Wave guides in two-dimensional elastic wave band gap materials
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We study the guiding of elastic waves through linear de-
fect modes created by introducing a line of defects in a two-
dimensional elastic wave band gap material. These defect
modes can act as waveguides in the frequency regime of the
gap. The transmission coefficient through these guides as a
function of frequency has been found to exhibit pronounced
dips. Here we confirm the existence of these dips, by present-
ing results for a variety of composites, and also we examine
in detail their origin.
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The propagation of classical (electromagnetic, acous-
tic, elastic) waves (CW) in periodic media has recently
received a great deal of attention. This attention stems
mainly from the possibility of creating periodic struc-
tures which exhibit in their spectrum band gaps, i.e. fre-
quency regions in which the CW propagation is prohib-
ited. These band gap structures can be proved very im-
portant for a lot of branches of science and technology
(e.g. filters, antennas etc.). Also, as classical periodic
media are clean and easily constructed experimental sys-
tems, they offer themselves for experimental study of a
variety of fundamental physical problems, mainly prob-
lems related with the disorder induced localization of the
waves.

The electromagnetic wave band gap materials (pho-
tonic crystals) have been thoroughly studied both theo-
retically and experimentally [1-7]. Despite the optimal
conditions for the appearance of gaps, the existence of
defect modes, surface states and guided waves have been
also examined in detail [5-7].

Concerning the elastic waves, we should mention that
their full longitudinal and transverse vector character
and the variety of parameters (density, longitudinal and
transverse velocity) that control their propagation make
them rich in physics and thus very interesting system.
This variety of parameters has been found that gives the
possibility of creation of very wide gaps in a large num-
ber of composites [8-14]. Concerning the existing study

of periodic composites, although the optimal conditions
for the appearance of gaps have been examined in detail,
there is a limited study for periodic systems with defects
and disorder induced phenomena [15-17]. Within this
work we try to do a step to this direction.

Here, we study the elastic wave propagation through
linear defect modes formed by producing a line of defects
(linear defect) in a two-dimensional (2D) periodic system
(a system of cylinders embedded periodically in a host)
exhibiting gaps. The linear defect is produced by remov-
ing one row of cylinders from the periodic system or by
reducing the radii of these cylinders.

For electromagnetic (EM) waves it has been shown
that a linear defect produced by removing one row of
cylinders from a periodic system exhibiting a gap can
support a localized mode and, when the mode frequency
lies inside the gap, this defect can act as a waveguide
(“linear defect guide”) which can propagate EM waves
with frequencies in the gap regime almost completely
without losses [6].
found to have very similar transmission characteristics

These “linear defect guides” were

with the conventional electromagnetic guides [18]. For
elastic waves, recent first results showed a possibility of
great guiding of the waves through the same type of de-
fects [19]. The transmission coefficient (7") through the
elastic “linear defect guides” however was found [19] to
exhibit pronounced dips for some frequency regimes in-
side the gap of the periodic system. These dips, which are
due to opening of gaps in the guided wave propagation
(gaps inside the gap of the periodic system), were at-
tributed (a) to the interference of the “complex” (mixed
longitudinal and transverse) guided modes and (b) to the
periodicity of the guide “boundaries”. The periodicity of
the “boundaries” implies a periodic potential in the al-
most one-dimensional (1D) guided wave propagation and
this potential can easily lead to opening of gaps in the
spectrum.

Here we confirm the existence of the above mentioned
dips in the transmission coefficient of the elastic “linear
defect guides” (guides formed as linear defects in elastic
wave band gap materials) by examining a variety of com-
posites. Also, we study in more detail the origin and the
position of these dips. The last is done through compar-
ison with the transmission of conventional elastic wave
guides and also through examination of the defect state
formation as one goes from a periodic system to a system
with a guide (i.e., as one gradually reduces the radii of



one row of scatterers).

The study of the transmission properties is performed
by using the Finite Difference Time Domain Method
(FDTD). The FDTD is based on the discretization of
the time dependent elastic wave equation in both the
space and the time domains. Through this discretization
one can obtain the displacement field as a function of
time at any point of a sample. The field as a function of
frequency, and thus the transmission coefficient, is cal-
culated by fast Fourier transforming of the time results.
(For the implementation of the FDTD method in this
kind of problems see Ref. [20]).

For a more detailed examination of the defect modes
we calculate the dispersion relation for the structure with
the defects. This is done by using the Plane Wave
(PW) method [8,9,14,17] in combination with a super-
cell scheme [17]. A supercell of the structure of inter-
est is repeated periodically and the dispersion relation
is calculated through Fourier transforming of the wave
equation.

