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Abstract. We present a review, through selected illustra-
tive examples, of the physics of classical vibrational
modes in phononic lattices, which elaborates on the theo-
ry, the formalism, the methods, and mainly on the numer-
ical and experimental results related to phononic crystals.
Most of the topics addressed here, are written in a self-
consistent way and they can be read as independent indi-
vidual parts.

Part I: Theory-formalism

1. Introduction

In recent years, propagation of classical waves [electro-
magnetic (EM) or elastic waves] in composite materials
with dielectric or, respectively, elastic properties which are
periodic functions of the position, with a period compar-
able to the wavelength of the corresponding field, has
been the object of considerable attention [1]–[4]. These
materials, photonic and phononic crystals, respectively,
whether they exist naturally or are artificially fabricated,
exhibit a rich variety of physical properties of interest to
fundamental and applied research. There are striking ana-
logies between the propagation of electrons in ordinary
crystals and EM/elastic waves in photonic/phononic crys-
tals (see Table 1), so that a great variety of multiple-scat-
tering (MS) methods as well as other traditional methods
originally developed for electronic-structure calculations
have been transferred to the field of photonic and phono-
nic crystals. The reader may consult the work of Modinos
et al. [5], where a theory of electron, EM, and elastic
wave propagation in systems consisting of nonoverlapping
scatterers in a host medium is presented. The theory pro-

vides a framework for a unified description of wave propa-
gation in three-dimensional periodic structures, finite slabs
of layered structures, and systems with impurities: isolated
impurities, impurity aggregates, or randomly distributed
impurities.

Phononic crystals, like photonic crystals, attracted a lot
of interest among researchers mainly because of the possi-
bility of frequency regions, known as absolute phononic
gaps, over which there can be no propagation of elastic
waves in the crystal, whatever the direction of propaga-
tion. At the beginning of this review we shall describe
briefly the methods presently available for the calculation
of the frequency band-structure of phononic crystals. The
plane-wave method (PW) [6, 7] seems the most forward
and, in conjuction with a supercell approach, can also
treat defects [8] and finite slabs [9]. However, it has con-
vergence problems, especially in the case of fluid-solid
composites [12]. A MS method emanating from the tradi-
tional Korringa-Kohn-Rostoker (KKR) method [10, 11]
developed for the calculation of the electronic structure of
solids appears to be numerically more efficient [12–14].
The above methods apply to infinite phononic crystals
made of non-dispersive lossless materials. In reality, how-
ever, one usually measures the transmittance or reflectance
of finite slabs, which may be dispersive or dissipative. The
well-known finite-difference-time domain (FDTD) method
[15–17] gives the transmission, reflection, and absorption
coefficients of elastic waves incident on a finite slab of a
phononic crystal, but it gets computationally cumbersome
for 3D systems [18]. Psarobas et al. [19] proposed an on-
shell layer-MS method for the calculation of the complex
band structure of 3D phononic crystals and of the trans-
mittance/reflectance of slabs of the same. The method is
similar to the layer-KKR (LKKR) method of low-energy
electron diffraction (LEED) [20] and electron emission
[21]. Liu et al. [13] proposed independently a method
along the same lines for the transmittance/reflectance of a
slab. Also a variational method was developed by
Sánchez-Dehesa et al. [22–24]. Finally, over the years,
certain combinations of the above methods appeared (see
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e.g. Ref. [25]), and well established numerical methods,
such as the finite element method and the transfer matrix
method have been used to address specific problems (e.g.,
a more complex geometry).

In this review, we present briefly the principles of the
MS and the FDTD methods. The rest of the main methods
appear in Part II through certain illustrative examples.
More detailed presentations can be found in other contri-
butions to this special issue. In addition, Part II also in-
cludes an extended collection of numerical results on pho-
nonic crystals, where the underlying physics is discussed.
Finally, Part III is solely devoted to various experimental
observations and results on the field.

2. Multiple scattering method

2.1 Introduction

Although the PW method is a very powerful tool for the
calculation of the dispersion relations of acoustic and elas-
tic waves, it fails in some important cases: It can not cal-
culate accurately the dispersion relation of mixed (fluid/
solid) composites, it also fails in cases where the contrast
in the material parameters between scatterers and host is
very high (due to the fact that very large-step functions
need an extremely large number of Fourier components in
order to be reproduced accurately).

These difficulties are overcome within the MS method,
an approach based on the well-known in the electronic
band-structure community Korringa-Kohn-Rostoker (KKR)
theory [10, 11, 26–28]. The success of this theory in both
electronic and electromagnetic [29–31] band-structure cal-
culations was a strong motivation for its application in the
acoustic/elastic problem as well. Moreover, in addition to
its capability to calculate dispersion for mixed composites
[12] and for high contrast composites [32], the MS meth-
od is capable to calculate transmission through finite slabs
of those composites, both periodic and random; thus it is
a valuable tool in the acoustic/elastic problem.

In what follows we will describe in detail the method
and its application to both band structure and transmission
calculations, restricting ourselves to three-dimensional per-

iodic or random systems consisting of solid or fluid scat-
terers in a fluid host, i.e. to the scalar version of the meth-
od. For the full vector version (including all possible
combinations of hosts and scatterers, bulk and layer-KKR)
see Refs. [19, 33] and [13, 34] as well.

2.2 Description of the method

2.2.1 Main equations

One begins with the observation that in a system of many
scatterers, either periodic or random, the incident wave at
each scatterer is the sum of the scattered waves by all the
other scatterers (plus the external field, if present). This
idea is used for the determination of the total field and,
through it, for the calculation of either the transmission
coefficient or the dispersion relation.

The application of the method starts by writing the total
pressure field pðrÞ in the fluid host of the system as [12]

pðrÞ ¼ p0ðrÞ þ
P

n
psc

n ðrÞ ; ð1Þ

where p0ðrÞ is the external field and psc
n ðrÞ the scattered

field by the scatterer at the position Rn. This scattered
field, psc

n ðrÞ, can be written as a sum of elementary spheri-
cal waves,

psc
n ðrÞ ¼ pscðr� RnÞ

¼
P
lm

bn
lmhlðkojr� RnjÞ Ylmðr� RnÞ : ð2Þ

(hl ¼ jl þ inl is the spherical Hankel function of the first
kind and order l [35], and ko ¼ w=co, with co the wave
velocity in the host material; Ylm are the spherical harmo-
nics [36, 37]). Thus, the determination of the total field of
Eq. (1) is reduced to the calculation of the coefficients bn

lm.
The determination of bn

lm is done by writing the incident
field at the scatterer at the position Rn as

pinc
n ðrÞ ¼ p0ðrÞ þ

P
p 6¼ n

psc
p ðrÞ : ð3Þ

Writing pinc
n ðrÞ as a sum of elementary spherical waves,

pinc
n ðrÞ ¼ pincðr� RnÞ

¼
P
lm

an
lmjlðkojr� RnjÞ Ylmðr� RnÞ ; ð4Þ
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Table 1. Band-structure-related properties of three periodic systems. (After Kushwaha et al. [1]).

Property “Electronic” crystal “Photonic” crystal “Phononic” crystal

Materials Crystalline solid
(natural or grown)

Constructed of at least 2
dielectric materials

Constructed of at least 2
elastic materials

Parameters Atomic numbers eðrÞ; mðrÞ
(E/M permitivities & permeabilities)

rðrÞ; clðrÞ; ctðrÞ
(Mass densities, sound speeds)

Lattice constant 1–5 �A (microscopic) 0.1 mm–1 cm (macroscopic) &1 mm (macroscopic)

Waves De Broglie (electrons) w EM (photons) (E, H) Vibrational or sound (phonons) u

Polarization Spin "; # Transverse
r � D ¼ 0ðr � E 6¼ 0Þ

Coupled shear-compressional
ðr � u 6¼ 0;r� u 6¼ 0Þ

Diff. equation �ð�h2=2mÞ r2 þ VðrÞ
� �

w ¼ i�h @tw r� er� E ¼ ðe=c2Þ @2
t E see Table footnotea

Free particle limit W ¼ �h2k2=2m (parabolic) w ¼ ck=
ffiffiffi
e
p

(linear) w ¼ cl; t k (linear)

Spectral region Radio waves, microwaves, optical, x-rays Microwaves, optical w . 1 GHz

a: �rc2
tr�r� uþr r � ðrc2

l uÞ
� �

� 2r � uþ u � rð Þ rðrc2
t Þ þ rðrc2

t Þ � r
� �

u ¼ r @2
t u:



and substituting this expression and Eq. (2) in Eq. (3), one
obtainsP

lm
an

lmjlðkojr� RnjÞ Ylmðr� RnÞ

¼ p0ðrÞ þ
P

p 6¼ n

P
lm

bp
lmhlðkojr� RpjÞ Ylmðr� RpÞ : ð5Þ

The coefficients bn
lm are proportional to an

lm,

bn
lm ¼ tn

l an
lm ) an

lm ¼ ½tn
l �
�1bn

lm ; ð6Þ

where the proportionality coefficients tn
l (¼ 1=ð�1þ iwn

l Þ
with wn

l ¼ Im ½ðtn
l Þ�
�1 ¼ real) can be found by solving a

single scattering problem [12, 38, 39]. Moreover, the sphe-
rical functions of (5) centered at Rp can be transformed to
functions centered at Rn,

hlðkojr� RpjÞYlmðr� RpÞ

¼
P
l0m0

jl0 ðkojr� RnjÞ Yl0m0 ðr� RnÞ g
ðhÞ
l0m0lmðRp � RnÞ

for jr� Rnj < jRp � Rnj ; ð7Þ

where

g
ðRÞ
l0m0lmðDÞ ¼

P
l

½ð�1Þðl
0 � l� lÞ=2 4pCl0m0; lm; lm�m0RlðkDÞ

� Ylm�m0 ðDÞ� ; R ¼ j or h ð8Þ

and Cl0m0; lm; lm are the Gaunt numbers [12, 36]. Substitut-
ing (6) and (7) in (5), interchanging the ðl0; m0Þ with the
ðl; mÞ in the r.h.s and writing the external field, p0, also as
a sum of spherical waves with center at Rn,

p0ðrÞ ¼
P
lm

a0n
lm jlðkojr� RnjÞ Ylmðr� RnÞ ; ð9Þ

we obtain (after few algebraic manipulations)P
l0m0

P
p
½ðtp

l0 Þ
�1 dll0dmm0dpn � g

ðhÞ
lml0m0 ðRp � RnÞ ð1� dpnÞ�

� bp
l0m0 ¼ a0n

lm : ð10Þ

Using Eq. (10), which constitutes a linear algebraic sys-
tem, one can calculate the coefficients bn

lm, and through
them the total field and the transmission coefficient, in
terms of the coefficients a0n

lm of the incident wave.
For the calculation of the dispersion relation of an infi-

nite periodic system, i.e. for the eigenmodes of the system
in the absence of any external field, the coefficients a0n

lm of
Eq. (10) are set equal to zero, the coefficients bp

lm of the
different lattice sites are connected through Bloch’s theo-
rem, i.e. bp

lm ¼ eik � ðRp �RnÞbn
lm, and one seeks the frequen-

cies for which the determinant of the homogeneous sys-
temP

l0m0
ðtp

l0 Þ
�1 dll0dmm0 �

P
p

eik � ðRp �RnÞ
�

� g
ðhÞ
lml0m0 ðRp � RnÞ ð1� dpnÞ

i
bn

l0m0 ¼ 0 ð11Þ

vanishes. The calculation of this determinant requires the
truncation of the summation over l0m0 and the calculation
of the “infinite” sum

P
p

eik � ðRp �RnÞg
ðhÞ
lml0m0 ðRp � RnÞ. The

way to perform this calculation, since the sum is not con-
vergent, is through a technique known as Ewald’s summa-

tion [12, 28, 40], which transforms the non-convergent to
two equivalent convergent sums. The Ewald’s summation
procedure as it is applied in our case is described in detail
in Ref. [12].

2.2.2 Generalized transmission coefficient

The transmission coefficient, T , for an acoustic wave
transmitted through a periodic or random finite system
is given by the transmitted energy flux (in the far field
regime), normalized by the incident energy flux,
T ¼ jJj=jJ0j. The energy flux vector, J, is given by

Ji ¼ ðRe sijÞ ðRe _uujÞ ¼
w Im ðs*ijujÞ

2
; ð12Þ

where uj are the components of the displacement vector,
u, and sij are the stress tensor components [41]. The last
part in the r.h.s. of Eq. (12) is obtained for a time depen-
dence of the form u; s / e� iwt.

For fluids sij ¼ �pdij and u ¼ rp=ðrw2Þ; thus,
Eq. (12) becomes

J ¼ � 1

2rw
Im ½p*ðrpÞ� : ð13Þ

For an incident wave of the form

p0ðrÞ ¼ hlðkorÞ YlmðrÞ ; ð14Þ

and in the far field (r !1), we have

p0ðrÞ ¼ ð�iÞlþ 1 1

ko
YlmðrÞ

eikor

r
¼ f 0ðr̂rÞ eikor

r

and J0
r ¼ �

1

2rw

ko

r2
jf 0ðr̂rÞj2 : ð15Þ

Under the presence of the sample (in the far field),

pðrÞ ¼ p0ðrÞ þ
P

n
psc

n ðrÞ ¼ ½f 0ðr̂rÞ þ f scðr̂rÞ� eikor

r

) Jr ¼ �
1

2rw

ko

r2
jf 0ðr̂rÞ þ f scðr̂rÞj2 : ð16Þ

Thus

qT ¼ 1þ f scðr̂rÞ
f 0ðr̂rÞ

����
����2 : ð17Þ

The scattering amplitude f sc can be calculated usingP
n

psc
n ðrÞ ¼ f scðr̂rÞ ðeikorÞ=r and the expansions of the

psc
n ðrÞ in the far field. Manipulating these expansions prop-

erly, one can find either the expression

f scðr̂rÞ ¼
P
n

P
lm

P
l0m0

bn
lmg
ðjÞ
l0m0lmðRnÞ

ð�iÞl
0 þ 1

ko
Yl0m0 ðrÞ ð18Þ

or its alternative,

f scðr̂rÞ ¼
P
n

P
lm

bn
lm

ð�iÞlþ 1

ko
Ylmðr� RnÞ eikojRnj cos qn ;

ð19Þ

with qn the angle between r and Rn.
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3. Finite difference time domain method

3.1 Introduction

The FDTD method presented here is based on the discreti-
zation of the full elastic time dependent wave equation
through a finite difference scheme. Both the time and the
space derivatives are approximated by finite differences
and the field at a given time point is calculated through
the field at the previous points. Thus, one can obtain the
field as a function of time at any point of a slab. The
frequency dependence of the field is obtained through fast
Fourier transform of the time results.

The FDTD method, while it was well known in the
acoustics and seismology communities [42]–[45], had not
been applied until only few years ago in the study of pho-
nonic crystals. Here the most important advantages of the
method are that: a) it can give the field at any point inside
and outside a sample, at every time; b) it can give the
field in both frequency and time domains; c) its results
can be directly compared with the experimental data, since
the method calculates the transmission through finite sam-
ples; d) it can be applied in systems with arbitrary materi-
al combination (e.g. solids in fluids or fluids in solids); e)
it can be applied in periodic systems as well as in systems
with arbitrary configuration of the scatterers, giving thus
the possibility to study defect states, waveguides, random
systems etc. These important advantages of the method
have been already exploited extensively in the field of
electromagnetic wave band gap materials (photonic crys-
tals) [46]–[51]. Here we will present the method as it is
applied in elastic two-dimensional systems, i.e. systems of
cylinders embedded in a host material, for transmission
coefficient calculations.

3.2 Description of the method

The elastic wave equation in isotropic inhomogeneous
media is [41],

@2ui

@t2
¼ 1

r

@sij

@xj
; ð20Þ

where sij ¼ lðrÞ ulldij þ 2mðrÞ uij and uij ¼ ð@ui=@xj

þ @uj=@xiÞ=2 (in Cartesian coordinates). In the above ex-
pressions ui is the ith component of the displacement vec-
tor, uðrÞ, sij are the stress tensor components and uij the
strain tensor components; lðrÞ and mðrÞ are the so-called
Lamé coefficients of the medium [41] and rðrÞ is the
mass density. The l, m and r are connected with the wave
velocities in a medium through the relations m ¼ rc2

t and
l ¼ rc2

l � 2rc2
t , where cl and ct are, respectively, the ve-

locity of the longitudinal and the transverse component of
the wave. In a multicomponent system the l, m and r are
discontinuous functions of the position, r.

As was mentioned above, here we consider systems
consisting of infinitely long cylinders embedded in a
homogeneous material. A cross section of such a system
(periodic) is shown in Fig. 1. We consider the z axis to be
parallel to the axis of the cylinders and propagation in the
x––y plane. As the system has translational symmetry
along z-direction, the parameters lðrÞ, mðrÞ and rðrÞ do

not depend on the coordinate z, and the wave equation for
the z component is decoupled from the equations for the x
and the y component. The equations for the x and the y
component can be written as

@2ux

@t2
¼ 1

r

@sxx

@x
þ @sxy

@y

� �
;

@2uy

@t2
¼ 1

r

@sxy

@x
þ @syy

@y

� �
;

ð21Þ

where

sxx ¼ ðlþ 2mÞ @ux

@x
þ l

@uy

@y
;

syy ¼ ðlþ 2mÞ @uy

@y
þ l

@ux

@x
;

sxy ¼ m
@ux

@y
þ @uy

@x

� �
:

ð22Þ

The above Eqs., (21) and (22), constitute the basis for
the implementation of the FDTD in 2D systems. For this
implementation the computational domain is divided into
imax � jmax subdomains (grids), with dimensions Dx; Dy,
and the displacement vector components are discretized
according to

u‘ði; j; kÞ ¼ u‘ði Dx; j Dy; k DtÞ ; ‘ ¼ x; y ; ð23Þ
with 1 � i � imax, 1 � j � jmax and k � 0.

In the Eqs. (21) and (22), the derivatives are ap-
proximated in both space and time with finite differences
[46]. For the space derivatives, central differences are
used:

@u‘
@x

����
i; j; k
� Dx

0u‘ði; j; kÞ

¼ ½u‘ðiþ 1=2; j; kÞ � u‘ði� 1=2; j; kÞ�=Dx ;

ð24Þ
@u‘
@y

����
i; j; k

� Dy
0u‘ði; j; kÞ

¼ ½u‘ði; jþ 1=2; kÞ � u‘ði; j� 1=2; kÞ�=Dy :

For the time derivatives, a combination of forward and
backward differences are used:

@2u‘
@t2

����
i; j; k
� Dt

þDt
�u‘ði; j; kÞ ; ð25Þ

where

Dt
þu‘ði; j; kÞ ¼ ½u‘ði; j; k þ 1Þ � u‘ði; j; kÞ�=Dt ;

Dt
�u‘ði; j; kÞ ¼ ½u‘ði; j; kÞ � u‘ði; j; k � 1Þ�=Dt ;

ð26Þ

and ‘ ¼ x; y:
From the equation for ux of (21), expanding around

ði; j; kÞ and following the procedure described above, one
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Fig. 1. The computational cell.



obtains

uxði; j; k þ 1Þ ¼ 2uxði; j; kÞ � uxði; j; k � 1Þ

þ D2
t

rði; jÞ Dx
½sxxðiþ 1=2; j; kÞ � sxxði� 1=2; j; kÞ�

þ D2
t

rði; jÞ Dy
½sxyði; jþ 1=2; kÞ � sxyði; j� 1=2; kÞ� :

ð27Þ

Similarly, from the equation for uy of (21), expanding
around ðiþ 1=2; jþ 1=2; kÞ, one finds

uyðiþ 1=2; jþ 1=2; k þ 1Þ
¼ 2uyðiþ 1=2; jþ 1=2; kÞ � uyðiþ 1=2; jþ 1=2; k� 1Þ

þ D2
t

rðiþ 1=2; jþ 1=2Þ Dx

(

� ½sxyðiþ 1; jþ 1=2; kÞ � sxyði; jþ 1=2; kÞ�
)

þ D2
t

rðiþ 1=2; jþ 1=2Þ Dy

(

� ½syyðiþ 1=2; jþ 1; kÞ � syyðiþ 1=2; j; kÞ�
)
:

ð28Þ
The sxx, sxy, syy at the time k Dt are functions of the

displacement vector components at the same time, k Dt,
and are used for the updating of the fields for the next
time. They are also discretized through Eq. (24) and their
expressions after the discretization are given in 3.3.

The discretization presented in the previous equations
insures second order accurate central differencing for the
space derivatives. This has as a result, however, the field
components ux and uy to be located at different space
points, i; j for the ux and iþ 1=2; jþ 1=2 for the uy.

Using the procedure described above, the components
ux and uy at the time step k þ 1 are calculated through
their values at the step k. For insuring stability of the cal-
culation the stability criterion used is [46]

Dt � 0:5=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Dx2 þ 1=Dy2

p
; ð29Þ

where the velocity c is the highest among the sound velo-
cities of the components of the composite.

To treat periodic systems, one can use Bloch’s (peri-
odic) boundary conditions [uðrþ RÞ ¼ exp ðik � RÞ uðrÞ
(R: lattice vector)] at the boundaries of the computational
system along the propagation direction (at the i ¼ 1 and
i ¼ imax of Fig. 1 –– see dotted lines in Fig. 1), reducing
thus considerably the computational memory and time.

For closing the computational space along the other
boundaries, avoiding any back reflection from those
boundaries, usually absorbing boundary conditions are
used. Absorbing conditions are used also in all boundaries
if non-periodic systems are treated. Among a variety of
absorbing boundary conditions which have been discussed
and utilized in the literature, the most common are the so-
called Mur’s [46, 52] and Liao’s [46, 53] boundary condi-
tions. Here we will present the absorbing conditions intro-

duced by Zhou et al. [44, 45], which are first order ab-
sorbing conditions, giving almost no reflection from the
boundaries, even after long computational times. Zhou’s
conditions are obtained by requiring the reflection at the
boundaries to be zero for two angles of incidence (q1, q2);
they can be written in the form

A
@�uu
@x
þ B

@�uu
@y
þ I

@�uu
@t
¼ 0 ; ð30Þ

where I is the identity 2� 2 matrix, �uu is the 2� 1 matrix
½ux; uy�T (T denotes the transpose of a matrix), and A, B
are 2� 2 matrices. For the boundary j ¼ jmax the matrices
A and B can be expressed as

Aðq1; q2Þ ¼
h1

h1x2 � h2x1
Q2 �

h2

h1x2 � h2x1
Q1 ; ð31Þ

B ðq1; q2Þ ¼
x2

h1x2 � h2x1
Q1 �

x1

h1x2 � h2x1
Q2 ; ð32Þ

with

Q1 ¼
clox2

1 þ ctoh2
1 ðclo � ctoÞ x1h1

ðclo � ctoÞ x1h1 cloh2
1 þ ctox2

1

" #
; ð33Þ

Q2 ¼
clox2

2 þ ctoh2
2 ðclo � ctoÞ x2h2

ðclo � ctoÞ x2h2 cloh2
2 þ ctox2

2

" #
; ð34Þ

and xi ¼ sin qi, hi ¼ cos qi (i ¼ 1; 2). clo and cto are, re-
spectively, the longitudinal and the transverse wave velo-
city in the host material of the composite. For the bound-
ary j ¼ jmin the expressions of A and B are obtained from
Eqs. (31) and (32) by replacing qi by qi þ p (i ¼ 1; 2).

The condition (30) is discretized also using central dif-
ferences in space and forward differences in time. For the
implementation of (30) in phononic systems the require-
ment of complete absorption for q1 ¼ 0 and q2 ¼ p=4
gives in most of the cases exceptionally satisfactory re-
sults.

