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PACS. 62.30 - Mechanical and elastic waves.
PACS. 43.20.Mq- Velocity and attenuation of acoustic waves.
PACS. 43.35.Bf — Ultrasonic velocity, dispersion, scattering, diffraction
and attenuation in liquids, liquid crystals, suspensions and emulsions.

Abstract. — Motivated by recent experimental results we test how well various extensions of
the well-known coherent potential approximation (CPA) determine the characteristics of the
acoustic wave propagation through a random composite consisting of glass spheres in water.
In spite of the approximate character of the methods, our results seem to be in reasonable
agreement with recent experimental data.

The coherent potential approximation (CPA) method widely used for electrons in disordered
solids has been extended in recent years to the problem of classical wave (CW) propagation
through random systems [1, 2, 3]. The efforts to extend the CPA to the CW case gave rise to
more than one versions of the method depending on the nature of the CW, the structure of
the system, and the quantity to be calculated. Various versions of the CPA have been applied
to simple scalar waves (SSW) and to electromagnetic waves (EMW) with results in reasonable
agreement with the existing experimental data [1, 2, 3].

On the other hand acoustic (AC) and elastic (EL) waves have received less attention.
Their study has been restricted mostly to periodic systems [4] or random systems in the
low concentration or long wavelength limit [1, 5]. The main reasons for this scarcity of
calculations are the theoretical difficulties of the problem combined with the absence of reliable
experimental data. The theoretical difficulties stem from ¢) the full vector character of the
ELW giving rise to scattering induced mode conversion; i) the more than one parameter
which characterize a homogeneous elastic medium (density and velocities) which require a
larger number of equations for their calculation. Thus one has to find a set of equations which
would produce optimum results without creating serious computational problems.

On the experimental side the difficulty is in the interpretation of velocity measurements
in the very interesting and poorly understood regime of resonant multiple scattering. In this
regime the study of the EMW and SSW has shown that the energy transport velocity, vg,
i.e. the velocity entering the diffusion constant, D (= wvgl/3), is the appropriate velocity
characterizing the propagation [6, 7, 8]. The velocity vg, as a function of frequency, was found

© Les Editions de Physique



8 EUROPHYSICS LETTERS

to exhibit pronounced dips near the single scattering resonances at low concentrations while as
the concentration increases its frequency dependence becomes smoother [3, 6, 7, 8, 9, 10]. The
dips at low concentrations are attributed to the delay of the wave inside the scatterers near
the resonances while the smoothness as the concentration increases is due to the fact that the
scattering material now provides an additional path for propagation because of the coherent
hopping of the wave from scatterer to nearby scatterers.

Recently, Page ef. al. measured for the first time, to the best of our knowledge, the diffusion
coefficient, the mean free paths (determining thus the transport velocity) as well as the phase
and group velocity for ACW propagating through a suspension of glass beads of radius a
immersed in water in the strong scattering regime [11, 12]. They determined velocities far
from the velocity of glass although the volume fraction of the glass beads (63%) was near the
close-packing. The present work is a brief presentation of calculational results motivated by
their data [11, 12], which thus allow us to test various extensions of the CPA in the particular
case examined by Page et. al.

We consider a random composite consisting of glass spheres (material ¢ (in) of volume
fraction f; = 63%) immersed in water host (material o (out)). We calculate the phase and
energy velocity, the scattering mean free path and the localization parameter in the composite
by the use of the simple CPA (S-CPA), the coated CPA (C-CPA) [2], and two versions of an
energy based CPA (E-CPA1 and E-CPA2, see below) [9].

The basic idea of the S-CPA and C-CPA is the replacement of the random medium by
a homogeneous effective medium with a complex propagation vector ¢. which is calculated
self-consistently [10, 13] by requiring that the scattering arising from the local substitution of
the effective medium by the actual medium should vanish on the average. Thus the effective
vector ¢, is calculated by :

p1fi1(4e, 9c) + p2fa(de,qc) = 0 (1)

where fi(qe,q.) (7 = 1,2) is the forward scattering amplitude for an incident plane wave
scattered by a scattering unit of the type i embedded in the effective medium with probability
pi.