Taking in to account that the existence of gaps is pre-
condition for the creation of localized modes, we choose
systems which have been found to exhibit wide gaps.
In this work we present results concerning composites
formed by Pb cylinders in PMMA host, W cylinders in
PMMA and Ag cylinders in epoxy. In most of the cases,
for the calculation of the transmission we consider sam-
ples of 7x8 cylinders, placed in a host within a square
array. For the FDTD implementation we consider 40 grid
points per lattice constant of the periodic structure and
for the PW supercell method 1089 plane waves.

We first study a system of Pb cylinders in PMMA.
The periodic system Pb cylinders in PMMA (in square
arrangement) exhibits a very wide full band gap for a
wide range of Pb filling ratios, f, with the widest gap
at filling ratio around 0.28 (which corresponds to a ratio
cylinder radius, r., over lattice constant, a, around 0.3).
Using the FDTD method and calculating the transmis-
sion coefficient for a periodic Pb in PMMA finite sample,
of r./a = 0.3, one can obtain the result shown in Fig.
1(a) - dashed line. For obtaining the result of Fig. 1(a)
we consider as incident wave a longitudinal pulse with a
Gaussian envelop in space, propagating in the (10) direc-
tion.

By removing completely one row of cylinders from the
periodic sample and by calculating the transmission co-
efficient through the “guide” formed, we obtain the re-
sult of Fig. 1(a) - solid line. We should note that the
transmission coefficient is determined by calculating the
transmitted energy flux in points one unit cell before the
exit of the guide (for the total transmission we average
over several points), and by dividing by the energy flux
of the incident wave (for the calculation of the incident
energy flux we remove completely the sample).

As can be seen in Fig. 1(a), the gap of the periodic
system has been replaced by a region of transmission al-

most equal to unity. The localized mode supported by
the linear defect of the missing cylinders has led to al-
most complete guiding of the wave through the crystal.
This guiding of the wave can be visualized very clearly
in Fig. 1(b), where we show the field over the sample at
a given time point.
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FIG. 1. (a): Solid line: Transmission coefficient (T') vs fre-
quency through a guide formed by removing one row of cylin-
ders from a Pb cylinders in PMMA periodic system. For
the periodic system the ratio of the cylinders radius over lat-
tice constant is rc/a = 0.3. w is the frequency and ci, is
the longitudinal sound velocity in PMMA. Dashed line: The
transmission coefficient for the undistorted system for the Pb
in PMMA periodic host. (b): The square of the field ampli-
The incident
wave 1s a monochromatic longitudinal plane wave of frequency
wafcio = 1.95. The units in the axes are grid pointsand
a = 40 grid points.

tude over part of the sample described at (a).

Close to the upper edge of the gap, one can see however
a dramatic drop of the transmission. This drop, which
appears also for transverse incident wave, is deep enough
and not very close to the upper edge of the gap as to be
attributed to leaking of the wave inside the crystal (due
to the less localized nature of the guided mode as we ap-
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proach the ends of the gap). Indeed, as is proved from
snapshot pictures like the one of Fig. 1(b), for wa/c,
between 2.15 and 2.25 the incident wave is reflected back
from the guide (¢, is the longitudinal wave velocity in
the host). This is a strong indication for the appearance
of gap in the guided wave propagation. The appearance
of this gap is confirmed through calculation of the dis-
persion relation for the system. The dispersion relation
result is shown in the right panel of Fig. 2. As has been
already discussed, the existence of gaps in the guided
wave propagation is not surprising as the propagation is
almost 1D and the periodicity of the guide “boundaries”
can easily open gaps in the spectrum.
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FIG. 2. Dispersion relation along the I'X axis for a system
of Pb cylinders in epoxy with r./a = 0.3. The pictures show
results for a 5x5 supercell of the composite, where the radius,
rq, of the third row of the cylinders is reduced gradually from
ra = rc (left) to rq = 0 (right), leading from a periodic system
to a guide.