For calculating the transmission, the incident wave that
is usually used is a pulse with a Gaussian envelop in
space. The pulse is formed at t ¼ 0 at the left side of the
composite and propagates along the y-direction (see
Fig. 1) A longitudinal pulse like that has the form

uy ¼ a sin ðwt � y=cloÞ exp ½�bðwt � y=cloÞ2� ; ð35Þ
while for a transverse one uy is replaced by ux and clo by
cto. The incident pulse is narrow enough in space as to
permit the excitation of a wide range of frequencies.

The components of the displacement vector as a func-
tion of time are collected at various detection points de-
pending on the structure of interest. They are converted
into the frequency domain using fast Fourier transform.
The transmission coefficient (T) is calculated either by
normalizing the (frequency dependent) transmitted field
intensity (u2

x þ u2
y) by the incident field intensity or by

normalizing the transmitted energy flux vector, J
(Ji ¼ sij duj=dt for real fields), by the incident one.

The pure acoustic waves case (waves in fluid compo-
sites) can also be treated with the FDTD using the
Eqs. (21)–(22), but one has to omit the terms containing
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the Lamé coefficient m. The equations are discretized
through the same procedure as for the full elastic case.
The boundary conditions coefficients are calculated again
through the Eqs. (31)–(34) where the velocity cto must be
replaced by clo (this replacement is essential in all the
cases where the host material is fluid).

3.3 The calculation of the coefficients sxx, syy, sxy

sxxðiþ 1=2; j; kÞ ¼ ðlþ 2mÞ ðiþ 1=2; jÞ
� ½uxðiþ 1; j; kÞ � uxði; j; kÞ�=Dx þ lðiþ 1=2; jÞ
� uyðiþ 1=2; jþ 1=2; kÞ � uyðiþ 1=2; j� 1=2; kÞ
� �

=Dy ;

ð36Þ

sxxði� 1=2; j; kÞ
¼ ðlþ 2mÞ ði� 1=2; jÞ ½uxði; j; kÞ � uxði� 1; j; kÞ�=Dx

þ lði� 1=2; jÞ
� ½uyði� 1=2; jþ 1=2; kÞ � uyði� 1=2; j� 1=2; kÞ�=Dy ;

ð37Þ

sxyði; jþ 1=2; kÞ
¼ mði; jþ 1=2Þ ½uxði; jþ 1; kÞ � uxði; j; kÞ�=Dy

þ mði; jþ 1=2Þ
� ½uzðiþ 1=2; jþ 1=2; kÞ � uyði� 1=2; jþ 1=2; kÞ�=Dx ;

ð38Þ

sxyði; j� 1=2; kÞ
¼ mði; j� 1=2Þ ½uxði; j; kÞ � uxði; j� 1; kÞ�=Dz

þ mði; j� 1=2Þ
� ½uyðiþ 1=2; j� 1=2; kÞ � uyði� 1=2; j� 1=2; kÞ�=Dx ;

ð39Þ

sxyðiþ 1; jþ 1=2; kÞ ¼ mðiþ 1; jþ 1=2Þ
� ½uxðiþ 1; jþ 1; kÞ � uxðiþ 1; j; kÞ�=Dy

þ mðiþ 1; jþ 1=2Þ
� ½uyðiþ 3=2; jþ 1=2; kÞ � uyðiþ 1=2; jþ 1=2; kÞ�=Dx ;

ð40Þ

sxyði; jþ 1=2; kÞ ¼ mði; jþ 1=2Þ
� ½uxði; jþ 1; kÞ � uxði; j; kÞ�=Dy þ mði; jþ 1=2Þ
� ½uyðiþ 1=2; jþ 1=2; kÞ � uyði� 1=2; jþ 1=2; kÞ�=Dx ;

ð41Þ

syyðiþ 1=2; jþ 1; kÞ ¼ ðlþ 2mÞ ðiþ 1=2; jþ 1Þ
� ½uyðiþ 1=2; jþ 3=2; kÞ � uyðiþ 1=2; jþ 1=2; kÞ�=Dy

þ lðiþ 1=2; jþ 1Þ
� ½uxðiþ 1; jþ 1; kÞ � uxði; jþ 1; kÞ�=Dx ; ð42Þ

syyðiþ 1=2; j; kÞ ¼ ðlþ 2mÞ ðiþ 1=2; jÞ
� ½uyðiþ 1=2; jþ 1=2; kÞ � uyðiþ 1=2; j� 1=2; kÞ�=Dy

þ lðiþ 1=2; jÞ ½uxðiþ 1; j; kÞ � uxði; j; kÞ�=Dx : ð43Þ

Part II: Theory-numerical results

4. General remarks

This section serves as an introduction to the vibrational
band structures of periodic elastic composites which is the
main theme of this review. Most of the composites now
proposed for practical applications have only two constitu-
ents, and we will focus our attention on this class of com-
posite materials; albeit improved fabrication technology is
expected to lead to the synthesis of more sophisticated
composite materials in the future. An important motivation
for a systematic investigation of the vibrational band struc-
ture of phononic crystals came from the analogous theore-
tical and experimental findings in photonic crystals. EM
waves in photonic crystals and elastic waves in phononic
crystals represent classical analogues of the quantum me-
chanical waves of electrons in crystals. Some contrasting
properties of electronic, photonic, and phononic crystals
are listed in Table 1. Of special interest are phononic crys-
tals, tailored from two materials which differ in their elas-
tic properties, with a complete absolute frequency-gap;
this is a frequency region wherein phonons (vibrations)
are prohibited, irrespective of the polarization of the pho-
non and of the direction of its propagation in space.

From a fundamental point of view, cleverly synthesized
periodic elastic composites exhibiting a complete band-gap
may offer a systematic route to realize the Anderson loca-
lization of sound and vibrations, just as the Anderson lo-
calization of light. The term localization has recently ap-
peared in the literature on wave propagation in random
media, but less commonly than in the theory of disordered
condensed systems. Shortly after the seminal paper of An-
derson on electron localization in disordered systems [54],
the problem of phonon localization in random systems
was considered [55]. However, a closely related subject of
localization of elastic (and acoustic) waves in macroscopic
systems, where the role of the disordered material is
played by a medium with a sharply varying elastic (and
acoustic) properties which can strongly scatter the respec-
tive vibrations, has drawn attention only more recently
[56]–[61]. The concept of classical localization focused
initially on elastic waves in disordered solids. John et al.
[62–64] studied the localization of phonons in a 2þ e
dimensions using a first-principles theory based on the
field theoretical formulation of electron localization by
Wegner [65]. It was demonstrated that all finite-frequency
phonons in one and two dimensions are localized with
low-frequency localization length diverging as w�2 and
e1=w2

, respectively, and that a mobility edge, w*, separat-
ing low-frequency extended states from high-frequency lo-
calized states exist for n > 2; n refers to the number of
dimensions. This field theory (or nonlinear s-model) was
later recovered and extended by diagrammatic perturbation
techniques [66]. Other important theoretical [67]–[76] and
experimental [77]–[86] developments related with the clas-
sical wave localization were exhaustively discussed in [3].

From practical point of view, periodic elastic compo-
sites comprised of two (or, more) different materials are
becoming of increasing importance in modern technology.
Such composites allow the tailoring of some special prop-
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erties, unavailable in their homogeneous constituents. A
periodic elastic composite can be synthesized such as to
exhibit a complete elastic band-gap. Thus a vibrator or a
small (real) crystal introduced into an otherwise periodic
composite as a defect would be unable to generate sound
or vibrations within the band-gap. This implies that such
periodic elastic composites could be engineered to provide
a vibrationless environment for high precision mechanical
devices in a given frequency range. Ferroelectric, piezo-
electric, pyroelectric, and piezomagnetic periodic compo-
sites have had long-standing applications as medical ultra-
sonic and naval transducers, as well as for related tasks in
medical imaging [87]–[96]. Such composites were initi-
ally constructed and used for sonar applications, and are
now being widely used for ultrasonic transducers. Com-
bining, for example, a piezoelectric ceramic and passive
polymer to form a periodic composite allows the transdu-
cer engineer to design new piezoelectrics which offer sub-
stantial advantages over the conventional piezoelectric
ceramics and polymers. The novelty of the resultant struc-
ture lies not in the constituents but in the way they are
assembled to produce materials with properties suitable to
each specific application. The effective properties of the
composites are usually expressed in terms of averages
over the properties of the constituents. However, examin-
ing these composites on a scale in which the substructure
of the constituent ceramic and polymer are evident leads
one to understand the principles used to design the com-
posite. Often these substructures are just miniature ver-
sions of transducers familiar to the design engineer on a
much larger scale.

The extensive research on elastic and/or acoustic peri-
odic composites actually started when Sigalas et al. [97]
reported a narrow but complete band-gap for Au cylinders
in Be matrix. The opening up of the spectral gaps in a
perfectly periodic, binary elastic composite owes, in gener-
al, to five mismatched parameters involved in the problem.
These are the ratio of the mass densities, ratio of the long-
itudinal velocities, ratio of the transverse velocities, ratio
of the longitudinal and transverse velocities, and the filling
fraction. The prospects of achieving such band-gaps for
acoustic waves in periodic binary system of liquids and/or
gases would, however, much improve because only long-
itudinal modes are supported therein. This means that only
three parameters will effectively be involved. Both elastic
and acoustic cases thus contrast their photonic counter-
parts where only two dimensionless parameters are in-
volved. It is thus conceivable that the phononic crystals
offer a richer –– and more complex –– behavior, and may
require relatively more extreme conditions for the obten-
tion of complete band-gaps.

At the outset, it is interesting to remark that in all arti-
ficial periodic structures the existence of complete gaps is
attributed to the joint effect of the Bragg diffraction and
the Mie scattering. The destructive interference due to
Bragg diffraction accompanied by the Mie resonances due
to strong scattering from individual scatterer is the concep-
tual base of a complete gap. The latter becomes effective
when the dimension of the scatterer is close to an integer
multiple of wavelength [97]. A complete gap is, by defini-
tion, the one that persists independent of the direction of

propagation and of the polarization of the wave. However,
if the separability of the z and x––y modes is legitimate, as
is the case with the two-dimensional (2D) phononic crys-
tals, the term absolute is preferred to complete, just to
avoid the confusion. As a matter of fact, each of these
modes can be excited independently of the other, at least
in the 2D phononic crystals. Such a separation of the
z- and x––y modes suggests an application, namely, a po-
larization filter. Suppose that the elastic/acoustic waves of
arbitrary polarization are incident at the surface of a peri-
odic composite. Then, provided that their frequency lies
within a band gap for z modes, the z-polarization compo-
nent will be totally reflected, and only the x––y modes will
be transmitted.

In conclusion, the literature is a live example that, de-
spite some of the scattered articles [98]–[100] remotely
concerned with the subject, research in phononic crystals
became more solid [101]–[150]. New ideas emerged for
potential device applications, but the driving force was the
rich fundamental physics governing the elastic wave pro-
pagation in diversely designed phononic crystals. The opti-
mum choice for the design of such phononic crystals
which can (and do) exhibit complete large band gaps, irre-
spective of the dimensionality of the system, is governed
by the topology of the resultant structure. The early ex-
perience of the two above-mentioned research groups led
to infer that it is the cermet topology that favors the crea-
tion of elastic/acoustic stop bands as compared to the net-
work topology that favors the creation of the optical band
gaps in the photonic crystals. These two topologies are
illustrated in Fig. 2. W note that in describing the results
reported in the following sections, we reserve the term
elastic (acoustic) waves for the sound/vibrations propagat-
ing in inhomogeneous solids (fluids). In addition, it should
be pointed out that we will sometimes recall some equa-
tions directly from Ref. [4], without specifying further de-
tails. In that sense, the following sections heavily rely on
Ref. [4].

5. Longitudinal vibrations

In this section we aim at describing the numerical results
on the band structure related problem for longitudinal vi-
brations, which include both acoustic and elastic waves.
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Fig. 2. The cermet topology which is favored by elastic wave con-
sists of high index (low velocity) inclusions in a connected low index
(high velocity) background. The network topology favored by EM
waves consists of two interpenetrating, connected components.



While the former are the well-known modes supported
only by the liquids and gases, the propagation of the latter
is allowed only within a one-dimensional inhomogeneous
medium; two- and three-dimensional inhomogeneous med-
ia do not support purely longitudinal elastic waves.

5.1 One-dimensional systems

Here we start with a simplest example for understanding
how the band-gaps (or stop-bands) can be realized in a
one-dimensional periodic system. This could be visualized
as an infinitely long and thin tube of fluid that has been
perturbed by a periodic (of period ‘d’) d-function-like var-
iations (increases or decreases) in the density along its
length. In this situation, the dispersion relation between
the Bloch vector K and the (bulk) frequency w is given by
[99]

cos ðKdÞ ¼ cos ðkdÞ � s

2
ðkdÞ sin ðkdÞ � f ðkdÞ : ð44Þ

Equivalence between Eqs. (44) and (2.42) in Ref. [4] is
evident: with k ¼ w=cl, where cl refers to the longitudinal
speed in the bulk between the d-functions, and
s ¼ r1d1=r2d is a measure of the strength of d-functions.

Clearly, Eq. (44) can only be satisfied for jf ðkdÞj � 1.
For frequency values kd where this condition holds, the
propagation through the lattice is allowed; for a range of
kd where it is violated, the band-gaps appear. These re-
sults are indicated schematically, for s ¼ 2, in Fig. 3.
Although this proof of the opening up of band-gaps is one
dimensional, the scalar nature of the sound field is closely
paralleled by the scalar (spinless) Schrödinger electron

function that observes energy band structure in many
three-dimensional periodic potentials-Kronig-Penney mod-
el, for instance, illustrates the similar picture. From the
plots of two step functions 	q½1� jf ðaÞj�, with a ¼ kd,
as bold solid line, one can see enclosed by rectangles the
first three propagation windows, each of which begins at
a ¼ np; n ¼ 0, 1, 2. The condition a ¼ np implies
d ¼ nðlk=2Þ and hence occurs when an integer number of
half wavelengths of a normal-mode wave function fits
across one period interval of length d. In order to probe
the acoustic band, as depicted in Fig. 3, Dowling [99] also
considered the steady-state power output of a localized
source in the tube of fluid with a periodically varying den-
sity. The computed radiated energy from such a source led
him to infer that it would be possible to quench these
sources at the frequencies lying within the band-gaps,
while amplifying their outputs in the propagation win-
dows. This is analogous to the behavior of one-dimen-
sional “atom” radiating electromagnetically between one-
dimensional mirrors.

Next we turn to the propagation of elastic waves in one-
dimensional superlattice systems. Longitudinal modes in
such systems are supported in the situation discussed in the
beginning of Sec. 2.5 in Ref. [4]. Here we are concerned
with a binary superlattice system made up of alternate
layers of Al and epoxy [100]. The band structure for long-
itudinal elastic waves propagating in this system is de-
picted in Fig. 4. Numerical results in this figure are based
on Eq. (2.41), with cti replaced by cli and the propagation
vector ~kkk ¼ 0. The layering gives rise to the splitting of
longitudinal waves with Bloch vector q ¼ 	2np=d; d
being the period. In general, real q leads to the allowed
bands and imaginary q to the band-gaps. Inset in Fig. 4
shows the reflectivity as a function of frequency. As it is
expected, the reflectivity approaches unity for the frequen-
cies lying within the band-gaps. One also notes (see Fig. 4
in Ref. [100]) that the width of the allowed and forbidden
bands decreases with increasing period. This results is, how-
ever, not unique to the elastic band structure; similar beha-
vior has been noted for the electrons in crystal lattices and
for plasmons in metallic or semiconductor superlattices.
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Fig. 3. We plot here as a solid curve, the right-hand side of the dis-
persion relation, Eq. (44), denoted by fsðaÞ, where a ¼ kd and take a
d function of strength s ¼ 2. The dashed lines represent fsðaÞ ¼ 	1.
From the condition jfsðaÞj � 1, we can see that sonic band gaps oc-
cur when this inequality is violated and sonic passbands occur when
it is obeyed. If we plot the two step functions 	q½1� jfsðaÞj� as bold
solid lines then we see enclosed by solid rectangles the first three
passband regions, each of which begins at a ¼ np; n ¼ 0, 1, 2. The
condition a ¼ np implies d ¼ nlk=2 and hence occurs when an inte-
ger number of half-wavelengths of a normal-mode wave function fits
across one period interval of length d. (After Dowling, Ref. [99]).

Fig. 4. Band structure for the longitudinal elastic waves propagatling
in a periodic layered binary system. Computation was performed for
Al (d1 ¼ 0:09 mm)/epoxy (d2 ¼ 0:02 mm) system. The inset shows
the reflectivity as a function of frequency for the corresponding semi-
infinite system. (After Esquivel-Sirvant and Cocoletzi, Ref. [100]).



This can be understood by realizing that large separation of
elastic films reduces the coupling strength between the (sur-
face) excitations on each film, which in turn reduces the
band-widths –– a result similar to the reduction in band-width
for electronic states when the atoms are moved farther apart.
Other factor that does influence the band structure is the
ratio of the sound speeds in the two media of the unit cell.

Finally, we present some band structure results for
longitudinal (acoustic) wave propagation in a system made
up of N 0 dangling side branches (DSB) periodically
grafted at each of the N equidistant sites on a slender tube
[112]. For the sake of simplicity, we embark on the sim-
pler system of air and/or water tubes. Of course, in prac-
tice, the gas or liquid within these tubes would be con-
tained by means of some latex material. The mass density
and speed of sound in rubber are comparable to those of
water [see, e.g., C.R.C. Handbook of Chemistry and Phy-
sics, 66th Edition (CRC Press, Florida, 1985), p. E-43].
Hence for a sufficiently thin latex partition, the presence
of this third extra layer should not affect the calculations
significantly and, in fact, we will neglect it. We have con-
sidered the situation both for open and closed tubes. Evi-
dently, the relevant parameters involved in the problem are
ri, vi, di, and ai; as well as the integers N and N 0; with
subscript i � 1ð2Þ for slender tube (DSB). For the reasons
of space, we will discuss only the results for N 0 ¼ 1. It is
worth mentioning that the validity of our results is subject
to the requirement

ffiffiffiffi
ai
p 
 di, l. It should also be pointed

out that the methodology employed in this particular work
is based on the interface response theory of Dobrzynski
[Surf. Sci. Rep. 6 (1986) 119].

Figure 5 shows the band structure and the transmission
coefficient for the open tubes with identical media inside

the DSB and the slender tube. The opening up of the stop
bands in the band structure is very well substantiated by
the transmission spectrum. Most important aspect of these
results is the cutoff frequency Wc below which no propaga-
tion at all is allowed. This gives rise to the utter discretiza-
tion of the propagation starting right from zero frequency.
As regards the regular repetitive pattern of the band struc-
ture (and the transmission spectrum), one can easily under-
stand this from Eq. (3) in Ref. [112]. For instance, for iden-
tical media inside the DSB and the slender tube, Eq. (3)
simplifies to W ¼ cos�1½ð2=3Þ cos ðkd1Þ� þ 2np; where
W ¼ q1d1=v1 is the reduced frequency, �p � kd1 � þp,
and n is an integer (including zero). This clearly suggests
the periodic pattern depicted in Fig. 5, where the cutoff
frequency Wc is defined by the lowest frequency of the
lowest mode (n ¼ 0) at the zone center. Other details re-
garding the physical conditions subject to the material (ri
and vi) and geometrical (di and ai) parameters required to
achieve the complete stop bands can be seen in Ref.
[119]. Note that the situation is dramatically different at
d2=d1 ¼ 0:5, where the aforesaid conclusion may be seen
to fail as compared to the neighboring cases –– every pair
of bands (counting from the bottom) becomes degenerate
at the zone boundary to form a closed loop. What is im-
portant to note is that the existence of the lowest gap be-
low Wc is more often the rule than the exception: its mag-
nitude varies with the variation of both material and
geometrical parameters, though.

The numerical results for a system of closed tubes with
identical material media inside the slender tube and the
DSB are illustrated in Fig. 6. There are two major differ-
ences when compared to the case of open tubes: the low-
est gap extending up to zero has disappeared, and the unit
cell of the repetitive pattern now contains four bands (as
compared to two in Fig. 5. The numerical results for a
system of closed tubes with the identical material media
inside the slender tube and the DSB are illustrated in
Fig. 6. There are two major differences as compared to the
case of open tubes: the lowest gap extending up to zero
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Fig. 5. Band structure (left panel) and transmission spectrum (right
panel) for the system of open tubes. Reduced wave-vector refers to
the dimensionless Bloch vector kd1 and the reduced frequency is de-
fined by W ¼ wðd1=v1Þ. We consider identical fluid (air or water, for
example) both inside the dangling side branches (DSB) and inside the
slender tube. The material and geometrical parameters are such that
r2=r1 ¼ 1, v2=v1 ¼ 1, d2=d1 ¼ 1, and a2=a1 ¼ 1. We call attention
to the periodic pattern of the band structure and the lowest gap below
the lowest frequency (referred to as the cutoff or threshold frequency
Wc in the text) at the zone center. In the right panel N ¼ 20 was
considered; N 0 ¼ 1 everywhere. (After Kushwaha et al., Ref. [112]).

Fig. 6. The same as in Fig. 5, but for a system of closed tubes. Note that
the unit cell of the periodic pattern now contains four bands as compared
to two in Fig. 4 and that the lowest gap pertaining to the system of open
tubes no longer exists. (After Kushwaha et al., Ref. [112]).



has disappeared, and the unit cell of the repetitive pattern
now contains four bands (as compared to two in Fig. 5).
There are full intracell gaps –– but no intercell gaps. The
repetitive pattern observed in the band structure (and the
transmission spectrum) can be understood through a sim-
ple analysis of Eq. (4) in Ref. [112]. Again, the formation
of the band at d2=d1 ¼ 0:5 is unique where all the closed
loops, like the one formed by the second and third bands
from the bottom, disappear altogether.). There are full in-
tracell gaps –– but no intercell gaps. The repetitive pattern
observed in the band structure (and the transmission spec-
trum) can be understood through a simple analysis of
Eq. (4) in Ref. [112]. Again, the formation of the band at
d2=d1 ¼ 0:5 is unique where all the closed loops, like the
one formed by the second and third bands from the bot-
tom, disappear altogether.

Figure 7 illustrates the evolution of the transmission
spectrum with increasing number of N for the case of open
tubes. We present the results for the case of identical fluids
inside the slender tube and the DSB. For N ¼ 1 (the upper-
most panel), the transmission coefficient becomes immea-
surably small (but never approaches exactly zero) at the
midgap frequency corresponding to the larger N. For smal-
ler N, vanishingly small transmission represents the low
density of states which are referred to as pseudogaps. It is
observed that as N increases the pseudogaps gradually turn
into the complete gaps (with transmission equal to zero).
However, it is interesting to note that the magnitude of the
gap remains the same for N � 5. The number of oscilla-
tions in the transmission coefficient within the passband
has been noted to be unfailingly N or N � 1.

