the single scattering resonances in low concentrations while
as the concentration increases the dependence of the vy on the frequency becomes
smoother [6]. The dips in the low concentrations were attributed to the delay of the
wave inside the scatterers while as the concentration increases the scatterers provide
an additional path for the propagation permitting the wave to hop from one to the
neighboring scatterer, and reducing thus the above mentioned delay.
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Fig. 3: Energy velocity vs kioa = wa/ci, for Fig. 4: Energy velocity vs kioa = wa/ci, for
a random system of fluid spheres in a fluid. glass spheres in water. f.: volume fraction
fs: sphere volume fraction. of the spheres.

The velocity vg has been calculated accurately for scalar and EM waves only in the
low concentration limit [6]. One of the attempts to extend its calculation in higher
concentrations led to the energy CPA (E-CPA) [7] which we discuss next. The main
idea of the E-CPA is that in a random system energy should be homogeneous in
scales larger than the typical lengths of the system. Thus, energy CPA calculates
first a homogeneous medium with energy density equal to the average energy density
of the random medium. After that, the vg is calculated by considering the scattering
relative to this homogeneous medium [7, 1].

The attempts to apply the energy CPA in the EL wave case were completely un-
successful. This was due to the full vector character of the EL waves with the two
different velocities and the mode conversion effect. Calculation of the vg through the
E-CPA has as a result two different energy velocities one related with longitudinal
wave propagation and the other with transverse. The existence of two different en-
ergy velocities for EL waves in the strong scattering (diffusive) regime has no physical
meaning as, in this regime, successive conversions of the longitudinal to transverse
wave and vice versa take place. The question of the proper energy velocity for EL
wave propagation (or maybe which combination of our two energy velocities can give
a proper vg) is an open problem.

Below, we present vg results for AC wave propagation (for the calculation of vg
through E-CPA for AC waves see [1]). Our main aim is to check if the dependence of
vg on the volume fraction is similar to what has been found for the EM and scalar
wave propagation.

Fig.3 shows the vy as a function of the frequency for a random system consisting of
fluid spheres in a fluid host, with ¢,/c; = 3, p,/p; = 3, in four different concentrations.
As one can see, the picture is quite analogous to what happens in the SS and EM wave
propagation: dips in low concentrations (close to the single scattering resonances) and
smoothness of the vg as the concentration increases. As additional results show, these
features describe the vy dependence on the volume fraction in the cases where the
corresponding single scattering cross section exhibits strong resonances associated
with high concentration of the wave energy inside the sphere. The explanation is the
same to what is mentioned above for the EM waves.

A different picture is that of Fig.4 where we show vg results for a system consisting
of glass spheres in water. The different to the above and unexpected dependence
on the volume fraction can be attributed here to the fact that, in this system, the



wave does penetrate considerably into the glass sphere at the resonances, as the single
scattering study has shown [1].

In conclusion: The CPA describes the experimental results reasonably well. By
considering the single scattering cross section one obtains simple physical explanations
even for the minor discrepancies between the CPA results and the experimental data.
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