Within the S-CPA the scattering unit of the type 1 (2) is regarded as a glass (water) sphere
of radius a embedded in the effective medium with probability p; = f; (p2 = 1 — f5). Within
the C-CPA the scattering unit of the type 1 is regarded as a coated sphere (the actual glass
sphere coated with a water coating) of external radius ry and the scattering unit of the type
2 as a simple water sphere of radius 7, (this choice reproduces the fact that the two materials
are not topologically equivalent). The radii of the two scattering units and the corresponding
probabilities throughout the present work are chosen either in the same way as in ref. [2] or
by the relations : py = py = 1/2, r; = 0.9386a/f31/3, ry = 0.;")572(1/1”31/3 with practically the
same results in all cases which have been examined.

From g. one can calculate immediately the scattering mean free path I, = 0.5/Im(q.), the
phase velocity ¢ = w/Re(q.) and the localization parameter k./;.

The self-consistency condition for the determination of the real effective propagation con-
stant, k,,, within the energy based CPA is that the total energy stored in a scattering unit
embedded in the homogeneous medium to be equal with the energy stored in a region of
the homogeneous medium of the same volume as this scattering unit [9]. The energies are
calculated by considering an incident plane wave. The basic scattering unit is regarded either as
a single coated sphere of radius rg = as/fs and concentration ny = f;/V,, where V, = 47Ta3/3
(E-CPA1) or a coated sphere (of radius r1 and concentration ny = f;/V,) and a simple sphere
(of radius ry and concentration ny = (1 — n1V7)/V2) (E-CPA2). V; = 47rrj3/3, j=1,2 and
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r1, 79 are as in the C-CPA.
The complex effective propagation vector, g., within either E-CPA1 or E-CPA2 is deter-
mined by :

4z =k — S(w) (2)
where the self-energy ¥(w) is obtained by using its low concentration expression [10] :

Y(w) = —47anifi(km,km) (3)

In eq.(3), fi(km, km) is the forward scattering amplitude for an incident plane wave scattered
by a scattering unit of the type ¢ embedded in the homogeneous medium k.,.

Within the E-CPA1 or E-CPA2 approach the transport velocity, vg, is calculated by
[6, 7,8, 3, 10] :

k2 — Re(X
vp = “2’ m 6( ) (4)

where the quantity é; is given by [6, 7, 8] :

8fi(km,km)] N / 50 do 5¢i<mk'm

6 =4mR —_— 5
i 7 Re| Ik 19 ok, (5)
B o 15 the phase of fi(kn, ki) and 22 = |fy(kn, Ki)l?
k, k' is the phase of fi(km, ky,) and —= = |fi(km, ky)["

In contrast to the SS and the EM waves where only one material parameter, namely the
velocity, defines the effective medium, for ACW one needs two parameters (e.g. velocity and
density). Thus one more self-consistency condition besides eq.(1) is needed. For the S-CPA
and C-CPA we attempted to put the average scattering amplitude in a direction other than
the forward equal to zero as well. In several cases this led us to convergence difficulties and/or
unphysical multiple solutions. We employed also an approximate expression for the effective
density (instead of a self-consistent one) appropriate for the long wavelength limit [5] as well as
the simple average p = fsp; +(1— f5)po. In the cases where the two self-consistency conditions
provide uniquely convergent solutions, the results were very close to those obtained by using
eq.(1) and the approximate expression of ref. [5] for the effective density. In the E-CPA the
density of the effective medium, p,,, was replaced either by the average density or by the long
wavelength limit effective density [5] with practically the same results.

Recently, success in predicting and understanding the basic features of the ACW and ELW
propagation in periodic systems was achieved by the use of the single scattering analysis [14].
Below, we apply this analysis in order to provide an explanation for of our CPA’s results. We
present first the total scattering cross section, o, for a plane ACW scattered by a glass sphere
immersed in water (fig.1 - solid line). One can see that the scattering cross section is not very
large. We show also the scattering cross section, op, by a rigid (hard) sphere immersed in the
water (dashed line), and the cross section, oy, calculated by subtracting from the glass sphere
scattering amplitude the rigid sphere scattering amplitude (dotted line) [14, 15]. o4 is clearly
lower than either o or oy, especially at the (rather weak) resonances, which means that the
wave does not penetrate appreciably within the glass sphere. This was verified directly by
calculating the energy density as a function of the distance from the center of the glass sphere.
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Fig. 1. — Total dimensionless cross section (o/ma’) vs koa = wa/c, for a glass sphere (solid line) and
for a rigid sphere (dashed line) both of radius a embedded in a water host. The dotted line represents
the cross-section calculated by subtracting from the glass sphere scattering amplitude the rigid sphere
scattering amplitude; w is the frequency and ¢, the wave velocity in the water.