The crux in this work [112] was on the results for the
transmission spectrum depicted in Fig. 8. This refers to a
simplest geometry of a long slender tube with airy DSB.
We consider the length of the DSB equal to the period of
the system (i.e., d2 ¼ d1) and the cross-sections of the
DSB and the slender tube are also taken to be the same
(i.e., a2 ¼ a1). The upper (lower) panel demonstrates the
transmission spectrum for the system of open (closed)
tubes. Apart from the fact that the transmission coefficient
does not approach exactly zero –– it remains at immeasur-
ably small height above zero –– the magnitude of the stop
bands for N ¼ 1 was seen to be surprisingly the same as
for N � 1. This is found to be true for the systems of
both open and closed tubes. Note that the lowest gap for
the open tubes persists below the cutoff frequency. The
discretization of the transmission spectrum is attributed to
the presence of the DSB (whose number in the case at
hand is just one) that suppresses the transmission over al-
most the whole range of frequencies except for those de-
fined by C2 ¼ 0 (S2 ¼ 0) for open (closed) tubes. That
this so can easily be seen through a careful diagnosis of
the expression of transmission coefficient T in Eq. (5) for
N ¼ 1 [112]. This refers to a simplest geometry of a long
slender tube with airy DSB. We consider the length of the
DSB equal to the period of the system (i.e., d2 ¼ d1) and
the cross-sections of the DSB and the slender tube are
also taken to be the same (i.e., a2 ¼ a1). The upper (low-
er) panel demonstrates the transmission spectrum for the
system of open (closed) tubes. Apart from the fact that the
transmission coefficient does not approach exactly zero ––
it remains at immeasurably small height above zero –– the
magnitude of the stop bands for N ¼ 1 was seen to be
surprisingly the same as for N � 1. This is found to be
true for the systems of both open and closed tubes. Note
that the lowest gap for the open tubes persists below the
cutoff frequency. The discretization of the transmission
spectrum is attributed to the presence of the DSB (whose
number in the case at hand is just one) that suppresses the
transmission over almost the whole range of frequencies
except for those defined by C2 ¼ 0 (S2 ¼ 0) for open
(closed) tubes. That this so can easily be seen through a
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Fig. 7. Evolution of the transmission spectrum as a function of N for
a system of open tubes. Note that as N increases the visible slopes in
the minimum of the transmission diminish and ultimately vanish. The
parameters (both material and geometrical) are the same as in Fig. 5.
(After Kushwaha et al., Ref. [112]).

Fig. 8. Discrete transmission spectrum for a system of open tubes of
airy dangling side branches grafted on a slender water tube for N ¼ 1.
The geometrical parameters are the same as in Fig. 5. Existence of the
lowest gap is noteworthy. (After Kushwaha et al., Ref. [112]).



careful diagnosis of the expression of transmission coeffi-
cient T in Eq. (5) for N ¼ 1 [112].

5.2 Two-dimensional systems

In this section we discuss the exciting possibility of creating
complete acoustic band-gaps in a two-dimensional system
made up of liquids. We chose water pipes of circular cross-
section immersed in mercury which can be arranged to have
two macroscopic geometries of interest-square and hexago-
nal lattices. Analytical results for the longitudinal waves
propagating in such systems are describable in the frame-
work of Eq. (2.67) in Ref. [112], with ~kk and ~gg being the
two-dimensional vectors. The relevant expressions for the
filling fraction f and the structure factors FðGÞ are given by

f ¼
pðr0=aÞ2 ; for square lattice

2pffiffiffi
3
p ðr0=aÞ2 ; for hexagonal lattice

8><
>: ð45Þ

and

FðGÞ ¼ 2fJ1ðGr0Þ=ðGr0Þ ; ð46Þ

where a and r0 are, respectively, the lattice constant and
the radius of the pipes. J1ðxÞ is the Bessel function of the
first kind of order one. Our choice of the specific materi-
als (i.e., water and mercury) was motivated by the density
contrast; although there is no substantial contrast in the
speed of sound in liquids, in general. The longing ques-
tion of how to sustain water pipes in mercury and the role
played by the latex material which the walls of the pipes
are made of will be discussed later in this section. The
standard eigenvalue problem represented by Eq. (2.70) in
Ref. [112] was solved to obtain real eigenfrequencies. A
good convergence (of better than 1%) was achieved by
limiting the number of plane waves to 361, in both square
and hexagonal geometries. To be more explicit, the inte-
gers nx and ny, in the reciprocal lattice vector ~GG, were
permitted to take the values between �9 and +9 (i.e., 361
plane waves). As discussed below, multiple low-frequency
band-gaps were found for both geometries [105]. How-
ever, the width of the lowest (and the widest) band-gaps,
for the same value of filling fraction, is found to be larger
in the hexagonal pattern than in the square pattern.

Figure 9 illustrates the density of states (DOS) for a
square pattern of infinitely long, circular water pipes in
mercury that occupy 35% of the total area. The computa-
tion of DOS involves 4950 ~kk-points covering the bound-
aries as well as the interior of the irreducible part of the
first Brillouin zone. DOS curve depicts vividly the exist-
ence of two complete acoustic band-gaps appearing within
the first ten bands. The first gap opens up between the
first (with �MM1 max) and the second (with �XX2 min) bands. Si-
milarly, the second band-gap exists between fourth ( �XX4 max)
and fifth ( �XX5 min) bands. It is worth mentioning that one
can choose to plot as many or as few bands as one likes,
albeit the computer does calculate all (i.e., ð2nþ 1Þ2
bands; n ¼ 9 in the present case) bands. We have noticed
that if we plot first 50 bands, there appear several narrow
but complete band-gaps at higher frequencies. Again, this
is true for both square and hexagonal lattices.

We summarize the existence of the lowest, which is
always the widest, band-gap for the whole range of filling
fraction and for both geometries in Fig. 10. The curve de-
signated as SWM (HWM) refers to the square (hexagonal)
lattice with water pipes in Mercury. The reverse (i.e., mer-
cury pipes in water host) is the case with the curves labeled
as SMW and HMW. One can easily notice that in each case
there is a certain minimum value of the filling fraction, fmin,
for a gap to be opened; and likewise there is a certain max-
imum, fmax, where the gaps cease to exist. For the square
lattice, with water pipes in mercury host (SWM), fminðfmaxÞ
is defined as 0.017 (0.77); and for hexagonal lattice,
fminðfmaxÞ is given by 0.008 (0.79). It is noticeable that the
gaps cease to exist before the close-packing is attained ––
close packing corresponds to the geometrical pattern when
the containers of the inclusions (pipes in the present case)
start touching each other. The close-packing in the square
(hexagonal) lattice is defined by f ¼ 0:7854 (0.9069);
these values of f correspond to r0 ¼ a=2.

Let us now describe briefly the situation when the mer-
cury pipes are embedded in the water as a host. The com-
putation of the lowest (and the only ones) band-gaps ver-
sus filling fraction is demonstrated by the curves labeled
as SMW and HMW, respectively, for square and hexago-
nal lattices in Fig. 9. In this case the fminðfmaxÞ is given by
� 0:35 (0.7854) for the square lattice; the corresponding
values for the hexagonal lattice are �0:48 (0.822). It is
noteworthy that while SMW refers to the lowest band-gap
existing between the first and the second bands; HMW
stands for the gap occurring between the third (with
�GG3 max) and fourth (with �XX4 min) bands. In this situation
there are no other band-gaps at least as far as 50th band.
This comment is valid for both geometries.
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Fig. 9. Computed DOS for acoustic waves in a 2D periodic system of
circular water pipes in mercury. The filling fraction f ¼ 0:35. The com-
putation involves 4950 ~kk-points covering the boundaries as well as the
interior of the irreducible triangle �GG �XX �MM of the first Brillouin zone. The
material parameters are: r ¼ 1:025 (13.5) gm/cm3, cl ¼ 1531 (1450) m/
sec for sea-water (mercury). We call attention to the two wide spectral
gaps: The first gap opens up between the first (with �MM1 max) and second
(with �XX2 min) bands; the second gap occurs between fourth (with �XX4 max)
and fifth (with �XX5 min) bands. (After Kushwaha and Halevi, Ref. [105]).



An extensive investigation of this specific two-dimen-
sional inhomogeneous system of liquids leads us to infer
that low-density, high-velocity inclusions in the high-den-
sity, low-velocity host is the optimum geometry for the
obtention of multiple wide band-gaps and hence for the
localization of the acoustic waves in a weakly disordered
system. This finding is in entire agreement with our con-
clusion drawn in the case of cubic arrays of spherical gas-
eous balloons in air (see the following subsection). How-
ever, this does disagree with the conclusion [6] that the
optimum case for the appearance of gaps or for the locali-
zation of acoustic waves is low-density, low-velocity
spheres occupying a volume fraction of the order of 10%
of the host material. It should be emphasized, however,
that this was the conclusion arrived at on the basis of a
calculation carried out for fictitious material parameters by
the authors of Ref. [6].

Now we turn our attention to the latex material –– con-
sidering the optimum geometry where the water pipes are
embedded in mercury host. In the latex material (i.e., in-
side the walls of the pipes) both transverse and longitudi-
nal vibrations are allowed. As such, it is quite likely that
these shear oscillations produce a finite DOS within the
acoustic band-gaps. We expect, however, that this DOS
should be very small if the walls of the pipes are thin
enough. We estimated the error involved in neglecting the
longitudinal vibrations in the latex by calculating the cor-
rection to sð~GGÞ, Eq. (3.60) in Ref. [4], due to a circular
shell of thickness D and mass density rw. Provided that
rw > rbð> riÞ and D
 r0, this correction is given by [4]

swð~GGÞ ¼ r�1
w d~GG; 0 þ

D

r0

� �
Eð~GGÞ

� �
; ð47Þ

where Eð~GGÞ is a function of the same order of magnitude
as Fð~GGÞ, Eq. (3.3) in Ref. [4]. A careful look at Eqs.
(2.60) and (3.4) in [4] reveals at once that these compres-
sive oscillations in latex wall would not alter our results
significantly provided that ðD=r0Þ 
 ðrw=ri � rw=rbÞ.
The left-hand side of this inequality is assumed to be
much less than one, whereas the right-hand side is indeed
much greater than one if ri is considerably smaller than
rb, as is the case for water pipes in mercury. A remark
made on the rubber as the latex material in the previous
section is still valid here.

It is worth noting that a simple two-dimensional inho-
mogeneous system of liquids as the one discussed in this
section exhibited the widest band-gaps reported for elastic,
acoustic, or optical waves up to that time. To justify this
comment, we calculate the gap/mid-gap ratios for both the
square and hexagonal patterns, respectively, for f ¼ 0:34
and 0.27. The result is a gap/mid-gap ratio for square
(hexagonal) lattice of 0.901 (0.984). These were, to our
knowledge, the largest numbers that define the magnitude
of the acoustic band-gaps; irrespective of whether the sys-
tems studied in the past were solids, fluids, or gases
[100]–[122]. Recently, the 2D (3D) systems of airy cylin-
ders (air bubbles) in water have been shown to exhibit
even larger band gaps, with a gap/midgap ratio of 1.8
[113, 114]; these remain to be the widest gaps ever re-
ported for photonic and/or phononic crystals to date. With-
in these band-gaps the sound and longitudinal vibrations
are forbidden and the total silence prevails.

The simplest way of realizing such acoustic band-gaps
in two-dimensional periodic systems is to embed the infi-
nitely long thin water pipes in a substrate that forms a
bottom of mercury tank. If the bottom is smooth, one
should obtain the complete acoustic band-gaps –– other-
wise (i.e., if the bottom is rough or non-periodic) one
should be able to observe the localized acoustic modes
existing within these gaps [79].

5.3 Three-dimensional systems

Now we focus on the longitudinal modes propagating in
an inhomogeneous three-dimensional system comprised of
liquids and/or gases. The methodology used for computing
the band structure in such systems is the one discussed
above (see Sec. 2.6 in Ref. [4]). Here we discuss our nu-
merical results on the band structure of cubic arrays of
spherical balloons in fcc, bcc and sc arrangements. The
filling fraction f and the structure factor Fð~GGÞ for such
geometries are given by

f ¼ n
4p

3

r0

a

	 
3
ð48Þ

and

Fð~GGÞ ¼ 1

Vc

ð
a

d3r � e�i~GG �~rr ð49Þ

¼ 3f

ðGr0Þ3
½sin ðGr0Þ � ðGr0Þ cos ðGr0Þ� ; ð50Þ

where n; r0; and a are, respectively, the number of spheres
in the unit cell, radius of the sphere, and the lattice con-
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Fig. 10. Normalized gap-widths of the lowest band-gaps as a func-
tion of filling fraction f . The curves designated as SWM (HWM)
refer to the square (hexagonal) lattice with water pipes in mercury.
The reverse (i.e., mercury pipes in water) is the case with the curves
labelled as SMW and HMW. The material parameter are the same as
in Fig. 8. The dashed and dashed-dotted vertical lines refer to the
close-packing values of the filling fraction for square and hexagonal
lattices, respectively. (After Kushwaha and Halevi, Ref. [105]).



stant. We made use of Eq. (2.70) in Ref. [4] to compute
the band structure of fcc, bcc, and sc arrays of hydrogen
balloons in air [107]. For a realistic situation where all
three media (i.e., gas inside the balloons, the latex walls,
and the background gas) were considered, we obtained the
real eigenvalues and good convergence (of better than 2%)
by limiting the number of plane waves to 343. Complete
band-gaps were found for fcc and bcc geometries; how-
ever no gap was obtained for sc lattice. Numerical results
for the fcc arrangement of balloons that occupy 35% of
the total volume are depicted in Fig. 11. The left panel of
Fig. 10 shows the band structure in the principal symme-
try directions in the Brillouin zone. The middle panel is
the result of an extensive scanning of j~kkj in the irreducible
part of the first Brillouin zone –– including the interior of
this zone and its surface, as well as the principal direc-
tions shown in the left panel. The right panel illustrates
the density of states whose computation is based on the
scanning of j~kkj depicted in the middle panel. There ap-
pears a complete acoustic band-gap between the first and
the second bands, and there are no more gaps at least as
far as the 50th band. Three panels together establish that
this is, indeed, a complete gap, irrespective of the direc-
tion of propagation. Similar results are obtained for the
bcc geometry; the sc geometry did not observe a complete
gap for any value of filling fraction, however.

The dependence of the (lowest) band-gap on the filling
fraction, for fcc and bcc structures is summarized in
Fig. 12. It is found that the filling fraction must exceed a
certain minimum value, fmin, for opening up of a gap. If
the pressure inside the balloons is 1.1 atm, then for fcc
(curve A) and bcc (curve E) structures fmin ’ 0:12 and
0.21, respectively. The corresponding maximum values are
fmax ’ 0.63 and 0.54. For any value of filling fraction, the
fcc structure gives a wider band-gap than the bcc struc-
ture. For both lattices, the band-gaps are widest when
f ’ 0:38; that is when the balloons occupy 38% of the

space. However, the gap/midgap ratio is considerably lar-
ger for fcc array –– about 0.2 (0.1) for fcc (bcc). The
curves B, C, and D (in Fig. 12) illustrate what happens
when the pressure inside the balloons is successively in-
creased to 1.32, 1.65, and 1.98 atms –– considering the fcc
structure. This leaves the speed of sound unaltered, though
the density contrast decreases. If the pressure inside is al-
most twice the pressure outside, the density contrast is
about 7, and the band-gap almost disappears (see curve E).
It is then apparent that, for high-velocity balloons in a
low- velocity host, the band-gaps can exist only if the
density of the (gas inside the) balloons is considerably
smaller than the density of host.

A word on the latex material which the wall of the
balloons is made of is in order. In this substance trans-
verse, as well as longitudinal, vibrations are permitted. It
is quite likely that these shear oscillations produce a finite
density of states (DOS) within the acoustic band-gaps. We
expect, however, that this DOS should be very small pro-
vided that the balloon’s wall is thin enough. We estimated
the error involved in neglecting the longitudinal waves in
the latex by calculating the correction to sð~GGÞ, Eq. (2.60),
due to a spherical wall of thickness w and mass density
rw: If rw � rbð> riÞ and w
 r0, this correction is [4]

swð~GGÞ ¼ r�1
w d~GG; 0 þ

w

r0

� �
Hð~GGÞ

� �
; ð51Þ

where Hð~GGÞ is a function of the same order of magnitude
as Fð~GGÞ, Eq. (50). By comparing Eqs. (51) and (2.60) in
Ref. [4], we see that the compressive oscillations of the
latex wall are not expected to alter significantly our results
provided that w=r0 
 ðrw=ri � rw=rbÞ. The left-hand
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Fig. 11. Acoustic band structure for an fcc array of spherical bal-
loons containing hydrogen gas in air (left panel of triptych). Middle
part: frequency eigenvalues as a function of j~kk j (the magnitude of the
Bloch vector) scanned throughout the irreducible part of the Brillouin
zone. DOS as a function of reduced frequency is graphed in the right
panel of the figure. The hatched area refers to the spectral gap for
sound or vibrations. The parameter contrast are r(H2Þ=r(air) ¼ 0.076
and cl(H2Þ=cl(air) ¼ 3.706. (After Kushwaha and Halevi, Ref. [107]).

Fig. 12. Normalized gap-widths versus filling fraction f for fcc and
bcc structures (there is no gap for sc structure). For both structures
the largest gap is obtained for f ’ 0.38, and, for a pressure
p ¼ 1:10 atm, the approximate gap/midgap ratios are 0.2 and 0.1 for
the fcc (curve A) and bcc (curve E) lattices, respectively. The varia-
tion of the gap with pressure is also shown for fcc structure. As p
increases to 1.32 atm (curve B), 1.65 atm (curve C), and 1.98 atm
(curve D), the gap gradually disappears. (After Kushwaha and Halevi,
Ref. [107]).



side of this inequality has been assumed to be much smal-
ler than one, while the right-hand side is indeed much
greater than one if ri is substantially smaller than rb, just
as is the case for hydrogen balloons in air. We recall the
remark made in the previous section on rubber as the latex
material.

Within the gaps of Figs. 11 and 12, the perfectly peri-
odic “phononic” crystals, stand still and total silence
reigns. The situation is of comparable interest to the full
photonic band-gaps in periodic dielectric composites
[151]. These, however, were realized only with certain
complex structures of the fcc unit cell –– not with the sim-
ple fcc lattice, and much less for bcc and sc lattices. The
cubic arrays of balloons discussed here are probably the
simplest physical systems that exhibit complete band-gaps.

Similar theoretical investigations on the band structures
for cubic arrays of spherical water balloons surrounded by
mercury host exhibit multiple, complete acoustic stop
bands for all the three (fcc, bcc, and sc) arrangements
[106]. These stop bands are seen to be widest for a vol-
ume fraction f � 24% and the corresponding gap/midgap
ratios are about 0.83, 0.77, and 0.62, respectively, for fcc,
bcc, and sc lattices. In the reverse situation, where mer-
cury balloons are surrounded by water, the gaps obtained
are found to be surprisingly small.

6. Transverse vibrations

As one can see from the analysis presented in Sec. 5 in
Ref. [4], the propagation of purely transverse modes is
permissible only in one- dimensional periodic systems,
superlattices, for examples, and two-dimensional periodic
elastic composites; three-dimensional periodic composites
do not allow the resolution of this polarization. In this sec-
tion, we would discuss the transverse modes propagating
in the infinite and semi-infinite elastic superlattices. The
main emphasis would be laid on the creation of elastic
band-gaps in two-dimensional periodic, both square and
hexagonal patterns, elastic composites. These elastic com-
posites are made up of an array of infinitely long, thin
rods of an isotropic solid “i” and embedded in a different
elastic background “b”, which is also isotropic. The inter-
section of the parallel rods with a perpendicular plane
form a square or hexagonal lattice. There is a translational
invariance in the direction ẑz parallel to the rods and the
system has a two-dimensional periodicity in the transverse
(x̂x � ŷy) plane. As already mentioned, we will confine to
the transverse modes with ~uu ¼ ẑzu and ~rr �~uu ¼ 0. The jus-
tification lies in the fact that this is the only case when the
general wave equation for inhomogeneous solids greatly
simplifies.

6.1 One-dimensional systems

The problem of elastic wave propagation has been the
subject of numerous theoretical and experimental studies
during the past decade (see for example Sec. 1 in Ref.
[4]). The extended states propagating in a superlattice of
infinite extent form the bulk bands which are separated by
small gaps. The surface phonon-polaritons, which are the

elastic waves localized at and decaying exponentially
away from the interfaces, may exist within these gaps. The
spatial location of these surface modes in the w� kk plane
much depends on the way an otherwise perfectly periodic
superlattice system is truncated. For the details of these
mechanisms, the reader is referred to the recent work by
Djafari-Rouhani and collaborators [152, 153]. Here we are
interested to give a taste for the simplest geometry where
the periodicity of the superlattice is truncated with a semi-
infinite homogeneous elastic medium. The dispersion rela-
tion for such a semi-infinite superlattice system was de-
rived by Camley et al. [154] almost two decades ago. The
results is

F1 tanh ða1d1Þ þ F2 tanh ða2d2Þ ¼ 0 ð52Þ
where the symbols have the same meanings as defined in
Sec. 2.5 in Ref. [4]. In order to examine the effect of per-
turbing the periodicity of the superlattice, one has to solve
Eq. (2.41) in Ref. [4], which describes the bulk bands, and
Eq. (57), which traces the dispersion of the surface modes,
independently. The existence of the surface modes is char-
acterized not only by the relative thickness but also by the
parameter contrasts (in the densities and speed of sound in
the two layers of a binary superlattice, as well as in the
surface layer and the truncating medium).

Figure 13 illustrates the numerical example for the
Nb––Cu superlattice system. One can notice that the dis-
persion curves for the periodic system break up into differ-
ent bulk bands depending on the value of Kd, where K
denotes the Bloch vector and d is the period of the super-
lattice. The band edges exist at Kd ¼ np, n ¼ 0, 1, 2, . . .
These bulk bands are depicted by hatched areas. The sur-
face modes, drawn by dotted curves, exist below the low-
est bulk band and within the gaps between the bulk bands.
The existence of the surface modes within the gaps be-
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Fig. 13. Band structure for transverse elastic modes propagating in a
one-dimensional superlattice system. The hatched areas show the bulk
bands for an infinite periodic system and dotted curves refer to the
surface modes in a truncated semi-infinite superlattice. The lowest
surface mode merges with the lower edge of the lowest bulk band as
the parallel component of the wave vector ~kkk ! 0. The edges of the
bulk bands correspond to the Bloch vector k ¼ np=d, where d is the
period and n ¼ 0, 1, 2, . . . The computation is performed for Nb
(d1 ¼ 1000 �A)/Cu (d2 ¼ 500 �A) system. (After Camely et al., Ref.
[154]).



tween the bulk bands was, in fact, predicted by Auld and
collaborators [155] much before the superlattice era came
into being.

Authors of Ref. [154] argue that the surface mode ly-
ing below the lowest bulk band is similar to the Love
modes, which by definition are the guided modes of an
unsupported plate, in several respects. This surface mode
exists only when the outermost layer has the lower ct. In
the limit of ~kkk ! 1, the velocity of this mode approaches
the sound velocity of the outermost layer. Another charac-
teristic of this surface mode is that it has a sinusoidal var-
iation through the layers of lower ct and an exponential
decay through those of higher ct. The surface modes that
lie within the gaps between the bulk bands, on the other
hand, have sinusoidal variations through both layers, and
they do exist even if the outermost layer has a higher ct.
For the relevant details on the surface modes in the semi-
infinite medium (Reyleigh waves), in the unsupported
media with sagittal polarization (Lamb waves) and shear-
horizontal polarization (Love waves), and in the supported
media with sagittal polarization (Sezawa waves), the read-
er is referred to Ref. [156].

6.2 Two-dimensional systems

By two-dimensional systems we mean the elastic (binary)
composites which are synthesized to exhibit two-dimen-
sional periodicity in the plane perpendicular to infinitely
long elastic rods embedded in a background with different
elastic properties. This leads us to realize two different
geometries –– square lattice and hexagonal lattice. In both
of these geometries, we would confine our attention to the
elastic rods of circular cross-section; other possibilities on
the shape of the inclusions have been considered in the
literature (see, for example, Refs. [97] and [103]). It is
noteworthy that although the eigenvalue problem for both
hexagonal and square lattices is describable formally by
the same Eq. (3.38) in Ref. [4], the two structures are dis-
tinguishable through the values attained by ~KK, ~GG and the
structure factor Fð~GGÞ. This is true whether or not the same
shape of inclusions is considered for both geometries.