It has been also discussed [19] that another parameter
possibly respounsible for the opening of gaps in the guided
wave propagation is the interference of the “complex”
(mixed longitudinal and transverse) guided modes. In
order to check the importance of this parameter we tried
to examine the transmission through an elastic guide
with straight, almost impermeable boundaries - “conven-
tional” elastic guide - (by using the FDTD). We formed
a conventional guide by replacing the finite periodic crys-
tal by two rectangular slabs of an homogeneous material
with very high density. The guide was formed leaving
a space between the two slabs. Calculating the trans-
mission for guide widths ¢ and 2a¢ we didn’t find any
regime where the transmission as a function of frequency
goes from high to considerably low values. This leads to
the conclusion that the dominant parameter for the gaps
in the guided modes spectrum is the periodicity of the
guide “boundaries”, and that the complex character of
the elastic modes has minor influence. This is expected
if one takes into account that the guided wave motion is
almost 1D and thus the mixing of the modes is not strong.
(In 1D longitudinal and transverse waves are uncoupled.)

Below we examine in more detail the formation of the
gaps in the guided wave propagation through the elastic
“linear defect guides”. We are interested to see whether
these gaps have the trend to appear close to the upper
edge of the gap of the periodic system or one can control
their position. To examine this, instead of removing a
row of cylinders from a periodic system, we gradually
reduce the radii of these cylinders and, using the supercell
PW method, we calculate the dispersion relation for the
resulting system. We consider a supercell of 5 X 5 unit
cells where we gradually reduce the radius (rg) of the
central row of cylinders (defect row) from ry = r. to
L — 0.

We can see that as we decrease the defects radius the
bands of localized states start to appear at the lower edge
of the gap and, as the r; is decreased more, they move
upwards. At r4 = r./2 there is a band of localized states
situated in the middle of the gap of the periodic system.
Calculating the transmission for this case (rq = r./2) by
using as incident wave a longitudinal pulse we can see
that the localized band does not appear in the trans-
mission coeflicient picture. Using however a transverse
incident pulse we can see a transmitted frequency regime
at exactly the same position as the corresponding bands
shown in Fig. 2 - third panel. In this case the guided
modes are mainly, but not exclusively, transverse and
are not coupled with the longitudinal incident pulse.

As ry is decreased more, more localized states start
to appear from the lower edge of the gap which move
upwards. We can see that for r; = 0 there is a small
gap remaining between the higher localized band and the
upper edge of the gap of the pure periodic system. This
small gap, as we mentioned above, is responsible for the
abrupt drop of the transmission coefficient shown in Fig.

1(a).
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FIG. 3. The same as in Fig. 2 for a system of Ag cylinders
in epoxy.

The appearance of the localized modes from the lower
edge of the gap as the r4 is decreased is not the only case
for the elastic waves. Studying a system of Ag cylin-
ders embedded in epoxy we can see that, as the rg is

decreased, the localized states start to appear from both



edges of the gap. For r; = 0 there is a gap in the sys-
tem of the guide which is situated almost in the middle
of the gap of the periodic host. The dispersion relation
for a system of Ag cylinders in epoxy where the radii of
one row of cylinders are gradually reduced is shown in
Fig. 3. For ry; = 0 the corresponding transmission co-
efficient [19], as is expected, exhibits a pronounced dip
at the regime of the small gap. This is the case also for
W in PMMA (there, the supercell method does not give
very accurate results for a 5x5 unit cells supercell, pos-
sibly due to the high density contrast between W and
PMMA). The transmission coefficient for a system of W
in PMMA with r./a = 0.3 and one row of missing cylin-
ders is shown in Fig. 4.
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FIG. 4. Solid line: Transmission coefficient (7') vs fre-
quency for a guide formed in a periodic system of W cylin-
ders in PMMA with r./a = 0.3. w is the frequency, a is
the lattice constant and c¢;, the longitudinal sound velocity
in PMMA. Dashed line: The transmission coefficient for the
periodic host.

Trying to examine if there are certain rules that deter-
mine the appearance of localized states as the rg is de-
creased, we found that, usually, for scatterers with wave
velocities lower or comparable than those of the host the
localized states tend to appear from the lower edge of the
gap of the periodic system. For scatterers with velocities
higher than those of the host the localized states seem
to appear from both the edges of the gap. This however
needs further examination.

As a conclusion, we can say that periodic elastic ma-
terials, due to their possibility to form large gaps, can
be used for the creation of very efficient wave guides
(elastic “defect guides”). This, however, is not valid at
any frequency regime inside the gap, as the transmission
through the elastic “linear defect guides” can exhibit pro-
nounced dips at certain frequency regimes. These dips
are due to opening of gaps in the guided wave propa-
gation. Responsible factor for these gaps seems to be,
mainly, the periodic “boundaries” of the guides, which
impose a periodic potential in the propagation of the
guided waves.
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