As a result we expect the propagation velocity to be close to that of water. Furthermore, its
frequency variation is expected to be weak as a result of the rather smooth o vs w.

In fig.2a we show our results for vy according to the E-CPA2 together with the experimental
point [11]. The discrepancy is of the order of 10% or less. Note that the values of vy are very
close to ¢, and they do not exhibit any strong variation with frequency. Both of these features
are consistent with our expectations based on the previous analysis of the single scattering.
Furthermore, the weak dips of vg at k,a & 6 and 7.7 can possibly be attributed to the delay
of wave propagation due to its increased penetration inside the spheres as evidenced by the
corresponding peaks in os;. We have calculated vg at lower concentrations as well and we
found that the form of vy vs w is similar to that of fig.2a reinforcing thus our interpretation.

In fig.2b we present results for the phase velocity, ¢y, according to S-CPA, C-CPA and
E-CPA2. The agreement with the experimental results, especially for the C-CPA, is very good
to excellent with the exception of the frequency region arount k.a = 2.5 (ko = w/c,). We
think that this discrepancy (which can be reduced slightly if we average over the fluctuation in
the size of the glass spheres) is due to the increase of the multiple scattering in this frequency
region. This increase is due (i) to the resonance in the single scattering and (i7) to the
matching of the wavelength A\, = 27/k, with the nearest neighbor separation d =~ 2a, at
around k,a = 2.5. This matching makes the multiple scattering not only stronger but more
coherent as well, making thus more difficult for the CPA to describe the effect.

In fig.3 we show the scattering mean free path as a function of frequency calculated by
employing the same approximations for the effective density and the same configurations
as in the case of fig.2. The triangles and the circles indicate Page’s ef. al. experimental
result [12] while the dotted-dashed line shows the mean free path calculated by using the low
concentration expression /; = 1/no (n is the number density of the scatterers in the actual
material and o the single glass sphere cross section; it is remarkable that this simple formula
produces results not so different from the experimental ones in this very high concentration
system).

We can see that the mean free path which is calculated within the C-CPA approximates
better the experimental data than the S-CPA or the E-CPA2 mean free path. The discrepancy
between C-CPA and experimental result at k,a &~ 2.5, as well as, the frequency shift of the
theoretical curves compared to the experimental data can been attributed again to the increase
of the strength and the coherent nature of the multiple scattering discussed in connection with
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Fig. 2. — Energy transport velocity vg (a), and phase velocity cpn (b), versus the dimensionless
frequency koa = wa/c, for glass spheres of volume fraction 63% randomly placed in water. The
triangles and the circles indicate Page’s et. al. experimental result for spheres of radius 0.25 mm and
0.5 mm respectively. The solid, dashed, and dotted lines indicate the velocities calculated within the
E-CPA2, the C-CPA and the S-CPA respectively. ¢, is the wave velocity in the water and a the sphere
radius.

Fig. 3. — Scattering mean free path, {;, (in units of the sphere radius a), versus the dimensionless
frequency koa = wa/c, for glass spheres of volume fraction 63% randomly placed in water. The mean
free path is calculated within the S-CPA (dotted line), the C-CPA (dashed line), the E-CPA2 (solid
line) and by the low concentration expression {; = 1/no (dotted-dashed line). The triangles and
the circles indicate Page’s et. al. experimental result for spheres of radius 0.25 mm and 0.5 mm
respectively. ¢, 1s the wave velocity in the water.

fig.2. The discrepancies were reduced somehow when we took an average over slightly different
sphere radii.

Concerning the differences between the E-CPA2 result and the others, one has to notice that
the self-energy T(w) (from which the E-CPA2 mean free path was obtained (see eq.(2))) was
calculated by eq.(3) which is clearly a low concentration expression. In contrast, the S-CPA
and C-CPA do not employ any explicit low concentration approximation for obtaining either
velocity or mean free path. The above mentioned discrepancy becomes more pronounced if
one employs E-CPA1. We point out that all the methods tend, as expected, to the same low
concentration limit for the mean free path, I, = 1/no.

Finally, we mention that the calculated values of the localization parameter k.l; are not
close to the localization threshold (k.l;). = 0.84 [16] (or (k.ls). = 0.91 [10]) (the minimum
calculated value of k.l; as the frequency varies is 1.98, i.e. far from the critical region). This
implies the validity of the diffusion approximation in describing the energy propagation even
at these high concentration regimes.
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