6.2.1 Square lattices

Since we consider an array of cylinders of circular cross-
section, the structure factor Fð~GGÞ is specified by Eq. (46).
The secular equation used to compute the band structure
is Eq. (2.40) in Ref. [4] which corresponds to the standard
eigenvalue problem. The integers nx and ny were permitted
to take the values between �10 and þ10 (441 plane
waves). This resulted in a very good convergence. We per-
formed the computation for specific materials of Ni(Al)
alloy cylinders in Al(Ni) alloy background. Numerical re-
sults for a filling fraction f ¼ 0:35 are shown in Fig. 14.
The figure is comprised of three parts. In the first part,
we have plotted the band structure in the three principal
symmetry directions, letting ~kk scan only the periphery of
the irreducible triangle of the first Brillouin zone. There
appears a band-gap opened up between the first two
bands. For this value of f , there is another very narrow
band-gap lying between the fourth and the fifth bands,

with DW ’ 0:02: (There are no higher gaps, at least as far
as 50th band.) The middle part of this figure illustrates an
interesting way to present the band structure, namely, here
we plot the eigenvalues Wn as a function of j~kkj, i.e., the
distance of a point in the irreducible triangle of the Bril-
louin zone from the origin. In doing so we have scanned
not only the periphery but also the interior of the irreduci-
ble triangle �GG �XX �MM of the Brillouin zone (see the inset of
Fig. 14). This part of the computation embodies 1326 val-
ues of the uniformly distributed grid of ~kk-points through-
out the irreducible part of the Brillouin zone. Making use
of the same number of ~kk-points, we have computed the
density of states (DOS), plotted in the third part of the
figure. The magnitudes of the elastic band-gaps coincide
in all the three parts of the figure, which leads us to infer
that the existing band-gaps extend throughout the Bril-
louin zone. This in turn establishes the fact that the wave
propagation in the transverse plane is forbidden for the
vibrations parallel to the cylinders. The value of the nor-
malized lowest gap in this case is DW ’ 0:12.

Next we examine the magnitude of the lowest band-
gap as a function of the parameter contrasts (i.e., DC44

and Dr). The geometry is the same as for Fig. 14, i.e., Ni
alloy cylinders in Al alloy matrix. The numerical results,
for f ¼ 0:35, are depicted in Fig. 15. This three-dimen-
sional plot contains a wealth of information about the ex-
istence of elastic band-gaps and the choice of materials to
create such gaps. For instance, the arrow (on the right-
hand side of this surface) indicates our explicit choice of
the materials generating a gap given by DW ’ 0:12 (see
Fig. 14). In other words, the plot in Fig. 15 provides a
guide to the feasibility of designing the phononic crystals
that can possess the elastic band-gaps by an appropriate
choice of the materials for a binary composite. In particu-
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Fig. 14. Elastic band structure and density of states for Ni cylinders
in an Al matrix –– square lattice. The figure is comprised of three parts.
In the first part, we plot the band structure in three principal symmetry
directions letting ~kk scan the periphery of the triangle �GG �XX �MM. The middle
part of this figure illustrates the eigenvalue Wk as a function of j~kkj; i.e.,
the distance of a point in the irreducible part of the Brillouin zone from
the �GG point. The third part depicts the DOS. The material parameters are
r ¼ 8:936ð2:697Þ gm/cm3, C44ð¼ rc2

t Þ ¼ 7:54ð2:79Þ � 1011 dyn/cm2

for Ni(Al), and f ¼ 0:35. Attention is drawn to the vibrational band-
gap between the first two bands extending throughout the first Bril-
louin zone. (After Kushwaha et al., Ref. [101]).



lar, let us remark that according to Fig. 11 the opening up
of large band-gaps require that the contrast Dr and DC44

both be large. Here we have explored only the case where
ri > rb and C44i > C44b –– other possibilities are worth
attempting, however.

Now we turn to the situation where Al alloy cylinders
are embedded in a Ni alloy background. The numerical
results are illustrated by the specific example f ¼ 0:75 in
Fig. 16. We find one elastic band-gap existing between the
first two bands. The existence and magnitude of this gap
is well established by the band structure (middle part of
this figure) and by the density of states (the third part of
the figure). It is thus concluded that this elastic band-gap
extends throughout the Brillouin zone. The rest of the dis-
cussion related to Fig. 14 is still valid. It is worth mention-
ing that there are no other band-gaps opening up above
the second band, or up to the 50th band, at least.

Finally, we scrutinize the width of the lower gap as a
function of filling fraction for both cases. The numerical
results are shown in Fig. 17. The curve marked case A
(case B) represents the situation with Ni(Al) alloy cylin-

ders in the Al(Ni) alloy matrix. It is found that the widest
band-gap in case A corresponds to the filling fraction
f ’ 0:33. Similarly, the widest band-gap in case B opens
up at a filling fraction corresponding to the close-packing
(f ’ 0:7854). It is noteworthy that, in case A, an absolute
band-gap exists over a large range of filling fraction de-
fined by 0.10 � f � 0:69. In case B, on the other hand,
there is no elastic band-gap for f � 0:52.

6.2.2 Hexagonal lattices

This section is devoted to discuss the possibility of achieving
elastic band-gaps in the two-dimensional periodic elastic
composites where the periodic array of parallel metallic rods
of circular cross-section forms a hexagonal lattice in the per-
pendicular plane. The problem of classical band structure,
both photonic and phononic, in the hexagonal pattern has
received relatively less attention for the time being. This
seems to be true in spite of the fact that the hexagonal pattern
has exhibited wider band-gaps as compared to its square pat-
tern counterpart, for the same value of the filling fraction [97,
102, 105, 113]. Since the array of cylinders forms a hexago-
nal lattice (of lattice constant a), the reciprocal lattice vec-
tor ~GG is given by ~GG ¼ ð2p=aÞ ½nxx̂x þ ð�nx þ 2nyÞ ŷy=

ffiffiffi
3
p
�;

we allowed the integers nx and ny to take the values in the
range defined by �10 � nx; ny � þ10: This implies 441
plane waves considered in the computation; with an esti-
mated error of less than 1% and hence a very good con-
vergence.

Figure 18 illustrates the band structure and the density
of states (DOS) for Ni alloy cylinders in an Al alloy back-
ground. The plots are rendered in terms of dimensionless
frequency W ¼ ðwa=2pÞ ð�rr= �CC44Þ1=2 versus the dimension-

less Bloch vector ~kk ¼ a~KK=2p; just as in the plots in the
preceding section. The figure is comprised of three parts.
In the first part we plot the lowest ten bands in the three
principal symmetry directions, letting ~kk scan only the per-
iphery of irreducible triangle of the first Brillouin zone
(see inset of Fig. 18). We obtain a wide elastic band-gap
opened up between the first two bands. Note that for this
value of filling fraction ðf ¼ 0:20Þ there are no higher
gaps, at least so far as 50th band. The second part of this
figure shows a novel way to plot the band structure. Here
we plot Wn as a function of j~kkj. In this (middle) part of
the figure we have scanned not only the periphery but also
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Fig. 15. Normalized magnitude of the lowest band-gap as a function
of the contrasts in the elastic constant and in the density. We empha-
size that this three-dimensional plot provides a guide to the feasibility
of designing vibrational band-gaps by an appropriate choice of the
materials for a binary composite in the square geometry. Here
f ¼ 0:35, just as in Fig. 14. The contrast parameters have the same
units as defined in Fig. 14. (After Kushwaha et al., Ref. [101]).

Fig. 16. The same as in Fig. 14, but for Al cylinders in Ni host ma-
trix. The filling fraction is f ¼ 0:75. (After Kushwaha et al., Ref.
[101]).

Fig. 17. The width of the lowest band-gap as a function of filling
fraction. Case A (case B) refers to the Ni(Al) cylinders in Al(Ni)
background. (After Kushwaha et al., Ref. [101]).



the interior (for 1326 ~kk-points) of the irreducible triangle
�GG �JJ �XX of the Brillouin zone. In the third part of the figure
we plot DOS, using the same number of ~kk-points as in the
middle part of the figure. We draw attention to the magni-
tude of the gap which coincides in all the three parts of
the figure. One can thus conclude that the existing gap
extends throughout the Brillouin zone, and hence estab-
lishes the fact that within this gap, wave propagation in
the transverse plane is forbidden for vibrations parallel to
the cylinders. The value of the normalized gap-width in
this case is DW ’ 0:18.

Next we examine the situation when the filling fraction
is increased. It is found that as f increases the magnitude
of the lower gap attains a maximum (at f ¼ 0:29) fol-
lowed by a decrease for still higher values of f . Now, pre-
cisely at f ¼ 0:29 another gap opens up between third and
fourth bands. This upper gap also attains a maximum –– at
f ’ 0.48. An example for the coexistence of the two gaps
is illustrated by plotting the dependence of the gap-widths
on the filling fraction in Fig. 19. The solid curves marked
as upper gap and lower gap correspond to the present
(hexagonal) case while the dashed curve refers to the low-

er gap for the square lattice (see the curve designated as
case A in Fig. 17). The latter (dashed curve) is plotted
here just for the sake of comparison. As one can see, for
any value of f , the hexagonal pattern exhibits a wider elas-
tic band-gap than the square pattern. Also, the range of f
for the existence of the gaps is larger for the hexagonal
case than for the square lattice. The specific range of the
lower (upper) gap for the hexagonal lattice is defined by
0:04 � f � 0.73 (0.29 � f � 0.71).

From the definition of the normalized frequency W it is
clear that all the gaps, both in the square and hexagonal

lattices, are proportional to ð �CC44=�rrÞ1=2 and are inversely
proportional to the lattice constant a. For a given f the
gap-width also depends on the contrast parameters Dr and
DC44.

We examine the magnitude of the lowest band-gap as a
function of the elastic constant and density contrasts. The
geometrical configuration is the same as before, i.e., infi-
nitely long cylinders in a host material. The numerical re-
sults, for f ¼ 0:20; are depicted by a three- dimensional
plot in Fig. 20. This plot provides us with useful informa-
tion about the existence of elastic band-gaps and the
choice of materials to tailor such gaps. For instance, our
specific choice of the Ni––Al composite gives rise to a gap
given by DW ¼ 0:18. This choice of alloys is represented
by the dot next to the “1”. Similarly, the numbers 2–5
correspond to other pairs of alloys (see the figure caption).
In other words, the plot in Fig. 20 helps to engineer a
desired elastic band-gap by an appropriate choice of the
materials for a binary composite.

It should be pointed out that, unlike the square lattice,
we find no gaps for the inverted geometry, namely, Al
alloy cylinders in a Ni alloy background. We note that in
this case we have a higher-velocity inclusions (the Al) sur-
rounded by a lower-velocity materials (the Ni). It has al-
ready been commented that such a situation is less favor-
able for the creation of gaps than when a lower-velocity
inclusions are surrounded by a higher-velocity material
[115]. The larger range of filling fraction for opening up
the wider (lowest) band-gap in the hexagonal lattice, than
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Fig. 18. The same as in Fig. 14, but for hexagonal lattice. The irredu-
cible part of the first Brillouin zone (see the inset) is �GG �JJ �XX. The filling
fraction is f ¼ 0:20. We call attention to a wide band-gap existing
between the first two bands and extending throughout the Brillouin
zone. (After Kushwaha et al., Ref. [102]).

Fig. 19. Normalized widths of the lower and upper gaps (solid
curves) as a function of filling fraction. The dashed curve refers to
the lower gap in the square lattice for the same elastic composite
(i.e., Ni cylinders in Al matrix). (After Kushwaha et al., Ref. [102]).

Fig. 20. Normalized magnitude of the lowest band-gap as a function
of the contrasts in the density and in the elastic constant. The dots
mark the gaps, assuming f ¼ 0:20, for the following pairs of alloys:
(a) Ni––Al, (2) Cu––Al, (3) Cu––Sn, (4) Pt––Au, and (5) Fe––Al. [The
first (second) alloy of the pair corresponds to the cylinder (host).]
The dot “1” describes the gap in Fig. 18. We stress that this three-
dimensional plot provides a guide to the feasibility of engineering
vibrational band-gaps by an appropriate choice of the materials for a
binary composite in the hexagonal geometry. (After Kushwaha et al.,
Ref. [102]).



that in the square lattice, is attributed to the fact that the
constant energy surfaces of a hexagonal lattice are closer
to the circular shape than those of a square lattice.

It is important to note that purely transverse (or, ẑz-po-
larized) modes propagating in the two-dimensional peri-
odic systems are independent of the mixed (or plane-polar-
ized) modes (see Sec. 2.4 in Ref. [4]), have legitimacy in
their own right, and can be excited separately from the
mixed modes [141]–[144]. As such, a composite of peri-
odic, long cylinders is the simplest system that can give
rise to the stop bands in which oscillations of a certain
polarization are forbidden.

The existence of these absolute gaps in two-dimen-
sional composites is expected to guarantee, with gradual
disordering, the Anderson localization of transverse vibra-
tions. The transition between the localized and the ex-
tended states in a two-dimensional disordered system is a
question of considerable current interest [74]–[76]. It has
been conjectured that there could exist the quasi-mobility
edge(s) in two-dimensional disordered systems [85], which
separate the strongly localized states from the weakly loca-
lized states (or power-law localized states). This has ques-
tioned the scaling theory of localization [157] which theo-
rizes that no extended states should occur for any amount
of disorder in one- and two-dimensional systems. Theore-
tically, such systems cannot be treated as regular systems
with a small perturbation. Thus their characterization, par-
ticularly in respect of their transport properties, poses a
substantial problem. The simpler systems as discussed in
this section are believed to address the complex issue of
quasi-mobility edge(s) in the classical (elastic) wave loca-
lization unambiguously –– the root-cause of the expected
unambiguity lies, of course, in the separability of the
transverse and the mixed elastic waves.

7. Mixed and coupled vibrations

Before discussing the specific numerical examples on the
band structure related problems that belong to the title of
this section, we should make “crystal clear” the terms like
longitudinal modes, transverse modes, mixed modes, and
coupled (longitudinal-transverse) modes, which have often
been used in this review. We need to do so at this stage in
order to avoid any confusion associated particularly with
the terms mixed modes and coupled modes. Note that de-
fining these terms has much to do with the (periodic) di-
mensionality of the system concerned. Remember, we are
concerned with these terminologies in the context of elas-
tic and/or acoustic waves in liquids, gases, and solids –– in
the EM case the same terms are defined in a different
frame.

As we mentioned earlier, the longitudinal waves are
supported only in liquids and gases. One-dimensional peri-
odic elastic composites, superlattices, for example, can,
however, allow either pure longitudinal or pure transverse
elastic waves, provided that the displacement vector ~uu de-
pends only on the spatial coordinate along the direction of
the periodicity. In the case that the displacement vector ~uu
depends on the spatial coordinates in the sagittal plane
(i.e., plane through ~kkk and surface normal), one-dimen-

sional systems can support either pure transverse elastic
waves or the mixed modes, which are neither longitudinal
nor transverse. In the two-dimensional periodic elastic
composites (see Sec. 2.4 in Ref. [4]), we have seen that
only pure transverse or mixed modes are allowed. The for-
mer are characterized by the displacement vector ~uu along
the cylinders (ẑz-axis) and perpendicular to the plane of
propagation (x̂x � ŷy); while the latter are characterized by
both ~uu and ~kk in the x̂x � ŷy plane. In the literature the com-
plete elastic band-gaps are assigned to the frequency win-
dow wherein overlapping of both pure transverse and
mixed modes together prohibit the wave propagation in all
possible directions. In the three-dimensional periodic elas-
tic composites –– solid inclusions in a solid background ––
no resolution of any polarization is possible and hence the
propagating modes always remain coupled; only these
modes will be referred to as coupled (longitudinal –– trans-
verse) modes.

This nomenclature of vibrational modes does not pre-
clude the coupling of the longitudinal and transverse
modes in the two-dimensional periodic elastic composites,
however. But for the sake of clarity and because the
purely transverse and mixed modes in these systems can
be excited independently [141]–[144], we prefer to main-
tain the usage of the terms transverse and mixed modes.
In fact, as one can see from Eq. (2.33) in Ref. [4], the
mixed modes do involve both longitudinal and transverse
speeds of sound. Sometimes, mixed modes have also been
referred to as x � y modes or plane-polarized modes. Thus
it must be clear that this confusion of coupling between
longitudinal and trasnverse modes does prevail in one-
and, particularly, in two-dimensional periodic elastic sys-
tems.

7.1 Two-dimensional systems

This section is devoted to review the mixed (or plane-po-
larized) modes in the two-dimensional periodic elastic
composites. We confine our attention to the geometry
where the intersections of an array of parallel rods with a
perpendicular plane form a square lattice. In this sense this
is a supplement to the Sec. 6.2 where only transverse
modes were considered. Two shapes of inclusions will be
considered: circular cross-section, where the structure fac-
tor is specified by Eq. (46), and square cross-section of
width 2l, where the structure factor is given by [103]

Fð~GGÞ ¼ f
sin ðGxlÞ
ðGxlÞ

sin ðGylÞ
ðGylÞ

ð53Þ

with f ¼ 4l2=a2 ð0 � f � 1Þ. Integers nx and ny, in the
reciprocal lattice vector ~GG, were allowed to take the values
from �6 to þ6 (169 plane waves). This resulted in a very
good convergence confirmed by allowing nx and ny to as-
sume the values from �10 to þ10. Real material para-
meters were used to compute the band structure.

Figure 21 illustrates the bandstructure (left part) and
density of states (right part) for both transverse and the
mixed modes of a square array of C cylinders of ciruclar
cross-section in an epoxy matrix, the filling fraction
f ¼ 0:55. The plots are given in terms of the dimension-
less frequency W ¼ wa=2pc0 (with c0 ¼ ð �CC44=�rrÞ1=2) and
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the dimensionless Bloch vector ~kk ¼ a~KK=2p, just as the
previous plots in Sec. 6. For the calculation of the DOS,
we incorporated 1275 ~kk-points covering the periphery as
well as the interior of the irreducible triangle of the first
Brillouin zone. As one can notice, within a few bands
(nine for each polarization) plotted in this figure, the over-
lapping of the absolute gaps create three complete elastic
band-gaps within which no propagation of sound or vibra-
tions is possible. All of these band-gaps are specified by
the minimum and maximum occurring at the high-symme-
try points �GG ; �XX; �MM; except the bottom of the lowest band-
gap, which lies at the top of the third mixed mode at a
wave vector within the �XX- �MM direction. An exact coinci-
dence of the spectral-gap regions in the band structure and
the DOS establishes the fact that these band-gaps extend
throughout the first Brillouin zone. We draw attention to
the nearly flat transverse mode propagating in the region
between the second and the third lowest band-gaps. This
corresponds to d-function-like peak in the DOS.

Magnitudes of the three band-gaps versus filling frac-
tion is depicted in Fig. 22. The solid, dash-dotted, and
dashed lines refer, respectively, to the first, second and
third lowest band-gaps. As one can see, there is a certain
minimum of filling fraction f for all the three gaps to ap-
pear and similarly there is a certain maximum of f where
these gaps cease to exist. The specific range of these band-
gaps is specified by 0.2 . f . 0.65, 0.43 . f . 0.65, and
0.45 . f . 0.65. Accidentally, the fmax at which each of
the three band-gaps ceases to exist is very nearly the same
(i.e., f � 0.65). It is interesting to note that the most
usually available commercial C fiber reinforced epoxy
composite conforms to a filling fraction f ¼ 0:6 [158].

Next, we turn to the case where the C cylinders of
square cross-section embedded in an epoxy matrix from a
square lattice. The band structure for this composite, for
f ¼ 0:65; is illustrated in Fig. 23. Two complete elastic
band-gaps shared by both polarizations appear in the
range of frequency considered –– only first nine bands for
each polarization are plotted. The width of the lowest (and
widest) band-gap in this case is DW ’ 0:14 as compared
to DW ’ 0:09 in Fig. 20. The opening up of the upper
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Fig. 21. The band structure (left panel) and DOS (right panel) for 2D
square lattice made up of C cylinders of circular cross-section in an
epoxy matrix. The filling fraction f ¼ 0:55. Dash-dotted (solid) lines
refer to the transverse (mixed) elastic waves. Attention is drawn to
the three complete band-gaps shown by hatched regions (a fourth
narrow but complete gap can be seen between ninth mixed mode and
eighth transverse mode) and the (fifth) transverse mode occurring in
the region separating the second and third lowest band-gaps. That the
band-gaps are complete (and extend throughout the Brillouin zone) is
evident from the gap regions coinciding exactly in the band structure
and the DOS; the DOS was computed using equidistant mesh of
1275 ~kk-point covering boundaries as well as the interior of the irredu-
cible triangle �GG �XX �MM of the first Brillouin zone. The material para-
meters are: r ¼ 1:75ð1:2Þ gm/cm3, C11 ¼ 30:96ð0:964Þ � 1011 dyn/
cm2, C44 ¼ 8:846ð0:161Þ � 1011 dyn/cm2 for C(epoxy). (After Vas-
seur et al., Ref. [103]).

Fig. 22. Normalized gap-widths of the first three complete band-gaps
versus filling fraction. Solid line, dash-dotted line, and dashed line
refer to the first, second, and third lowest gaps, respectively. The
dotted vertical line stands for the close-packing value (p/4) of the
filling fraction. (After Vasseur et al., Ref. [103]).

Fig. 23. The band structure for 2D square lattice made up of C cylin-
ders of square cross-section in an epoxy matrix. The filling fraction
f ¼ 0:65. The dash-dotted (solid) lines refer to the transverse (mixed)
elastic waves. The rest is the same as in Fig. 21. (After Vasseur et al.,
Ref. [103]).



band-gap in this geometry is analogous to the third lowest
band-gap in the previous case (Fig. 21) in the sense that
both the top and the bottom of these gaps are defined by
the transverse modes at high symmetry points. This geo-
metry is seen to provide large band-gaps for two indepen-
dent polarizations (see, for example, the first and second
bands for transverse modes depicted by dash-dotted curves

and the third and fourth bands for mixed modes shown by
solid curves) and this explains the large complete elastic
band-gaps in this case.

The existence of the two band-gaps (Fig. 22) versus
filling fraction is shown in Fig. 24. The first (second) low-
est band-gap is represented by solid (dash-dotted) lines.
The existence of the first (second) gap is specified by the
0.4 . f . 0.8 (0.25 . f . 0.74). The maximum value of
gap-width DW ’ 0:14 (0.092) corresponding to f ’ 0:65
(0.58) for the first (second) lowest gap. Comparing the
results plotted in Figs. 26 and 28, respectively, for the in-
clusions of circular and square cross-sections, leads one to
infer that the gap-widths are larger for the latter geometry.
This is quite contrary to the idea of Sigalas and Econo-
mou [103] who stressed that inclusions of square cross-
section (in two-dimensional systems) make the appearance
of band-gaps more difficult.

We also investigated the case of inclusions with square
cross-sections rotated through 45 with respect to the x̂x; ŷy
axes (see, for numerical examples, Ref. [103]). The speci-
fic materials were the C cylinders in an epoxy matrix, and
the geometry was the square lattice. The band structure,
for f ¼ 0:35; depicted two complete gaps. The widest (the
lowest) band-gap displayed DW ’ 0:033: Within a first
few bands these two complete gaps were specified by the
range of filling fraction given by 0.225 . f . 0.43 (the
lower gap) and 0.3 . f . 0.45 (the upper gap). There we
also presented some interesting results on metallic systems
[103]; W(Al) cylinders in Al(W) host, for example. A sys-
tem of relatively more technological interest, namely, glass
fiber reinforced epoxy matrix depicted, for f ¼ 0:6; a wide
complete elastic band-gap [104].

8. Periodically stubbed waveguides

This section is devoted to study the acoustic band struc-
ture and transmission spectrum in a periodically modu-
lated quasi-one-dimensional waveguide, as depicted in
Fig. 25. The system has a finite extension along the y di-
rection and is periodically modulated, along the x direc-
tion by the addition of double, in general, asymmetric
stubs, with different elastic properties than those of the
main waveguide. The motivation stems from recent studies
with interesting results pertinent to electronic and photonic
waveguides modulated in the same fashion. Using the
transfer-matrix technique, we demonstrate the tunability of
the acoustic band gaps as a function of various parameters
of the system, e.g., the length and/or width of the stubs.
For the sake of generality, we start with a crossbar-like
geometry of a single unit cell, as shown in Fig. 25. The
origin of the Cartesian coordinates is at the uniaxial line
intersecting perpendicularly the left arm of the stub of
width b and length h. The center of the asymmetric stub
lies at (x ¼ b=2; d). We denote the width of the left (right)
waveguide segments by c(aÞ and take the x axis parallel to
the direction of propagation. We are interested in the solu-
tion of the wave equation for the out-of-plane vibrations,
which, in a sense, correspond to the z-modes in a two-
dimensional periodic system. It is noteworthy that this sec-
tion heavily relies on Ref. [131].
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Fig. 24. Normalized gap-widths of the first two complete band-gaps
versus filling fraction. Solid (dash-dotted) line refer to the first (sec-
ond) lowest gaps. Note that the second lowest gap, which starts oc-
curring at higher filling fraction, is larger than the first lowest gap.
(After Vasseur et al., Ref. [103]).

Fig. 25. Schematics of a quasi-one-dimensional periodic waveguide.
The double stubs can be made of the same or diffferent material than
that of the main waveguide. L ¼ bþ l is the period of the system.
(After Wang, Kushwaha, and Vasilopoulos, Ref. [131]).

Fig. 26. Schematics of a general unit cell with asymmetric stubs.
(After Wang, Kushwaha, and Vasilopoulos, Ref. [131]).



8.1 Two-dimensional systems
with one-dimensional periodicity

For the sake of clarity we discuss the numerical results in
two parts. First, we consider the case when the waveguide
and the stubs are made up of the same material. Clearly the
band structure and/or transmission spectrum in this case
reveals the influence of the various parameters involved in
the problem. Then we take up the case when the materials
in the waveguide and the stubs are different. Practically
speaking, this case is more complex but richer than the pre-
vious one in the sense that one has more options to modu-
late the band structure and/or transmission spectrum. We
have chosen carbon and epoxy resin as the suitable materi-
als the acoustic system considered is made of. This is be-
cause these are the materials whose combination was first
demonstrated to give rise to a complete band gaps, i.e.,
independent of the polarization of the wave and of the di-
rection of propagation, in 2D periodic phononic crystals
[103]. The parameters used are r ¼ 1:75 (1.2) g/cm3 and
vt ¼ 711,095 (115,830) cm/sec for carbon (epoxy).

8.1.1 Same material in waveguide and stubs

The left part of Fig. 27 shows the first nine bands for
a symmetrically stubbed system made up of epoxy,
with parameters aL ¼ a=L ¼ 0:5114, bL ¼ b=L ¼ 0:4886,
hL ¼ h=L ¼ 1:125, and dL ¼ d=L ¼ 0:0. As one can see,
all the nine bands are separated from each other by stop
bands, or gaps, within which the acoustic wave propaga-
tion is forbidden. Unlike the other 2D and 3D periodic
systems [4], there is a complete gap below a cutoff fre-
quency Wc ’ 1:6 down to W ¼ 0. It is found that this (the
lowest) gap persists independent of the values of the vari-
able parameters. The existence of all nine gaps is well
corroborated by the energy dependence of the transmis-
sion coefficient for nstub ¼ 50 on the right part of Fig. 27.
The numerical results clearly reveal the zeros and ones in
the transmission. It is noteworthy that the band structure

in this figure contains both direct and indirect gaps. For
instance, the second, third, fifth, sixth, and ninth gaps are
direct, while the rest are indirect. We consider it more ap-
propriate to include the lowest (and also the widest) gap
in the category of direct gaps. The most important aspect
of these results is the cutoff frequency Wc below which no
propagation at all is allowed. In this sense, the situation
here is comparable to the semiconductor-dielectric photo-
nic crystals investigated in [159, 160].

Figure 28 depicts the dimensionless gap widths of the
three lowest gaps of Fig. 26 as a function of the dimen-
sionless stub width bL and the stubs are symmetric, i.e.,
d ¼ 0. The width of the lowest gap D1 decreases gradu-
ally, by approximately 45%, with increasing bL but still
remains finite for b! L. The second lowest gap D2

reaches a maximum for bL ’ 0:7 and decreases slightly
before approaching the final minimum at b! L. As can
be seen, this gap increases enormously relative to its value
for zero stub width. Similarly, the third lowest gap D3

reaches one maximum at bL ’ 0:44, it then vanishes at
bL ’ 0:68, and finally reaches a maximum at bL ! 1.
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Fig. 27. Band structure (left panel) and transmission spectrum (right
panel) for a system with the same material, epoxy, in the waveguide
and the stubs. The reduced wave vector and frequency are defined by
kxL=p and W ¼ LW=pv1, where v1 is the transverse speed of sound
in the waveguide. Notice the lowest acoustic gap below the cutoff
frequency Wc ’ 1:6. For the plot of the transmission a system of fifty
(n ¼ 50) stubs was considered. (After Wang, Kushwaha, and Vasilo-
poulos, Ref. [131]).

Fig. 28. The widths of the three lowest gaps as a function of the stub
width bL ¼ b=L. The solid, dashed, and dotted curves refer to the
lowest (D1), second lowest (D2), and third lowest (D3) gaps. The
material and the rest of the parameters are the same as those in
Fig. 27. (After Wang, Kushwaha, and Vasilopoulos, Ref. [131]).

Fig. 29. Same as in 27, but for asymmetric stubs with asymmetry
parameter dL ¼ 0:25. Notice the lowest acoustic gap below the cutoff
frequency Wc ’ 1:7. (After Wang, Kushwaha, and Vasilopoulos, Ref.
[131]).



Note that all three gaps start opening up at a vanishingly
small but finite value of bL and that the lowest gap re-
mains the widest one over the whole range of the stub
width.

Figure 29 represents the band structure and the corre-
sponding transmission spectrum for asymmetric stubs,
with d ¼ 0:25. The rest of the parameters are the same as
in Fig. 26. We observe that the asymmetry has introduced
two important effects. First, the number of bands accom-
modated within the same frequency range has increased,
from nine to fourteen. Second, the band width of most of
the bands has reduced. Overall, the effect of the asymme-
try seems to result in gaps larger in number but shorter in
width. This is true despite some exceptions, for instance,
the case of the lowest gap, which now extends from
W ¼ 0 to ’1:7, instead of up to W ’ 1:61 in Fig. 27. All
gaps in the band structure (left part of Fig. 29) are seen to
be well substantiated by those in the transmission spec-
trum (right part of Fig. 29) for n ¼ 50.

As a function of the asymmetry parameter d the three
lowest gaps vary very little, by at most 10%, for
0 � d � 0:3. Their dependence on bL is similar to that
shown in Fig. 4. As a function of the stub length hL their
behavior, shown in Fig. 29, is similar to that in Fig. 28 for
D1 and D2 but somewhat different for D3.

Figure 31 shows the transmission spectrum versus re-
duced frequency for a system made up of eleven sym-
metric stubs with the central (sixth) stub longer
(hL ¼ 1:395) and wider (bL ¼ 0:6305) than the rest of the
identical, in width and height, stubs. When unidentical to
the other stubs, this central stub constitutes a defect. The
solid (dotted) curves correspond to the presence (absence)
of this defect. One can see that there are five complete
gaps in the spectrum within the given frequency range. In
addition, there is also a pseudogap, centered at W ’ 4:35,
that corresponds to the low transmission or density of
states. The defect introduces sharp transmission peaks,
marked by arrows, within the first four gaps in plane ana-
logy with the electronic and photonic case or with that of
surface modes of a truncated superlattice. Another interest-
ing consequence of introducing a defect in the system is
the appearance of antiresonances, such as the one appear-
ing in the fourth band at W ’ 3:92. We have noted similar
effects in the case of an asymmetric (d 6¼ 0) defect intro-
duced in the system.

8.1.2 Different materials in waveguide and stubs

We now present numerical results for a system in which
the waveguide is made of epoxy and the stubs of carbon.
Figure 31 shows the band structure and transmission spec-
trum for symmetric stubs; the parameters are aL ¼ 0:9,
bL ¼ 0:9, hL ¼ 1:5, and dL ¼ 0:0. We note that there are
only seven bands accommodated in the frequency range
0 � W � 20, and every pair of bands has a full gap in
between. Moreover, the lowest acoustic gap extends from
zero to the cutoff frequency Wc ’ 2:3. Some of the bands,
such as the fourth and sixth, are seen to be almost flat and
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Fig. 30. The widths of the three lowest gaps as a function of the stub
length hL ¼ h=L. The curves are marked as in Fig. 28. (After Wang,
Kushwaha, and Vasilopoulos, Ref. [131]).

Fig. 31. Transmission spectrum for a system with eleven symmetric
double stubs (n ¼ 11). The central (sixth) symmetric stub is a defect
with hL ¼ 1:395 and bL ¼ 0:6305. The rest of the parameters are the
same as in the previous figures. Notice that the defect creates new
modes or states in the gaps in an otherwise defect-free system. The
peaks of these modes are marked with arrows. (After Wang, Kushwa-
ha, and Vasilopoulos, Ref. [131]).

Fig. 32. Band structure (left panel) and transmission spectrum (right
panel) for system with symmetric stubs with the waveguide segments
(stubs) made of epoxy (carbon). The parameters used are aL ¼ 0:9,
bL ¼ 0:9, and hL ¼ 1:5. Notice the lowest acoustic gap below the cut-
off frequency Wc ’ 2:3 and extending down to W ¼ 0:0. (After
Wang, Kushwaha, and Vasilopoulos, Ref. [131]).



hence have vanishingly small group velocity. All gaps in
the band structure (left panel) correspond well to those in
the transmission spectrum for n ¼ 50 on the right panel. A
prompt comparison of Figs. 27 and 32 reveals that one
can achieve wider gaps in the band structure if the seg-
ments and stubs are made up of different materials.

Figure 33 shows the three lowest gaps as a function of
the stub width bL for the system specified in Fig. 32.
There are several noteworthy points. First, the lowest gap
is the widest one and the third gap is wider than the sec-
ond one until bL ’ 0:49, where D1 ¼ D3. At bL ’ 0:64,
the width of the lowest and second lowest gaps are equal,
i.e., D1 ¼ D2. Also D2 ¼ D3 at bL ’ 0:78 and 0.94. The
second lowest gap is the widest one in the range specified
by 0:78 � bL � 0:94. The third lowest gap vanishes at
bL ’ 0:87 but reappears for bL > 0:87 and becomes the
widest in the range 0:94 � bL � 0:98. Also, D1 ¼ D3 at
bl ’ 0:83 and 0:91. Moreover, D1 ¼ D2 at bL ’ 0:96 and
D1 ¼ D3 at bL ’ 0:98. Finally, D1 reaches a maximum
whereas both D2 and D3 vanish for b! L.

Figure 34 depicts the band structure and transmission
spectrum considered in Fig. 31 but with asymmetric stubs.
The asymmetry parameter is dL ¼ 0:25 and the other para-
meters the same as those used in Fig. 31. Now there are
eight bands and eight gaps in the band structure. The low-
est gap now extends from W ¼ 0:0 to W ’ 2:4. The asym-
metry is seen to have brought about a number of interest-
ing effects. A larger number of bands is accommodated in
the same frequency range but the bandwidth is reduced.
Again, the gaps in the band structure (left panel) corre-
spond well to those in the transmission spectrum for a
system with n ¼ 50 stubs (right panel).

As a function of the stub width bL the three lowest
gaps behave qualitatively as those of Fig. 33. More impor-
tant is their dependence, shown in Fig. 35(a), on the velo-
city contrast between two materials. As can be seen a
wide modulation can be achieved in this asymmetric struc-
ture by just changing the ratio vg=vwg, more than two or-
ders of magnitude for D2. A less pronounced variation of
the same gaps is shown in Fig. 35(b) as a function of the
stub length hL. As can be seen, D1 remains almost insensi-
tive to changes in hL and D2 changes by at most 30%;
however, D3 can change by a factor of 10 reaching a max-
imum at hL � 2:4.

Figure 36 shows the transmission spectrum versus re-
duced frequency for a symmetric defect introduced in an
otherwise periodic system with seven stubs (n ¼ 7). The
central (fourth) stub is defect in the sense that its length
(hL ¼ 3:0) and width (bL ¼ 0:4) are different than those of
the rest of the stubs. The other parameters are aL ¼ 0:6,

Classical vibrational modes in phononic lattices theory and experiment 787

Fig. 33. The widths of the three lowest gaps versus the stub length
bL for the system studied in Fig. 31. The solid, dashed, and dotted
lines refer, respectively, to the lowest (D1), second lowest (D2), and
third lowest (D3) gaps. Notice especially the strong variation of D2

and D3. (After Wang, Kushwaha, and Vasilopoulos, Ref. [131]).

Fig. 34. Same as in Fig. 32, but for a system with asymmetric stubs
(dL ¼ 0:25). The lowest acoustic gap occurs below the cutoff fre-
quency Wc ’ 2:4 and down to W ¼ 0:0. (After Wang, Kushwaha, and
Vasilopoulos, Ref. [131]).

a�

b�

Fig. 35. (a) The widths of the three lowest gaps as a function of the
velocities’ ratio vs=vwg. (b) The three lowest gaps as a function of the
stub width hL. Notice the strong variation of D2 and D3, especially in
(a). (After Wang, Kushwaha, and Vasilopoulos, Ref. [131]).



bL ¼ 0:2, hL ¼ 1:4, dL ¼ 0:0. The solid and dotted curves
correspond, respectively, to the presence (absence) of the
defect. There are five complete gaps in this frequency
range in the spectrum before introducing the defect. Insert-
ing this single defect in the system gives rise to one peak
in the third gap and another in the fourth gap. These trans-
mission peaks correspond to defect modes similar to those
appearing in Fig. 31.

Finally, Fig. 37 illustrates the transmission spectrum
versus reduced frequency W in a symmetric system made
up of one (top panel), two (middle panel), and five (bot-

tom panel) stubs. We remind that the waveguide segments
(stubs) are made of epoxy (carbon) materials. The para-
meters are aL ¼ bL ¼ hL ¼ 0:9. That is, the waveguide has
no stubs. The lowest panel shows the corresponding band
structure. For n ¼ 1 (top panel), the transmission coeffi-
cient becomes very small but it never approaches zero. In
this sense we have only pseudogaps, not full gaps, in the
system. As n increases the pseudogaps gradually turn into
complete gaps (with transmission equal to zero) centered
at almost the same midgap frequency. It has also been ob-
served that the number of such complete gaps increases
with increasing n.

9. The sculptures that can filter the noise

It is generally believed that sculptures or objects d’art at
the public places are worthless from the scientific point of
view. And yet a recent experiment has demonstrated that
certain types of sculptures are (and can be) of consider-
able scientific relevance [139] and which can be related to
the systems useful for studying, for example, the band-gap
engineering in phononic crystals that can give rise to com-
plete or pseudogaps in the band structure. In the case that
these gaps turn out to be complete, such sculptures can
behave as legitimate objects for noise control in their vici-
nity. The purpose of this section is to discuss this experi-
ment [139] and subsequent theoretical work that have stir-
red considerable research interest in such objects d’art.

9.1. Two-dimensional systems

9.1.1 Experiment on Sempere’s sculpture

The presentation of this section is motivated by the experi-
mental measurement of sound attenuation on the sculpture,
by Eusebio Sempere, exhibited at the Juan March Founda-
tion in Madrid (Spain) [139] (see Fig. 38). It consists of a
periodic distribution of hollow stainless steel cylinders,
with a diameter of 2.9 cm and a unit cell of edge 10 cm.
The cylinders are fixed on a circular platform (with 4 m in
diameter) which can rotate on a vertical axis. The sound
attenutation was measured in outdoor conditions for wave
vectors perpendicular to the cylinder’s vertical axis. The
sculpture corresponds to a cermet topology with a volume
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Fig. 36. Transmission spectrum for a system with seven symmetric
(d ¼ 0) double stubs (n ¼ 7). The waveguide segments (stubs) are
made of epoxy (carbon). The central (fourth) stub is a defect with
hL ¼ 3:0 and bL ¼ 0:4. The other parameters are aL ¼ 0:6, bL ¼ 0:2,
and hL ¼ 1:4. The solid (dotted) lines refer to the transmission with
(without) the defect. The defect gives rise to modes in the gaps in an
otherwise defect-free system. The peaks of these modes are marked
with arrows. (After Wang, Kushwaha, and Vasilopoulos, Ref. [131]).

Fig. 37. Evolution of the transmission spectrum as a function of the
number of stubs n for a system with waveguide segments (stubs)
made of epoxy (carbon). The parameters are aL ¼ bL ¼ hL ¼ 0:9. No-
tice that as n increases the pseudogaps gradually turn into sharply
defined complete gaps. The lowest panel shows the band structure.
Notice that the first band is very narrow. (After Wang, Kushwaha,
and Vasilopoulos, Ref. [131]).

Fig. 38. Kinematic sculpture, by Eusebio Sempere, exhibited at the
Juan March Foundation in Madrid. (Courtesy of F. Meseguer, CSIC,
Spain).



fraction occupied by the scatterers of 0.066 and sound-
speed ratio of 17.9. The experimentalists’ expectation,
based on their observation, was that the sound attenuation
peak at 1.67 kHz (see Fig. 39) could be ascribed to the
formation of the first (lowest) gap in the band structure
calculated for the geometry of this sculpture.

We call attention to the two important points: first, the
sculpture represents a 2D periodicity in the x––y plane
(provided that the cylinders’ vertical axis is presumed to
be oriented along the z-axis); second, the sculpture con-
sists of finite (in length) cylinders and is not strictly peri-
odic (in the sense that it does not extend infinitely in the
x––y plane).

9.1.2 Ideal square lattices

This experimental finding was soon followed by a rigor-
ous theoretical investigation embarking on the ideal situa-
tion and employing the actual experimental parameters ––
we refer to the true dimensions of the sculpture [108]. The
complete band structure and density of states (DOS) were
computed for an ideal 2D periodic system (in the square
lattice) to draw the following conclusions. It was found
that for the experimental situation (i.e., for the cylinders of
2.9 cm in diameter and system-period of 10 cm implying
to the filling fraction f ¼ 0:066) there is no acoustic gap
for frequencies below 6.4 kHz. However, the DOS reveal
prominent minima at 1.7 and 2.4 kHz. These frequencies
do agree with those of the first two attenuation maxima in
Ref. [139], and are indeed related to the diffraction from
[100] and [110] planes (i.e., the X and M high symmetry
points in the Brillouin zone). Thus, even with idealization,
Sempere’s sculpture was seen to exhibit only pseudogaps ––
not full gaps. This can clearly be seen from Fig. 40. It is
noteworthy that similar conclusion was drawn through an
independent investigation in Ref. [120].

Next we made an extensive investigation of band struc-
ture computation to explore under what circumstances such
a geometry of sculpture can exhibit complete gaps. The
results are illustrated in Fig. 41. The lowest (upper) gap is
characterized by 0:31 � f � 0:7854 (0:40 � f � 0:61).
This leads us to infer that there is no band gap for filling
fraction f � 0:30. It is important to note that in the limit

of close-packing six full gaps were found within the first
ten passbands. An unexpected small amount of propaga-
tion (in the limit of close-packing) is attributed to the im-
possibility of achieving an exact physical condition for
close-packing. What one would, in fact, expect in the limit
of close-packing are the isolated vortices that would disal-
low any propagation at all.

An explicit and detailed example emerging from
Fig. 40 is shown in Fig. 42. For a filling fraction of
f ¼ 0:55, the three parts of the triptych together clearly
demonstrate that the two hatched regions stand for the two
genuine, complete stop bands. The first stop band exists
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Fig. 39. Sound attenuation as a function of sound frequency. The
wave vector is along the [100] direction as shown in the inset. Ar-
rows indicate the calculated maxima and minima due to interference
from the different crystal planes of the structure. (After Martinez-Sala
et al., Ref. [139]).

Fig. 40. Acoustic band structure and density of states for a square
array of rigid stainless steel cylinders in air. The filling fraction is
f ¼ 0:066 and the period a ¼ 10 cm. The tryptych is comprised of
three parts. In the left panel, we plot the band structure in the three
principal symmetry directions, letting the Bloch vector ~kk scan only
the periphery of the irreducible part (see the triangle GXM in the
inset) of the first Brillouin zone. The middle panel demonstrates a
novel way of plotting the eigenvalues as a function of j~kkj; i.e., the
distance of a point in the irreducible part of the Brillouin zone from
the G point. The right panel illustrates the DOS. Note that there is
absolutely no stop-band occurring within the first 10 bands. (After
Kushwaha, Ref. [108]).

Fig. 41. Gap-widths (arbitrary units) of the only existing two stop-
bands vs. filling fraction. The period of the system (the lattice con-
stant) a ¼ 10 cm. The vertical dashed line refers to the close-packing
value (f ¼ 0:7854). Evident is the fact that there is no acoustic stop-
band for f � 30%. (After Kushwaha, Ref. [108]).



between the first and second bands; and the second one
between the eighth and ninth bands. Both of these stop
bands are indirect in the language of solid state physics.
We refer the reader for further details to Ref. [108].

Our experience on notoriously heavy computation on
band structures enabled us to propose the fabrication of a
tandem structure that could allow to achieve an ultra-wide-
band filter for noise within the human audible range of
frequencies [109]. The results of such an ultra-wide-band
filter for the lowest band gap are summarized in Fig. 43.
The curves (‘wedges’) labeled 1–5 are based on numerous
band structure calculations –– one for every value of the
filling fraction f . These are, in fact, eigenvalue problems
for the frequency w=2p as a function of the Bloch vector
k scanned in all directions. Consider the two dots on
‘wedge’ # 1, computed for a ¼ 2:0 cm. Both dots are de-

rived from a band structure computation for f ¼ 0:55,
hence radii r ¼ 0:84 cm. This gives a stop band for sound
between w=2p ¼ 7:85 and 11.0 kHz. The dots mark these
lower and upper edges of the stop band, and vertical dis-
tance between the dots is the width of the stop band. We
see that a minimal filling fraction fmin � 0:3 is needed for
the obtention of a forbidden band (see Fig. 41), and that
the stop band rapidly increases with f , until approaching
the close-packing value fmax � 0:785. The same procedure
is repeated for four successively greater values of the lat-
tice constant, until a ¼ 7:6 cm corresponding to the
‘wedge’ # 5. We selected f ¼ 0:55 for all sets of the tan-
dem structure (see vertical dash-dotted line). Then, fixing
the lattice constant of set 1 at a1 ¼ 2:0 cm, we choose
a2 ð¼ 2.8 cmÞ in such a way that the upper branch of
‘wedge’ # 2 intersects the lower branch of ‘wedge’ 1 at
f ¼ 0:55. This procedure is continued until reaching the
lower branch of ‘wedge’ # 5, resulting in five stop bands
precisely joined so as to form a continuous ‘super stop
band’. In principle, our tandem structure should shield
from noise in the entire range between 2.0 and 11.0 kHz.
It is noteworthy that each one of the five sets also exhibits
a second narrower stop band, lying higher in frequency
(see Fig. 41). For the parameters of the figure the upper
five stop bands are discontinuous and disconnected from
the ‘super stop band’.

For a given filling fraction, by increasing (decreasing)
the separation a between neighboring cylinders one can
lower (raise) the frequency range of the stop bands and
hence that of the ‘super stop band’. In fact, there is an
inverse proportionality between w and a and for f ¼ 0:55,
w (kHz) � C=a (cm); where C ¼ 21.94 (15.72) for the
upper (lower) edges of all the ‘wedges’. An ultra-wide-
band filter for environmental or industrial noise could thus
be designed according to required specifications.

9.1.3 Ideal hexagonal lattices

The aforesaid experiment and subsequent theoretical work
motivated us to explore the similar possibility of achieving
complete sonic stop bands for honeycomb structure [110].
Extensive band structures computed for periodic arrays of
rigid metallic rods in air (in the honeycomb structure) led
us to achieve multiple complete acoustic stop bands within
which sound and vibrations are forbidden. These gaps
start opening up for a filling fraction f � 8% and tend to
increase with the filling fraction, exhibiting a maximum at
the close-packing. Figure 44 illustrates the gap-widths of
all the four stop bands as a function of filling fraction, for
a system of period a ¼ 10 cm. Evident is the fact that
there is no acoustic stop band for f � 8%. Except for the
third gap which opens in a very narrow range of filling
fraction (0:53 � f � 0:56), the rest of the three gaps ob-
serve a maximum and a minimum before the close-pack-
ing (i.e., when the cylinders start touching each other im-
plying the filling fraction f ¼ 0:9068). It is interesting to
note that at f ¼ 40% there are no gaps opening up in the
system, just as for f � 8%. All the three gaps, which open
over a wide range of filling fraction, observe a second
maximum at the close-packing where the band structure
reveals flat, degenerate passbands depicting huge stop
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Fig. 42. The same as in Fig. 39, but for a filling fraction of f ¼ 0:55.
We call attention to the two complete stop-bands (shaded regions) ex-
tending throughout the Brillouin zone. (After Kushwaha, Ref. [108]).

Fig. 43. Inset: cross-section of tandem structure of periodic, long ar-
rays of circular metallic rods. Each of the five sets produces a stop
band, whose upper and lower edges are plotted as a function of the
filling fraction f (‘wedges’ 1–5). For f ¼ 0:55 (vertical dashed line)
the five stop bands join precisely so as to form a ‘super stop band’
ranging from 2.0 to 11.0 kHz; see vertical frequency bar (between
two horizontally dashed lines). The required lattice constants are 2.0,
2.8, 3.9, 5.4, and 7.6 cm. The long-dashed vertical line stands for the
close-packing value f ¼ 0:7854. (After Kushwaha and Halevi, Ref.
[109]).



bands. This is quite easy to understand. In the limit of
close-packing, the resultant 2D periodic system allows
(almost) exactly isolated vortices and hence the sound can-
not spin around the rigid cylinders.

Finally, the fabrication of a multiperiodic system in tan-
dem designed so to give rise to wider stop bands in the
desired frequency range is proposed. The band-gap edges
of the lowest stop bands are computed as a function of the
filling fraction for a large number systems with different
periods (or lattice constants). The numerical results of
such investigations are illustrated in Fig. 45. The scheme
for designing an ultra-wide-band filter out of the tandem
structure is the same as outlined above in the case of 2D
square lattice (see Fig. 43). Consider the two dots on
‘wedge’ # 1 for a filling fraction f ¼ 55%. Now the ratio
of the two frequencies (specified by the dots) is calculated
and the next ‘wedge’ # 2 is created such that its upper
edge (at the same f ) crosses the lower edge of ‘wedge’
# 1. The same procedure is repeated for all the nine
‘wedges’ depicted in Fig. 45. In fact, we start with
‘wedge’ # 5 that corresponds to a period of a ¼ 10 cm.
The optimum situation is desirable, which refers to the
lesser possible number of periodic composites and the
smaller possible filling fraction. The former point concerns
the cost and the latter hints to eventually avoiding con-
struction of a wall of rigid cylinders. The filling fraction
f ¼ 55% is appealed to, where only nine 2D periodic
composites in honeycomb structure are enough to guaran-
tee a ‘super stop band’ from 1.99 to 5.23 kHz. Within the
‘super stop band’ the tandem structure stands still and to-
tal silence reigns. By this we mean that if one tries to
transmit a wide-band wave through the tandem structure
one will achieve a zero transmission within the range of the
‘super stop band’. The completeness of such a ‘super stop

band’ is promised due the overlapping of the individual
stop bands in the neighboring composites. However, the
frequency range of such a ‘super stop band’ is at the will of
the designer –– by increasing (decreasing) the period of the
composites one can lower (raise) the frequency range of the
stop bands and hence of the ‘super stop band’.

Note that the second lowest stop band in Fig. 44 is the
widest one in the range of filling fraction defined by
0:45 � f � 0:60. The ultra-wide-band filter corresponding
to the second lowest stop band was designed in Fig. 5 in
[110]. For a filling fraction of f ¼ 55%, the tandem struc-
ture was to shown to give rise to a ‘super stop band’ that
ranges from 3.48 to 11.00 kHz. It is interesting to note
that the ultra-wide-band filter designed on the basis of the
two lowest stop bands (in Fig. 44) simultaneously can cov-
er the frequency range of the ‘super stop band’ lying be-
tween 1.99 and 11.0 kHz. This almost exactly was the
range of the ‘super stop band’ covered by designing the
ultra-wide-band filter on the basis of the lowest stop bands
in 2D square lattice (see Fig. 43).

9.2 Three-dimensional systems

If viewed with exactitude both theory and experiment in
2D systems discussed above ignored the fact that the
sound could filter along the axis of the cylinders. This
then means that the term complete for the existing full
stop bands there was reserved subject to this condition. A
realistic model should have to remedy this shortcoming of
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Fig. 44. Gap-widths of the existing four stop-bands vs. filling frac-
tion for a 2D array of rigid metallic rods in air –– honeycomb struc-
ture. The period of the system (i.e., the lattice constant) a ¼ 10 cm.
The vertical dotted line refers to the close-packing value
(f ¼ 0:9068). Evident is the fact that there is no acoustic stop-band
for f � 8%. The numbers 1 to 4 refer to the lowest, second lowest,
third lowest and the uppermost (fourth) gaps in Fig. 2 of Ref. [110].
(After Kushwaha and Djafari-Rouhani, Ref. [110]).

Fig. 45. Design of an ultra-wide-band filter corresponding to the low-
est stop band in Fig. 44. Inset: schematic of the cross-section of tandem
structure of (periodic) 2D arrays of rigid metallic rods in the honey-
combe structure –– what is shown is the front of a face of a unit cell of
an individual periodic system. The “wedges” numbered 1–9 corre-
spond, respectively, to the periods of 6.51, 7.24, 8.06, 8.98, 10.0,
11.13, 12.39, 13.80, and 15.37 cms. Each of the nine sets produces a
stop band, whose upper and lower edges are plotted as a function of the
filling fraction f . For f ¼ 0:55 (vertical dotted line), the nine stop bands
join precisely so as to form a “super stop band” within a frequency
range between 1.99 kHz and 5.23 kHz (see the bold vertical frequency
bar between the two horizontal dotted lines). The vertical dashed line
refers to the close-packing value f ¼ 0:9068. This is the most conve-
nient way of demonstrating the existence of stop-bands in a given
periodic system. (After Kushwaha and Djafari-Rouhani, Ref. [110]).



the present model. A better way of doing so is to investi-
gate the realistic 3D systems instead. We embarked on the
extensive band structures for cubic arrays of rigid spheres
and cubes in air [111]. Complete stop bands were ob-
tained for face-centered-cubic (fcc) structure; however, no
gap was found for body-centered-cubic (bcc) and simple-
cubic (sc) structures. These gaps (for fcc structure) start
opening up for a filling fraction of f � 54% (27%) for
spherical (cubic) inclusions and tend to increase with the
filling fraction, exhibiting a maximum at the close-pack-
ing. We also proposed a tandem structure that allows the
achievement of an ultra-wide-band filter for environmental
or industrial noise in the desired frequency range. For the
reasons of space, we will discuss only the results for the
cubic inclusions. For the results on the spherical inclu-
sions and the methodological details, we refer the reader
to Ref. [111]. Figure 46 illustrates the first Brillouin zone
for the fcc structure which is of immediate concern for the
work discussed in this section.

Figure 47 depicts the band structure and the density of
states (DOS) for rigid cubic inclusions in fcc structure; for
a filling fraction of f ¼ 40%. The lowest ten bands are
shown. The plots are rendered in terms of the eigenfre-
quency n ¼ Wð2pcl=aÞ [where a is the lattice constant and

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�1=C�1

11 Þ
p

] vs dimensionless Bloch vector
~kk ¼ ~KKa=2p. The left part of the triptych represents the
band structure in the five principal symmetry directions,
letting ~kk scan only the periphery of the irreducible part of
the first Brillouin zone (see Fig. 46). The middle part is
the result of an extensive scanning of j~kkj in the irreducible
part of the Brillouin zone –– the interior of this zone and
its surface, as well as the principal directions shown in the
left part of the figure. Each curve here corresponds to
some direction of ~kk. The DOS in the right part of the
triptych has been calculated on the basis of the scanning
in the middle part, which corresponds to 1300 ~kk-points
within the irreducible part of the first Brillouin zone. The
three parts of the triptych in Fig. 46 together demonstrate
that there is, indeed, a genuine, complete gap (the shaded
region) existing between the first and second bands; and
we consider such calculations as essential. It was noticed
that there is no other band gap existing at least up to the
50th band. We did not find any gap for bcc and sc struc-
tures. Note that the existing band gap in fcc lattice is an
indirect one in the language of solid state physics –– with

the minimum (maximum) of the second (first) band lying
at the high symmetry point X (W) in the Brillouin zone.

Next we plot the gap-width of the only existing stop
band within the first ten bands in the fcc structure in
Fig. 48. The size of a complete gap is usually expressed
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Fig. 46. The first Brillouin zone (a truncated octahedron) of the face-
centered-cubic lattice showing the symmetry points and axes. (After
Kushwaha et al., Ref. [111]).

Fig. 47. Acoustic band structure and density of states for a fcc array
of rigid cubic inclusions in air. The plots are rendered in terms of the
frequency n ¼ Wð2p�ccl=aÞ [where a is the lattice constant and
�ccl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�1=C�1

11 Þ
p

] vs. dimensionless Bloch vector ~kk ¼ ~KKa=2p. The fill-
ing fraction is f ¼ 0:40 and the period is a ¼ 10 cm. The triptych is
comprised of three parts: In the left panel, we plot the band structure
in the five principal symmetry directions, letting the Bloch vector ~kk
scan only the periphery of the irreducible part of the first Brillouin
zone. The middle panel demonstrates a novel way of plotting the
eigenvalues as a function of j~kkj; i.e., the distance of a point in the
irreducible part of the Brillouin zone from the G point. The right
panel illustrates the DOS. We call attention to the complete stop-band
(hatched region) extending throughout the Brillouin zone. (After
Kushwaha et al., Ref. [111]).

Fig. 48. Gap-widths of the only existing stop-band vs. filling fraction
for a fcc array of rigid cubes in air. The period of the system is
a ¼ 10 cm. The vertical dotted line refers to the close-packing value
(f ¼ 0:50). Clearly, there is no stop-band for f < 27:4%. (After Kush-
waha et al., Ref. [111]).



as the ratio of the gap-width and the midgap frequency.
Here the y-axis represents just a difference in frequencies
of the top and bottom of the stop band, for a given filling
fraction. As can be seen from the figure, the filling frac-
tion must exceed a certain minimum value, fmin, for open-
ing up a gap. The figure dictates the fmin to be 27:4% (as
compared to fmin ¼ 54% for the spherical inclusions, see
Fig. 3 in Ref. [111]). The magnitude of the gap is largest
at the close-packing when the cubic inclusions fill exactly
50% of the space. The gap/midgap ratio in the limit of
close-packing (f ¼ 50%) is found to be 0.4, i.e., almost
double of that achieved from the lower gap in the case of
spherical inclusions (see Fig. 3 in Ref. [111]).

Figure 49 demonstrates the design of the ultra-wide-
band filter that could create a ‘super stop band’ within the
frequency range between 1.35 and 6.18 kHz, for a filling
fraction f ¼ 40% through a tandem structure made up of
nine 3D periodic composites in fcc. The essential differ-
ence, as compared to the spherical inclusions, is that the
band gaps are larger and these are opened at relatively
smaller filling fractions. From the technological point of
view, this has an obvious advantage of designing ultra-
wide-band filters for noise control with relatively lesser
number of 3D composites with larger periods; and this is
because of the lower filling fraction serving the purpose.

Figure 49 (as well as Figs. 43 and 45 in 2D systems)
addresses a typical question concerned with the strategy of
unwanted noise abatement: is it feasible to devise low-tech
means that could forbid the sound propagation in the hu-
man audible range of frequencies (20 Hz––20 kHz)? This
is a very important question that has become a major con-

cern of scientists, engineers, and architects involved in the
design of the buildings and in the planning of the cities,
working together to find technically feasible solutions to
the problem of noise. Fundamental to bring about a solu-
tion is the better understanding of sound propagation
through the city streets and in the atmosphere above the
city. For such an understanding the availability of band
structures is essential. Our theoretical concern is thus sim-
ply meant to emphasize the fundamental issues involved
in the sister subject of band-gap engineering of periodic
elastic composite systems.

10. Single scattering:
a prediction tool for the band structure

10.1 Introduction

The largest part of the existing research on periodic elastic
systems concerns systems of spherical scatterers [101–103,
107, 117–119]. Some of the basic conclusions of this re-
search are that [117–119] the appearance of a gap is fa-
vored for (i) spheres concentration 10%–50%, (ii) non-
connected spheres (cermet topology), (iii) heavy spheres
in light host (i.e. small ro=ri) for solids while light
spheres in heavy host (i.e. large ro=ri) for fluids, (iv)
large velocities contrast between scatterers and host, with
the velocities of the host to be larger than those of the
scatterers, when the density is everywhere constant, while
in the presence of density contrast small velocity contrast
favors the gap. Indeed there were found surprisingly large
gaps in solid systems of heavy spheres in polymer host
[119], where the velocities contrast between scatterers and
host is almost absent. Moreover it was found a not strong
dependence of the gap on the lattice structure and on the
scatterers filling ratio.

The attempts to understand the above results and to
find an easy way to predict or to explain them led us to
the study of the single scattering [38, 39, 161], i.e. scatter-
ing from only one sphere. Single scattering has the advan-
tage that comprises a simple physical system both in its
study and in its explanation. Moreover the relative inde-
pendence of the band structure characteristics on the lat-
tice structure and the scatterers filling ratio that has been
observed is a strong indication for its possible dominant
role in the formation of the band structure characteristics.

The single scattering study is done here through calcu-
lations and analysis of the single scattering cross-section
[162–164]. The attempt is to examine the possible relation
of the cross-section resonances with the band structure
characteristics and thus to transform the conditions for the
gap to conditions on the cross-section, something which
can facilitate a lot their explanation.

In what follows we discuss the cross-section calcula-
tion method, the typical cross-section characteristics in
acoustic or elastic systems, the cross-section dependence
on the various system parameters that affect the existence
of the gap in a periodic system, as well as the form of the
cross-section associated with the cases of wider gap. The
connection of the band structure characteristics with the
cross-section form led to the understanding of the mechan-
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Fig. 49. Inset: cross-section of tandem structure of (periodic) cubic
arrays of rigid cubes in fcc arrangement –– what is shown is the front
of a face of a unit cell of an individual periodic system. The
“wedges” numbered 1–9 correspond, respectively, to the period of
5.08, 6.02, 7.13, 8.44, 10.00, 11.84, 14.02, 16.60, and 19.66 cms.
Each of the nine sets produces a stop band, whose upper and lower
edges are plotted as a function of the filling fraction f . For f ¼ 0:40
(vertical solid line), the nine stop bands join precisely so as to form a
“super stop band” within a frequency range between 1.35 kHz and
6.18 kHz (see the bold vertical frequency bar between the two horri-
zontal dotted lines). The vertical dotted line refers to the close-pack-
ing value f ¼ 0:50. (After Kushwaha et al., Ref. [111]).



ism of the gap formation and to the interpretation of the
optimum for the gap conditions, something that it is pre-
sented in the last section of this part.

10.2 Cross-section calculation

The calculation of the single scattering cross-section is
done by considering a plane wave, either longitudinal or
transverse, impinging upon the surface of a sphere, and
by calculating the scattered wave through the application
of proper conditions at the sphere surface [162]. The in-
cident plane wave, uinc, is expanded in a sum of spheri-
cal waves [37] and thus the scattered wave usc and,
through it, the scattering cross-section, s, are also ob-
tained as sums of the contribution of each partial spheri-
cal wave: usc ¼

P
n

usc
n and s ¼

P
n

sn.

The scattering cross-sections is defined as [38, 39, 161]

s ¼
Ð
hJsc

r i r2 dW

hJ inc
z i

for r !1 ; ð54Þ

where

hJii ¼ hRe ðsijÞ Re ð _uujÞi ¼ �1
2 w Im ðs*ijujÞ : ð55Þ

uj are the components of the displacement vector, u, sij

are the stress tensor components [41], the symbol _uuj de-
notes time derivative, the symbols h i and * denote time
average and complex conjugate, respectively, and the
superscripts sc and inc denote, respectively, scattered and
incident wave. The last part of Eq. (55) is obtained taking
into account time dependence of the form e� {wt.

For large distances, r, from the center of a sphere em-
bedded in a host (with host velocities clo and cto, for long-
itudinal and transverse waves respectively), the scattered
wave can be written as

uscðrÞ ¼ fmlðq; jÞ eiklor

r
þ fmtðq;jÞ

eiktor

r
for r!1 ;

ð56Þ
where the angular distribution of the scattered wave is gi-
ven by the scattering amplitudes fml, fmt (m ¼ l; t depend-
ing on whether the incident wave is longitudinal or trans-
verse); klo ¼ w=clo, kto ¼ w=cto.

The total scattering cross-section is related with the
scattering amplitudes through the well-known optical theo-
rem, a result of the conservation of energy. For a longitu-
dinal incident plane wave, propagated along the z-direction
(q ¼ 0), the optical theorem gives [39, 165]

s ¼ sl ¼
4p

klo
Im ½ẑz � f ll�q¼ 0 ; ð57Þ

where q is the polar angle and ẑz the unit vector along z-direc-
tion. For a transverse incident wave, polarized along x-axis,

s ¼ st ¼
4p

kto
Im ½x̂x � f tt�q¼ 0 : ð58Þ

The calculation of the cross-section is done using equa-
tions (57) and (58) combined with the expansions of f ll

and f tt in spherical waves. For the details of calculation
and for an alternative way of calculation without the use
of optical theorem see Refs. [38, 39].

10.3 Typical cross-section characteristics

A typical single scattering cross-section for a system of
relatively rigid (cl=ct �

ffiffiffi
2
p

) solids is shown in Fig. 50.
Fig. 50(a) shows the cross-section for longitudinal incident
wave, while Fig. 50(b) shows that for transverse incident
wave. As can be seen from Fig. 50, the cross-sections ex-
hibit sharp resonances, occurring when the incident wave
frequency coincides with one of the approximate eigen-
modes of the system. Each of the resonances is contribu-
tion of a distinct partial spherical wave, reflecting the sym-
metry of the corresponding eigenmode (see the numbers
above the resonances in Fig. 50). Note that in the trans-
verse incident wave case there is no spherically symmetric
(n ¼ 0) resonance as the n ¼ 0 wave is purely longitudi-
nal. With the exception of the n ¼ 0 mode the other reso-
nant modes are either mixed longitudinal and transverse
(being excited with both longitudinal and transverse inci-
dent waves) or only transverse (being excited with trans-
verse incident wave, when the host material is solid). The
last, purely transverse modes are usually very sharp, some-
thing that implies high energy concentration inside the
sphere and small leakage to the host.

Studying the cross-sections for a variety of material
combinations [38, 39, 119, 161], we found that when the
host material is solid the first resonance comes from the
n ¼ 1 spherical wave, while when the host material is
fluid the first resonance comes from the n ¼ 0, spherically
symmetric wave. This is the case of Fig. 51, where a typi-
cal cross section for a sphere embedded in a fluid is
shown. It should be noted that when both sphere and host
are fluids the successive (n; nþ 1) resonances are equidis-
tant, with distance ½d=lli�nþ 1 � ½d=lli�n ¼ 1 (d is the
sphere diameter and lli the wavelength inside the sphere).

A cross-section feature which can be used as an expla-
nation tool is worth-noticing [38, 163]: When the sphere
parameters approach those of a void sphere (r, l, m, cl,
ct ! 0) or of a “hard” sphere (r, l, m!1, cl; ct ! 0),
each of the scattering amplitudes can be written as a sum
of two terms (see Fig. 51(b)); one (f ð0Þ –– plotted with
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for
both sphere and host, ro=ri ¼ 1 and clo=cli ¼ 5:48. a is
the sphere radius and klo ¼ w=clo the longitudinal wave
vector in the host. The number above each resonance
denotes the spherical wave where it comes from.



dashed line in Fig. 51(b)) is the scattering amplitude of the
void or the hard sphere, and corresponds to contribution to
the cross-section of the scatterer shape. The other term
(f � f ð0Þ –– solid line in Fig. 51(b)) has the form of a series of
resonances, well separated from regions of almost zero scat-
tering; these resonances are a characteristic of the material of
the sphere. At the frequency regions where the first term
dominates there is no significant inflow of the wave into the
sphere. On the contrary, at the resonances of the second term
a strong penetration of the wave inside the sphere occurs.

10.4 Cross-section dependence
on the material parameters

10.4.1 Dependence on the velocities ratio clo=cli

As was mentioned earlier, the gap in a periodic system of
solids, under the absence of low or no density contrast
between scatterers and host, is favored from high clo=cli

ratio, where clo(cli) is the longitudinal wave velocity in the
host (sphere). The same is not true if strong density con-
trast exists. There it favors low clo=cli ratio. Examining
now the single scattering cross-section, for clo=cli > 1 the
increase of this ratio has as a result (i) the formation of
stronger and sharper resonances, (ii) the approaching of
these resonances and (iii) the reduction of the background
scattering, i.e. the scattering at the regions between the
resonances. For clo=cli < 1 the cross-section is smooth, its
values are relatively low and it is not strongly dependent
on the clo=cli ratio. This difference between the clo=cli < 1
and the clo=cli > 1 case is not surprising, at least to people
coming from the electronic waves community, if one takes
into account the corresponding electronic problem as scat-
terers of low wave velocities correspond to deep potential
wells in Schrödinger’s equation, i.e. to also strong reso-
nances. Comparing the band structures and cross-section
results it is easy to understand why large clo=cli favors the
gap formation if no density contrast exist. It is because it
is associated with stronger scattering. Why the case is not
the same in the presence of density contrast it is some-
thing not easy to understand using what was discussed
until now and in will discussed in the next Section.

10.4.2 Dependence on the densities ratio ro=ri

As has also been mentioned earlier, in periodic systems of
fluids the increase of the ratio ro=ri has as a result a widen-
ing of the gap (if exists), i.e. the gap is favored from low
scatterer (or high host) densities, i.e. high ro=ri; this is in
contrast to what happens in solids, where gap is favored
from high scatterer (or low host) density. The reason for

this unexpected difference between fluids and solids was
puzzling people of the acoustic/elastic community for quite
a long time. Here we will show that the single scattering
can give the key for the understanding of this difference.

What happens in the single scattering cross section?
For a fluid scatterer in a fluid host the increase of the ratio
ro=ri has as a result a large enhancement of the cross-
section. The most considerable enhancement occurs at the
first (n ¼ 0) resonance and at the region between the reso-
nances (background scattering region). On the other hand,
in solids, the increase of ro=ri entails a reduction of both
the height and the width of the single scattering peaks.
Comparing single scattering and band structure it is easy
to understand why for the gap opening there is the differ-
ence between fluids and solids mentioned above, as gap
opening is connected with strong single scattering.

It remains to understand why there is the observed dif-
ference between fluids and solids concerning the depen-
dence on the density ratio ro=ri, also in the single scatter-
ing results. This difference can be understood if one takes
into account that in the case of fluids both the first reso-
nance and the background scattering are due to the n ¼ 0
spherically symmetric wave, which contributes insignifi-
cantly in the rigid solids case (there, due to the high ct the
transverse wave dominates the scattering). This n ¼ 0 scat-
tering, which corresponds to spherically symmetric oscilla-
tions of the sphere, is favored from low sphere densities,
as a sphere of a lower density can experience stronger
oscillations (if located in a fluid, which does not strongly
resist to these oscillations), and thus stronger scattering
than a sphere of a denser material.

10.4.3 Dependence on the rigidity of the materials,
cto=clo and cti=cli

Concerning the cross-section dependence on the rigidity,
ct=cl, of the sphere and host it is worth-noticing that the
cross-section is much more sensitive to the rigidity of the
host material than to that of the sphere. A solid sphere in
a solid (fluid) gives similar results with those of a fluid
sphere embedded in the same solid (fluid). The same “in-
sensitivity” to the rigidity of the scatterers is observed also
for the periodic system band gaps.

10.5 Relating the positions of the narrow bands
and gaps, with those of the single scattering
resonances

In all cases of periodic materials which were initially stud-
ied and which exhibited a gap, this gap was found to lie
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Fig. 51. (a) Single scattering cross-section for a fluid
sphere in a fluid host with clo=cli ¼ 3, ro=ri ¼ 3 and
cto ¼ cti ¼ 0. (b) Single scattering cross-section for an
empty sphere embedded in the host of (a) (dashed line)
and cross-section arising from the subtraction of the
empty sphere scattering amplitude from the fluid sphere
amplitude (solid line) a: sphere radius, klo ¼ w=clo:
wave vector in the host. The number above each reso-
nance denotes the corresponding spherical wave.



between the first and the second resonance of the corre-
sponding single scattering cross-section, with the gap
width to be always smaller than the distance between
these two resonances. Moreover, in all cases, the narrow
bands of the band structure were found to lie very close to
single scattering resonances, while this proximity with the
resonances is as much large as narrower the band is.

Extensive study of the position of the gap and the flat
bands as a function of the scatterers concentration showed
that the first appearance of the gap (at low concentration
of the scatterers) occurs very close to the first resonance
of the corresponding single scattering cross-section. As the
concentration of the scatterers is increased the gap is
moved towards the middle between first and second reso-
nance, a position at which it remains until its closing (for
high scatterers concentration), while flat bands appear very
close to the resonances. How this can be understood? At
low concentrations the appearance of the gap very close to
a resonance can be attributed to the fact that at these con-
centrations the propagation occurs mostly through the host
materials and the resonances (strong scattering regimes) in-
hibit this propagation. As the scatterers concentration is in-
creased the resonance states of the neighboring scatterers
overlap, giving rise to a new propagation channel, i.e. hop-
ping from scatterer to scatterer using these overlapping
states. This propagation channel is preferable at intermedi-
ate and high scatterer concentrations as, there, propagation
through the host is not easy any more. Thus the gap moves
towards the middle of two successive resonances, while at
the resonance positions flat bands of the periodic system
appear1. This picture is alike the linear combination of
atomic orbitals (LCAO) picture, which results to the forma-
tion bands and gaps in electronic periodic systems.

10.6 Interpretation of the optimal conditions
for gap formation

As was mentioned in the introduction of this section, a
noticeable result of the band structure study is that while
the gap formation seems to be favored from large ratio
clo=cli for no density contrast between scatterers and host,
under the presence of density contrast the largest gaps
were found in systems where the velocities of the host
were only slightly larger than those of the scatterers, and
not in systems with high clo=cli. Realistic cases of those

systems concern spheres of a heavy metal, like, e.g., Pb,
Ag, steel, in a low density host, like polymers (epoxy,
PMMA etc.). The typical form of the cross-section in
these “wide gap cases” is the one of Fig. 52 (concerning
an Ag sphere in epoxy): The cross section is composed of
strong (high and wide) resonances, well separated from
each other, and with high background scattering between
them. This background scattering comes almost exclu-
sively from the contribution of the hard sphere (see sub-
section 10.3), as is shown in Fig. 52(c), where this back-
ground scattering has been subtracted and the resonances
appear clearly. The gap here appears between the first two
resonances while flat bands appear very close to them.

A careful and systematic study of many cross-section
cases and of the corresponding band structure results
showed that whenever in the cross-section appear strong
and well separated resonances with high background scat-
tering between them, the corresponding periodic system
exhibits a wide gap, located between the first two reso-
nances. This significant result can be understood if one
accepts for the periodic systems the existence of the two
limiting channels of propagation that we discussed in the
previous section: through the host and through the
spheres, hopping from one sphere to its neighboring ones
through their overlapping resonance states (in most cases
both channels operate). In the strong background scatter-
ing regime between the resonances neither channel is
available (the host is not available due to strong back-
ground scattering and the spheres are not available due to
the absence of resonances). Thus the opening of a gap is
the only possibility. Moreover, the large resonances se-
paration (result of the small velocities contrast between
host and spheres) permits opening of a wide gap. Taking
into account the above, it can be easily understood why
under the presence of density contrast between scatterers
and host (which insures strong resonances) the low velo-
city contrast favors the gap formation. It is because it
gives strong background scattering and it keeps the reso-
nances well separated, permitting thus a wide gap.

Studying the single scattering cross-section and examin-
ing the relation of the cross-section resonances with the
band structure characteristics (gap and flat bands) of the
corresponding periodic system we managed to speculate on
the conditions that favor the appearance of a gap in this
periodic system and to understand partly the mechanism of
the gap formation. It was found that whenever in the single-
scattering cross-section there are strong and well separated
resonances with a strong background scattering between
them, due to the hard or empty sphere, a wide gap may
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Fig. 52. (a) Cross-section for scattering of an incident longitu-
dinal wave by a Ag sphere embedded in epoxy. (b) Cross-sec-
tion for scattering from a rigid sphere in epoxy. (c) Cross-sec-
tion arising by the subtraction of the rigid sphere scattering
amplitude from the Ag sphere amplitude. a: sphere radius,
klo ¼ w=clo the wavenumber in the host; the number next or
above each resonance denotes its corresponding spherical wave.
The arrows in (c) show the flat bands position in the band
structure of the fcc periodic system which exhibits the maxi-
mum gap, while the double arrow surrounding the letter G
shows the boundaries of this maximum gap.

1 Hybridization or level repulsion are the reasons for which the
coincidence between flat bands and resonances is not exact.



appear in the corresponding periodic system, in the fre-
quency regime between the resonances. This can be under-
stood by considering two limiting channels of propagation
in a periodic system: Through the host, and through the
scatterers, using the overlapping resonance states of the in-
dividual scatterers. Whenever both channels are blocked an
opening of a gap is mostly expected to take place. Neverthe-
less, it has been recently shown that not only the individual
scatterers but also their structural arrangement can be very
important in the formation of absolute phononic gaps [132].

11. A phononic resonator

Quantum mechanics tells us that in the transmission of an
electron through a double barrier, a resonance may occur.
When the double barrier is symmetric the transmission
coefficient at resonance equals unity, when the double bar-
rier is not symmetric the transmission coefficient is less
than unity. There is a phononic analogue of the above.

Consider a phononic fcc crystal of lead spheres (cen-
tered on the sites of the lattice) in epoxy and we view the
crystal as a sequence of (001) fcc planes. The crystal has
an appreciable absolute frequency band gap with a ratio of
gap width to midgap frequency equal to 0.33 [166].

A sequence of five successive fcc planes of the crystal
constitutes a phononic slab that sustains the frequency
band gap mentioned above. By replacing a plane of
spheres with a plane of the same 2D periodicity but with
smaller spheres, we can introduced an impurity plane into
our system which leads to a resonance in the transmittance
of the slab as shown in Fig. 53, which shows the transmit-
tance of a shear elastic wave incident normally on the
slab. A similar effect occurs for a compressional wave.

The transmission resonance at a frequency within the
gap signifies the existence of a state of the elastic field
centered on the impurity plane: a mode of vibration of the
elastic field that extends to infinity parallel to the surface
of the slab (in the manner of a Bloch wave), but decays
rapidly normal to the impurity plane on either side of it.
We note that the transmission coefficient equals unity at
the resonance frequency when the impurity plane is re-
moved from the center of the slab by one plane, the value
of the transmission coefficient at resonance diminishes by
at least two orders of magnitude (middle diagram in
Fig. 53), and the resonance disappears altogether when the
impurity plane is removed to the surface of the slab. This is
indeed a general characteristic of resonant tunneling [167].

We can always go a step further and think of interacting
impurity planes by forming a heterostructure of repeating
slices such as the slab above. This will give rise to bands of
impurity states inside the absolute frequency gap of the
crystal. This suggests that a random distribution of impurity
planes (to be taken as size disorder) will lead to vibrational
modes localized over smaller regions of the material. The
reader may find more on this matter in Refs. [61, 166].

12. Dissipation in phononic lattices

12.1 A brief review on the physics of phononic gaps

It has been established that periodic binary composites
consisting of nonoverlapping high-density scatterers in a

low-density host material [119] as well as three-compo-
nent phononic crystals consisting of coated spheres inside
an embedding medium [34, 168], exhibit absolute phono-
nic gaps. It is also true that the crystal structure can be
very important in the formation of absolute phononic gaps
[132]. Nevertheless, the physical origin of the widest of
these gaps lies beyond the Bragg gaps at the Brillouin-
zone boundaries. In reality, there are also bands originat-
ing from resonant elastic modes of the individual scat-
terers: resonant states on neighbor scatterers that couple
weakly with each other, resulting in corresponding rela-
tively narrow bands. These bands originating from the
“rigid-body” resonance modes of the individual scatterers
hybridize with the continuum bands corresponding to an
almost free propagation in an effective homogeneous med-
ium [19, 132, 169, 170]. The opening of the hybridization
gap is favored by an increased volume filling fraction, but
at the same time it is compromised by the widening of the
resonance bands which is also favored by an increased
value of the same property of the crystal. As we will show
later, this compromising effect will be seised by introdu-
cing dissipation on the scatterers of the crystal [169].

For reasons of completeness, we also add the effect of
coated scatterers, by which we may shift a hybridization
gap toward a desired frequency region [34, 168].

12.2 An absorbing sphere in an inviscid fluid

The viscoelastic response of the system, we are going to
present here, is accounted for by means of the Kelvin-
Voigt model [171], which is well-suited for materials and
ultrasonic frequencies of major interest. The problem of
acoustic-wave scattering by a single viscoelastic sphere of
radius S has been adequately addressed in the past [171]
according to the Kelvin-Voigt viscoelastic model. In such
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Fig. 53. Transmittance of shear elastic waves incident normally on a
slab of an fcc crystal of lead spheres in epoxy. The slab consists of
five planes of spheres parallel to the (001) surface. The spheres have
a radius S ¼ 0:25a, except those of the middle plane (top diagram),
or of the second plane from the surface (middle diagram), or of the
surface of the slab (bottom diagram), which have Si ¼ 0:7S. a is the
fcc lattice constant, w is the angular frequency and ct is the shear
speed of sound in epoxy. (After Psarobas et al., Ref. [166]).



a case the sphere is considered to be elastic with modified
shear and compressional complex wavenumbers, the ima-
ginary parts of which represent a measure of the loss. In
particular, for an absorbing sphere in an inviscid fluid
background, the complex compressional and shear wave-
numbers are conveniently defined as

qsl ¼
cl

csl

qlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i½ðaþ bÞ=rsc

2
sl�

q ;

qst ¼
cl

cst

qlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iðb=rsc

2
stÞ

p ;

ð59Þ

where ql ¼ w=cl refers to the fluid environment with w
being the angular frequency and cl the respective speed of
sound. The real parts of the complex Lamé parameters of
the sphere, ls ¼ lse � ilsv and ms ¼ mse � imsv, combined
with the density rs yield the compressional and shear
wave speeds respectively

csl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlse þ 2mseÞ=rs

q
; cst ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mse=rs

q
: ð60Þ

The imaginary parts of the Lamé parameters are connected
to the viscous losses aþ 2b, and b of the sphere as fol-
lows: a ¼ wlsv, b ¼ wmsv.

12.3 A viscoelastic phononic crystal

In order to make our point clear, we have picked a pathologi-
cal case (but still very real in practice), in certain aspects. The
system to be examined is an fcc crystal of close-packed rub-
ber spheres in air. In particular, the mass density of air is
rair ¼ 1:2 kg=m3 and its respective speed of sound
cair ¼ 334 m=s. The rubber spheres have a mass density
rs ¼ 1130 kg=m3 and cls ¼ 1400 m=s, cts ¼ 94 m=s are the
compressional and shear speeds of sound, respectively. In ad-
dition, according to Ref. [171], three different viscoelastic le-
vels are considered for the rubber spheres, namely: lossless
spheres (a ¼ b ¼ 0), a low viscous level (alow ¼ 0:5 MPa=s,
blow ¼ 0:01 MPa=s) and a high viscous level (ahigh ¼
5 MPa=s, bhigh ¼ 0:1 MPa=s). The viscoelastic properties
used in this study are typical values for commercial rub-

bers, the variety of which is quite extensive and frequency
dependent at high ultrasonic frequencies.

The on-shell layer MS method [19, 33] can treat very
easily dissipative and dispersive materials either as scat-
terers or hosts. According to this method we view the
crystal as a succession of planes of spheres parallel to the
(111) fcc surface. The results are shown in Fig. 54. One
clearly sees a number of flat bands which derive from the
strongly interacting sharp resonant modes of the individual
rubber spheres as result of the close-packing arrangement.
Because these bands are so narrow in the present case,
they are hardly observable, except that they introduce
small gaps, above and below the main gap, which result
from the hybridization of these flat bands with the broad-
bands corresponding to nearly free propagating waves.
These narrow gaps are seen more clearly in the transmis-
sion spectrum. Within the main gap these flat bands man-
ifest themselves as sharp peaks in the transmission spec-
trum. When losses are present in the system, there are no
true propagating waves and the band structure of the infi-
nite lossless crystal is not of any help; therefore, the effect
of the low viscous level is shown in the 2nd transmission
spectrum [left (c)]. As anticipated from the results of the
single sphere, the sharp peaks and dips of the resonant
states disappear and we obtain a “clean” sonic gap with-
out any resonant modes within it. The existence of the
frequency gap means that sound does not propagate
through the crystal when its frequency lies within the gap
(the intensity of the wave decays exponentially into the
crystal for these frequencies), and if it cannot enter into
the crystal, it cannot be absorbed either.

In Fig. 54 we can also observe the close relation be-
tween absorption and transmission for normal incidence.
A relatively large transmission coefficient implies that a
correspondingly large fraction of sound has gone through
the slab, with a consequent higher probability of being
absorbed. However, since losses are due to the rubber
spheres, absorption mainly occurs about the frequency re-
gions where the modes of the acoustic field are mostly
localized in the spheres. This explains why, outside the
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Fig. 54. On the left: The sonic band structure at the center of the SBZ of a (111) surface of an fcc crystal (of lattice constant a) of close-packed
lossless rubber spheres in air (a). The corresponding transmittance curve of a slab of 16 layers parallel to the same surface is given in (b). In (c)
the same transmittance curve is presented but with spheres of the low viscous level. d is the distance between successive (111) planes of the fcc
crystal under consideration. On the right: Absorbance and transmittance curves of slabs of the rubber sonic crystal described on the left (a),
consisting of 8 [(a), (c)] and 32 [(b),(d)] planes of spheres, respectively. The black line (shaded curve) corresponds to the low (high) viscous
level. (After Psarobas, Ref. [169]).



gap regions, absorption takes place essentially about the
frequencies of the flat bands.

The induced resonant absorption on the scatterers, and not
the host, serves as a cutoff in order to get around problems
with disturbing resonant states on the frequency spectrum of
the phononic crystal, which spoil the formation of clear om-
nidirectional frequency gaps and even useful partial gaps.
This might be extremely useful in relation to waveguiding.
Figure 55 demonstrates from the properties of the lossless
“infinite” crystal, along all possible symmetry lines, what we
can gain and benefit from dissipation in phononic lattices.

Part III: Experimental observations

13. Introduction

Phononic crystals can be built from plates, cylinders,
spheres or any other object with elastic properties differing
from those of the embedding medium. However, it is not a
straightforward task to tailor a phononic crystal with large
absolute (i.e. in all propagation directions and for all po-
larizations) band gap (band-gap engineering). Since elastic
waves in a solid have both longitudinal and transversal
components with different propagation velocities their cor-
responding gaps have to overlap. For example, phononic
crystals composed of solid inclusions in a fluid or poly-
mer are good candidates to obtain large spectral gaps.

The elastic wave propagation in an object containing
inclusions with elastic properties different from those of
the embedding medium is modified by MS (constructive
and destructive interferences in the case that the dimen-

sions of the objects and the wave length are of the same
order) and refraction (due to different wave velocities of
the objects and the surrounding medium). If there are
strong density and velocity contrasts in a phononic crystal,
Bragg diffraction peaks (related to pseudogaps) are trans-
formed into broad attenuation bands. Coupling between
shear modes and longitudinal modes also plays a crucial
role and makes calculations very difficult.

A very important and beneficial property of phononic
crystals is the scalability of the effects for frequencies
from the Hz to the THz range, from seismic waves to
phonons. This means that any phenomenon appearing in a
phononic crystal for a certain range of frequencies and a
given length scale can basically be extrapolated to other
systems that are scaled up or down with respect to their
frequencies and length scales.

There are numerous potential engineering applications
of phononic crystals spanning many orders of magnitude,
from thermal barriers, elastic/acoustic filters, vibrationless
environments for high-precision mechanical systems, im-
proved transducers, waveguides, acoustic lasers (phasers),
acousto-optical devices, non-absorbing mirrors to sound
protection devices and earth quake shields. In the follow-
ing, experimental studies of phononic crystals, as far as
they deal with their transmission (attenuation) or reso-
nance spectra and/or their band structure, are reviewed.
The work reviewed is grouped around possible applica-
tions. Tables 2–4 list phononic crystals studied so far ex-
perimentally. Table 5 gives the elastic properties of the ma-
terials used.

14. Experimental setup

The experimental setup is determined by the frequency of
the elastic or acoustic wave to be used. If sound waves in
the audible range are to be studied, the lattice parameters
of a sonic crystal are of the order of 10 to 50 centimeters.
The sound waves are produced by loudspeakers and de-
tected by microphones. The whole setup should be set up
in a sound-deadening chamber.

Since the properties of phononic crystals are scalable,
it is space-saving to use ultrasound (Fig. 56). With fre-
quencies of � 1 MHz, the constituents of a phononic crys-
tal and their distances shrink to � 1 mm. This is signifi-
cantly smaller than the diameters the of the transducers
employed as ultrasound emitters and receivers. This allows
to probe also more complex structures such as quasicrys-
tals experimentally.
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Fig. 55. Projection of the frequency band structure on the SBZ of the
(111) surface of the fcc sonic crystal described in the caption of Fig. 54.
The reduced k zone associated with the fcc (111) crystallographic plane
with the (bulk) fcc Brillouin zone (right inset) and the corresponding
surface Brillouin zone (left inset). (After Psarobas, Ref. [169]).

Table 2. 1D phononic crystals studied experimentally so far. In case of hollow (covered) objects the wall (cover) thickness is given in brackets.

Material of the objects Object cross section
[mm]

Periods of objects
[mm]

Host material Potential application reference

Acrylic glass
(PMMA)

2 7.24 Water Frequency filter
James et al. (1995): Ref. [181]

LiNbO3þ 0.0036 0.0072 LiNbO3� Microwave absorption
Lu et al. (1999): Ref. [183]

Silica glass 1.23
3.0

2.47
3.51

Water Frequency filter
Shen and Cao (1999): Ref. [182]



The parameters controlling existence, position and
width of absolute band gaps are the topology of the struc-
ture (symmetry and order), packing density (filling factor),
contrast in elastic constants, wave velocities and densities
of the objects building the phononic crystal as well as
their shape and internal structure.

The influence of the limited size of the phononic crys-
tal (the length of rods should be larger than the wave-
length to ensure 2D behavior), of container walls and the

supporting structure as well as of misalignments and size
variations of the building objects has to be controlled.
This is also true for the existence of inhomogeneities (air
bubbles in a liquid medium, pores and inclusions in solid
media etc.).

However, for almost all experiments reported in litera-
ture so far, the total number of scattering objects in the
studied phononic crystals was rather small. This is also
true for the ratio (diameter of the transducer)/(lattice para-
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Table 3. 2D phononic crystals studied experimentally so far. In case of hollow (covered) cylinders or rods the wall (cover) thickness is given in
brackets.

Material of
the objects

Object cross section
[mm]

Periods of objects
[mm]

Host material Potential application reference

Air circular 60 honeycomb 210
hexagonal 140

marble Seismic wave shield
Meseguer et al. (1999): Ref. [205, 146]

Acrylic glass
(PMMA)

circular 20.4 square 110 air sonic shield
Miyashita (2002): Ref. [197]

Aluminum circular 40 (2) square 110
hexagonal 63.5

air acoustic interferometer
Sanchis et al. (2003): Ref. [200]

Aluminum circular 10, 20, 30, 40 hexagonal 63.5
Suzuki phase

air sound control
Caballero et al. (2001): Ref. [23];
Cervera et al. (2002): Ref. [148]

Aluminum
steel or wood

circular 10, 20, 30, 40 hexagonal 63.5, 12.7
and square 55, 110

air acoustic filter
Rubio et al. (1999): Ref. [195]
Sanchez-Perez et al. (1998): Ref. [22]

Copper circular hollow 28 (1) square 30 air sonic shield
Vasseur et al. (2002): Ref. [194]

Duralumin circular 16 square 20
rectangular 20 � 40

epoxy band gap
Vasseur et al. (1998): Ref. [142]

Electrical conduit circular hollow 23.4 square 37
hexagonal 37

air sound control
Robertson and Ruby (1998): Ref. [143]

Mercury, air or
baby oil

circular 2 square 2.73, 2.80 . . . aluminum band gap
Garcia-Pablos et al. (2000): Ref. [15];
Montero de Espinoza et al. (1998): Ref. [144];
Torres et al. (1999): Ref. [145]

Mercury circular 2 twinned square 28 aluminum wave splitting
Torres et al. (2001): Ref. [147]

PVC circular hollow 160 hexagonal 220 air sonic shield
Sanchez-Perez et al. (2002): Ref. [193]

Steel square hollow 30 (3) square 42.5 air sonic shield
Goffaux et al. (2003): Ref. [198]

Steel circular 2.5 square 3.0 water sonic shield
Khelif et al. (2003; 2004): Ref. [210]

Steel circular 4 hexagonal 6.023 epoxy waveguide
Vasseur et al. (2001): Ref. [17]

Steel circular 5 and rubber
coated circular 4 (1)

square 7 epoxy ultrasound filter
Zhang et al. (2003): Ref. [204]

Steel circular 1 Penrose tiling 1.7
triangular 1.5

water Sutter et al. (2004): Ref. [192]

Silica glass circular full and hollow
0.08 (0.01)

square 0.08 air acousto-optic devices
Russel et al. (2003): Ref. [213]

Silica glass spherical 1.12 square 2.63 polyester Frequency filters
Henderson et al. (2000): Ref. [184]

Steel spherical square, hexagonal
random

polyester Frequency filters
Kinra et al. (1998, 1999): Ref. [185, 186]

Silica glass
lead
steel
WC

spherical 0.56
0.6
0.585
0.245

square
square
square, hexagonal
square

polyester selective filters
Maslov et al. (1999, 2000): Ref. [188, 189];
Maslov and Kinra (1999): Ref. [187];
Torres et al. (1999): Ref. [145]



meter), which amounts only to � 2 in most cases. This
plays a role for the study of more complex structures or
defect structures and, in particular, for the comparison
with band structure calculations, which are usually based
on infinite periodic systems.

Theoretical calculations are often based on systems
with strong contrasts in the elastic properties of the com-
ponents of the phononic crystal, which cannot be fabri-
cated experimentally such as mercury or air cylinders or
bubbles in water. For practical purposes and potential ap-
plications materials of choice are steel, glass, etc. em-
bedded in polymers or water.

Up to date, mostly very simple structures (hexagonal or
square packing of cylinders, hexagonal or cubic dense

packing of spheres, etc.) have been studied experimentally.
It is well known that, for instance, the reduction of the
total symmetry of the phononic crystal can remove bad
degeneracies, allowing for the appearance of complete
gaps. An example is the comparison between diamond
and zinc-blende crystals [7].

15. Experimental studies

The goal of experimental studies is to explore elastic wave
propagation in phononic crystals as a function of materials
employed as well as of structure and structural ordering.
In not so far future theoretical modeling will probably
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Table 4. 3D phononic crystals studied experimentally so far. In case of hollow (covered) objects the wall (cover) thickness is given in brackets.

Material of
the objects

Object cross section
[mm]

Periods of objects
[mm]

Host material Potential application reference

Aluminum spherical 3 randomly dense air band gap
Turner et al. (1998): Ref. [191]

Amorphous silica spherical � 0.00015–0.0002 fcc � 0.0003–0.0004 air nanoacoustics
Bogomolov et al. (2002): Ref. [208]

Lead rubber coated spherical 10 (2.5) cubic 15.5 epoxy sonic shield
Sheng et al. (2003): Ref. [201];
Liu, Zhang et al. (2000): Ref. [168]

Silica glass steel spherical 1
spherical 0.55

cubic 2.54
tetragonal 1.32�1.32�2.63

epoxy
acrylic glass

band gaps
Kinra and Ker (1983): Ref. [180]

Steel
Steel, lead

spherical 11
spherical 16, 19

tetragonal 16�16�20
tetragonal 30�30�20

rubber in rigid
plastic frame

sonic shield
Ho et al. (2003): Ref. [203]

Steel spherical 1.17 tetragonal 2.63�2.63�5.26 acrylic glass band gap
Henderson et al. (2001): Ref. [190]

Steel spherical 0.8 hcp 0.8�0.8�1.306 water band gap
Liu, Chan et al. (2000): Ref. [13]

WC spherical 0.8 fcc 1.6 water ultrasound tunneling
Yang et al. (2002): Ref. [149]

Material Mass density
[Mgm�3]

cl
[ms�1]

ct
[ms�1]

Reference

Acrylic glass
(PMMA)

1.180 2750 � James et al. (1995): Ref. [181]

Air 0.0013 340 � Caballero et al. (2001): Ref. [23]

Alluminum 2.73 6420 3040 Lide (2001): Ref. [214]

Copper 8.950 4330 2900 Vasseur et al. (2002): Ref. [194]

Duralumin 2.799 6342 3095 Vasseur et al. (1998): Ref. [142]

Epoxy R125 1.142 2569 1139 Vasseur et al. (1998): Ref. [142]

Lead 11.3 2210 860 Maslov et al. (2000): Ref. [189]

Marble 2.80 6000 3217 Messeguer et al. (1999): Ref. [205, 146]

Mercury 13.50 1450 � Klironomos and Economou (1998): Ref.
[215]

Polyester 1.22 2490 1180 Maslov et al. (2000): Ref. [189]

Rubber, gum 0.92 1550 � Lide (2001): Ref. [214]

Silica glass 2.49 5660 3300 Maslov et al. (2000): Ref. [189]

Steel 7.8 5940 3200 Maslov et al. (2000): Ref. [189]

Tungsten 19.25 5090 2800 Lide (2001): Ref. [214]

WC 15.6 6660 3980 Maslov et al. (2000): Ref. [189]

Water 1.0 1490 � Yang et al. (2002): Ref. [149]

Table 5. Parameters of materials used for the
fabrication of phononic crystals studied ex-
perimentally so far. cl and ct are the respec-
tive compressional and shear sound wave
speeds.



make experiments unnecessary. Nowadays, however, large
non-periodic structures still cannot be modeled properly
on a reasonable timescale. Experiments are still orders of
magnitude faster. Furthermore, real phononic crystals,
which may be used for a practical applications, always are
finite, show some structural disorder due to inaccuracies in
the fabrication process, tolerances in the materials dimen-
sions, inhomogeneities at interfaces. This cannot be mod-
eled properly and its possible influence on the properties
of the phononic crystal has to be investigated by compar-
ison of experimental results and theoretical predictions.

15.1 Early studies

Starting in the fifties, the propagation of elastic waves
through periodic composite materials was studied on sev-
eral examples and first suggestions for applications such
as frequency filters came up (for a review see, e.g., Ref.
[175]). Strong geometric dispersion effects were found in
one-dimensional (1D) layered composites consisting of per-
iodically arranged boron fibers and carbon cloth for ultra-
sound waves propagating parallel to the laminates [176].
Pass and stop bands were found in 1D layered composites
consisting of steel and copper foils [177]; in 2D fibrous
composites made up of tungsten wires in aluminum [178],
boron fibers in epoxy [179] or piezoelectric PZT rods in
different polymers [94]; in 3D composites consisting of
glass spheres (1 mm diameter, cubic array with period
2.54 mm) in epoxy and steel balls (0.55 mm diameter, tetra-
gonal array with unit cell 1.32�1.32�2.63 mm3) acrylic
glass [180]. The application of these composites as wave
filters was already proposed by Sutherland and Lingle
[178]. Kinra and Ker [180] point out that “an important
property of the periodic heterogenous materials is the phe-
nomenon of pass bands and stop bands”. The wonder why
at wavelengths comparable to the sphere diameters no
more stop bands are observed and the dispersion curve
becomes continuous. This may be explained by the rather
strong deviations from a perfect tetragonal structure of
their spheres in acrylic glass (see Fig. 2 of Ref. [180]).

Between 1983 and 1992, there was no much activity
left studying the properties of periodic composite struc-

tures. The increasing interest in photonic crystals, how-
ever, induced also a revival of the research in these struc-
tures. The term ‘phononic crystal’ was coined in analogy
to ‘photonic crystals’ by Kushawa et al. [7].

15.2 Frequency filters

Frequency filters should ideally posses a very broad omni-
directional band gap and, in its center, a very narrow pass
band. There should also be an easy way to tune the fre-
quency of the pass band.

Depending on the application 1D, 2D or 3D structures
may be employed. 1D multilayer structures can be rather
easily fabricated down to the nanometer scale, for in-
stance. The lattice parameter seen by the elastic waves
depends on the angle of incidence, however. A virtual in-
crease of the lattice parameter due to oblique incidence
would shift stop and pass band to lower frequencies.

15.2.1 1D arrays of plates

The transmission of ultrasound through a periodic array of
2–10 perspex (PMMA, acrylic glass) plates (2 mm thick,
7.24 mm period) in water was studied by James et al. [181].
A vacancy defect, formed by removing one of the plates,
resulted in a sharp transmission peak at � 2.25 MHz in the
center of stop band between � 2.0 and � 2.5 MHz.

Structures of glass plates (0.51–3 mm thickness) in
water consisting of two subsets with different periods have
been studied by Shen and Cao [182]. The authors demon-
strate that depending on the arrangement either a sharp
passband (transmission coefficient � 0.6) or a broad stop-
band (transmission coefficient < 0.03) can be achieved.

A phononic crystal composed of two sets of periodi-
cally aligned (7.2 mm period) ferroelectric LiNbO3 layers
with opposite spontaneous polarization was studied by Lu
et al. [183]. This structure is somehow related to an ionic
crystal since the plates carry opposite electric charges con-
stituting dipoles, which can interact with EM radiation. In-
deed, a strong microwave absorption peak at 502 MHz in-
dicates a polariton mode, i.e. a coupling mode of photons
and optical phonons. The coupling between vibrations of
the multilayer structure and EM waves results in various
long-wavelength optical properties, such as microwave ab-
sorption, dielectric abnormality, and polariton excitation,
that originally exist in ionic crystals.

15.2.2 2D arrays of spheres

The diffraction of broadband longitudinal ultrasonic pulses
by a 2D square periodic array (2.63 mm period) of glass
spheres (1.12 mm diameter) embedded in polyester was
studied by Henderson et al. [184]. Longitudinal ultrasonic
waves are diffracted as both longitudinal and shear waves
due to mode conversion. Particular interest was on the
shear waves generated. Not surprisingly, reflection peaks
were observed according to Bragg’s law.

Kinra et al. [185, 186] investigated the influence of or-
der (square, hexagonal, random) and filling fraction (0.14
to near close packed 0.92) of glass spheres in polyester.
The specimens with random order do not exhibit any
structure in their transmission spectra, the square and the
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Fig. 56. Experimental setup for a ultrasound transmission experiment.
A ultrasound pulse with Gaussian frequency distribution is trans-
mitted through a phononic crystal (steel rods in water). The received
signal gives information about the transmission spectrum and the
band structure (from Sutter, 2003) [174].



hexagonal arrangements showed different gaps for low
(� 0.14) and high (� 0.57) filling fraction but similar ones
in between (� 0.28).

Experiments on singular square and hexagonal layers
of spheres (glass, steel, tungsten carbide, lead) embedded
in polyester were carried out by Maslov et al. [187–189].
The resonance (transmission) spectra are similar with one
big maximum (minimum) between 0.8 and 1 MHz. The
only exception is the tungsten-carbide fibers containing
specimen, which has a very low filling ratio of just 1%.

15.2.3 3D arrays of spheres

A tetragonal phononic crystal (2.63�2.63�5.26 mm3) of
steel balls (1.13 mm diameter) embedded in acrylic glass
was investigated by Henderson et al. [190]. Despite the
very low packing density of just 2.3% a narrow stop band
was observed for ultrasound waves propagating along
[001]. The authors demonstrate that some properties of
higher-density phononic crystals [180, 188] can be pre-
dicted based on these data.

Ultrasound tunneling through a phononic crystal con-
sisting of cubic close packed tungsten carbide spheres in
water was studied by Yang et al. [149]. Along [111] a gap
was identified between 0.8 and 1.2 MHz and a complete
gap around � 1 MHz. Evidence for tunneling was pro-
vided by the measuring the transit time of ultrasound
pulses with a midgap frequency. While the transit time of
normally propagating waves increases linearly with the
thickness of the phononic crystal, the tunneling time is
just inversely proportional to the width of the gap.

Band structure and transmission spectra of a phononic
crystal made up of hexagonally close packed steel balls
(0.8 mm diameter) in water were studied by Liu, Chan
et al. [13] in order to demonstrate the applicability of the
their model based on MS theory.

Several randomly densely packed weakly sintered ar-
rays of aluminum beads (3 mm diameter) were probed by
ultrasound [191]. The different stop bands observed are
interpreted arising from the coupling of the many internal
degrees of freedom of the beads.

15.2.4 2D arrays of cylinders

The properties of band gaps obtained by a hexagonal ar-
rangement (6.023 mm period) of steel cylinders (4 mm
diameter) in epoxy were studied by Vasseur et al. [17].
Two complete band gaps were found from 124–276 kHz
and 441–483 kHz. For a square (20 mm period) and a
centered rectangular (20�40 mm unit cell) array of Dura-
lumin cylinders (16 mm diameter) in epoxy a complete
gap between 60 and 90 kHz was observed in agreement
with theoretical calculations [142].

Square arrays (2.73 and 2.80 mm periods, respectively)
of cylinders (2 mm diameter) of fluids (mercury, oil, air)
in aluminum were studied by Garcia-Pablos et al. [15].
Strongest attenuation (40–80 dB) was found between
� 0.75 and � 1 MHz for mercury. The agreement between
experimental and calculated (by FDTD) attenuation spec-
tra was rather poor.

The properties of a phononic crystal, consisting of a rec-
tangular array of vacancies on a hexagonal array (63.5 mm
period) of Al cylinders (40 mm diameter, 1 m length) in air
were studied by Caballero et al. [23]. Stop bands for the
resulting structure (Suzuki phase) have been found related
to both the order of vacancies at lower frequencies and the
triangular host lattice at higher frequencies. A complete
band gap was found around � 1.4 MHz for a ratio � 0.36
of the cylinder radius and the nearest neighbor distance.
This experiment built on previous investigations on the
properties of square, hexagonal and honeycomb structures
formed by aluminum cylinders in air [128]. The influence
of symmetry reduction on the size of the band gap was
studied by placing cylinders with smaller diameter at the
centers of the unit cells. The largest band gaps were ob-
tained for diameter ratios of the cylinders of 0.1–0.3.

For the first time, fivefold symmetric quasiperiodic arrays
(Penrose rhomb tiling) of steel rods (1 mm diameter, 1.7 mm
edge length of the rhomb tiles) in water have been investi-
gated in comparison with a hexagonal structure by Sutter,
Krauss and Steurer [192]. In the hexagonal structure, (filling
fraction 0.4) several large partial band gaps and one small
omnidirectional gap (around 1.6 MHz) were observed. In
the Penrose phononic crystal, the spectrum was rather spi-
ky with many narrow partial gaps and a few narrow omni-
directional gaps (around 0.45, 0.62 and 0.76 MHz).

15.3 Noise attenuation and sonic shields

An important potential application is the attenuation of
traffic noise along highways. It would be very benificial if
this could be done in a more efficient and more aesthetical
way than nowadays.

15.3.1 2D arrays of cylinders

The sound attenuation of a sculpture by the Spanish artist
Eusebio Sempere was demonstrated by Martinez-Sala et al.
[139]. It consists of square-periodically (100 mm period)
arranged hollow steel cylinders (29 mm diameter). A sig-
nificant sound attenuation was found around 1.67 kHz.

The ability of phononic crystals to attenuate road, air-
craft or factory noise was demonstrated in an outdoor ex-
periment using a sculpture of hollow cylindrical PVC rods
(160 mm diameter) mounted in a triangular pattern [193].
The average sound attenuation measured is between 10
and 20 dB for frequencies between 1 and 4 kHz.

A significant band gap was found for a square array
(30 mm period) of hollow copper cylinders (28 mm dia-
meter, 1 mm wall thickness) in air [194]. For waves propa-
gating along [100] the gap extends from 4 to 6.8 kHz.

In other experiments strong attenuation of sound waves
was obtained employing periodic arrays of steel cylinders
[22], hollow copper cylinders [194], aluminum cylinders
of two different diameters [128], wood cylinders [22,
195], electrical conduits [143] and water-filled soft-poly-
mer tubes [196], respectively, all in air.

Miyashita [197] studied a sonic crystal with acrylic cy-
linders (20.4 mm diameter) on a square grid (24 mm peri-
od) in air. He found a complete gap between 6.8 kHz and
9.5 kHz with a transmission ratio smaller than �25 dB.
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Hollow steel rods with square cross section (50 cm
length, 3 cm side length, 3 mm wall thickness) were ar-
ranged on a square lattice (4.25 cm period), 40 rotated
with respect to the lattice [198]. In the spectral range stu-
died (0–15 kHz), sound attenuation up to 30 dB (2–6 kHz)
was observed. Bypassing effects due to the rather small
size of the sonic crystals lead to a saturation of the at-
tenuation inside the gaps.The authors compared their re-
sults with the attenuation, which could be achieved by a
homogenous slab of the same mass. The phononic crystal
is superior for a thickness of more than 9 periods. Since it
is an open structure it is also advantageous if, for instance,
a heat exchanger with good acoustical insulation is
needed.

15.4 Refractive acoustic devices

Devices based on the difference in refractive indices of
phononic crystals and the surrounding medium could be
used for lenses for sonic or ultrasound waves.

15.4.1 2D arrays of cylinders

An acoustic biconvex lens made of hexagonally arranged
aluminum cylinders (40 mm diameter) in air has been
studied experimentally by Cervera et al. [148]. The speed
of sound inside the lens is with � 270 m/s less than in air
and the impedance contrast between the lens and air is
small. For frequencies around 1700 Hz there is a clear fo-
cusing effect (20 dB) with a focus 70 cm from the lens.

An acoustic interferometer composed of hollow alumi-
num cylinders (40 mm diameter, 2 mm wall thickness) ar-
ranged on either a square or a hexagonal grid (period 110
and 63.5 mm, respectively) in air was studied experimen-
tally and theoretically by Sanchis et al. [199, 200]. As a
function of the number of lattice layers as well as the fill-
ing fraction the reflectance was measured. One result is
that the hexagonal structure is isotropic and the square
lattice biaxial regarding sound propagation. The authors
conclude that sonic crystals of this kind act like Fabry-
Perot cavities for light waves.

15.5 Three-component elastic wave band-gap
materials

Local resonance of the scattering objects of a phonic crys-
tal can shift the scale by several orders of magnitude. This
makes more feasible potential applications such as sound
protection or even earthquake protection.

15.5.1 3D arrays of spheres

Experiments with a cubic array (period 15.5 mm) of rub-
ber coated Pb spheres (10 mm diameter, 2.5 mm layer
thickness) in an epoxy matrix were performed by Liu
et al. [13, 34, 168] and Sheng et al. [201]. Due to loca-
lized resonances (with negative dynamic elastic constants)
spectral gaps at frequencies two order of magnitudes low-
er are found than what is obtained from Bragg scattering
of uncoated spheres. Thus, by appropriate coating the size
of the objects in a phononic crystal can be uncoupled
from the wavelength of the elastic wave. This is very im-

portant in some cases such as for seismic waves reaching
wavelengths of kilometers.

Sheng et al. [201] studied a cubic sonic crystal
(15.5 mm period) of rubber coated lead spheres (10 mm
diameter, 2.5 mm coating thickness) in epoxy. They inves-
tigated the spectra only in the audible frequency range.
Two minima with � 0.001 transmission (compared to a
maximum transmission of 0.03) were found at � 400 Hz
and � 1350 Hz along the [100] direction. For a frequency
of 400 Hz the wavelength in epoxy is � 6.4 m.

The low-frequency attenuation of sound by rubber-
coated lead spheres in concrete was investigated by Li
et al. [202]. An enhancement of attenuation by � 20 dB in
the frequency range around 150 Hz was found.

Multilayer panels consisting of lead or steel spheres,
respectively, embedded in silicone rubber and kept in a
rigid plastic square grid were investigated by Ho et al.
[203]. For ball diameters between 11 and 19 mm signifi-
cant attenuation of the transmission was observed in a fre-
quency range of 200–500 Hz. The average transmission
intensity for a composite multilayer panel (one layer of
16 mm steel balls, one of 16 mm lead spheares, and one
layer of 19 mm steel balls) was up to 11 dB lower than
that dictated by the mass-density law (for a density of
7 Mg m�3). Since locally resonant materials show stronger
attenuation only around the resonance frequency, the com-
bination of several layers of local resonators differing in
size and material can act as a broadband sonic shield.

15.5.2 2D arrays of cylinders

An ultrasound experiment with rubber coated steel cylin-
ders (4 mm diameter and 1 mm thick coating) arranged on
a square grid (7 mm period) in epoxy showed a drastic
increase in the width of the band gap (� 200–450 kHz)
compared to the uncoated cylinders (5 mm diameter)
[204]. Transmission spectra at lower frequencies have not
been studied.

15.6 Seismic waves and water waves

Earthquake and coastal protection by phononic crystals are
only feasible if the structures needed are significantly
smaller than the wavelengths that are of the order of sev-
eral hundred meters.

15.6.1 2D arrays of cylinder

A feasibility study of the attenuation of surface waves
(seismic waves such as Rayleigh waves, i.e. a combination
of shear and transverse modes) was successfully per-
formed by Meseguer et al. [146, 205] on a large block of
marble with an ordered honeycomb and a hexagonal array
(140 mm period) of holes (60 mm diameter, 1.6 m deep),
respectively. Omnidirectional attenuation bands (>10 dB)
were found around 0–2 kHz and 10–15 kHz.

The propagation of surface waves on aluminum-coated
glass plates with 1D square-wave surface relief (3 m grating
period, 1.15 m relief depth, e.g.) was studied by a laser-
based picosecond transient grating method [206]. The sur-
face grating induces surface and bulk resonance mode mix-
ing. Significant gaps were found at the zone boundaries.
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The importance of understanding the wave interaction
with arrays of offshore structures in the ocean is under-
lined in a review by McIver [207]. For instance, the thou-
sands of supporting columns for floating airports can act
like a large phononic crystal.

15.7 Nanosystems

15.7.1 3D arrays of spheres

Thermal conductivity measurements on synthetic single-
crystalline opals (composed of nanospheres of amorphous
SiO2) showed an order-dependent lowering of the thermal
conductivity (for T < 20 K) when the phonon wavelength
approaches the diameters of the contact areas (�40 �A) be-
tween the SiO2 spheres [208]. The first-order amorphous
SiO2 spheres form a fcc structure with a period of 3000–
4000 �A. The effects are discussed in terms of a 3D array
of intersecting nanowaveguides (i.e. along the chains of
SiO2 spheres).

15.8 Waveguides, wavelength demultiplexing

15.8.1 2D arrays of cylinders

Localized defect modes and their interaction have been
investigated experimentally in a square phononic crystal
(3 mm period) consisting of steel cylinders (2.5 mm dia-
meter, 150 mm length) in water [209]. There is a complete
band gap in the range 260–312 kHz. By removing every
other cylinder in a row along the propagating direction of
the sound wave a defect mode at the center of this gap
was formed. The broad transmission (nearly 100%) peak
could be used for waveguiding. This was demonstrated in
another experiment employing straight as well as bent wa-
veguides [210]. Removing just one row of steel cylinders
showed a waveguiding band extending from � 270 to
� 310 kHz.

A 90 bending waveguide manufactured of acrylic cy-
linders in air was investigated by Miyashita and Inoue
[211]. Loss to due side leakage was � 30 dB in the full
band gap of the phononic crystal.

A device for elastic wave bending and splitting without
the requirement of a full gap was proposed by Torres
et al. [147]. It is based on square array (2.8 mm period) of
mercury cylinders (2 mm diameter) in aluminum [145].
Four wedge-like domains of this structure, related by a
45 rotation (twinning), make up the device. It allows 45

and 90 bending of the elastic wave by making use of
refraction at the domain boundaries enhanced by the direc-
tional gaps. Modular structures (tiling) resulting from arbi-
trary arrangements of triangular domains are proposed.

The method of topology optimization was employed
for the systematic design of phononic crystals to be used
for wave damping or waveguiding by Sigmund and Jensen
[212].

15.9 Defects in phononic crystals

The sonic resonances were studied experimentally of
two coupled solid defects in a square array of channels
(59 m diameter, 80 m period) and rods in a silica glass

photonic fibre preform [213]. There is a broad band-gap
around 25 MHz. The localized resonances at � 23 and
� 23.25 MHz were monitored by Laser interferometry.
The refractive index of the glass varies as a function of
the strength of the vibrations and can induce a phase
change of the laser beam. The authors see an application
as an efficient optical modulator or acoustic-optically
pumped acoustic oscillator.
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C.; Sánchez-Dehesa, J.; Meseguer, F.; Llinares, J.; Gálvez, F.:
Sound Attenuation by a Two-Dimensional Array of Rigid Cy-
linders. Phys. Rev. Lett. 80 (1998) 5325–5328.

[23] Caballero, D.; Sánchez-Dehesa, J.; Martı́nez-Sala, R.; Rubio,
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[82] Graham, I. S.; Piché, L.; Grant, M.: Experimental evidence for
localization of acoustic waves in three dimensions. Phys. Rev.
Lett. 64 (1990) 3135.

[83] Liu, J.; Ye, L.; Weitz, D. A.; Sheng, P.: Novel Acoustic Excita-
tions in Suspensions of Hard-Sphere Colloids. Phys. Rev. Lett.
65 (1990) 2602.

[84] Albada, M. P.; van Tiggelen, B. A.; Lagendijk, A.; Tip, A.:
Speed of propagation of classical waves in strongly scattering
media. Phys. Rev. Lett. 66 (1991) 3132.

[85] Ye, L.; Cody, G.; Zhou, M.; Sheng, P.; Norris, A. N.: Observa-
tion of bending wave localization and quasi mobility edge in
two dimensions. Phys. Rev. Lett. 69 (1992) 3080.

[86] Zou, B.; Zhang, Y.; Xiao, L.; Li, T.: Self-trapped state and
phonon localization in TiO2 quantum dot with a dipole layer.
J. Appl. Phys. 73 (1993) 4689.

[87] Smith, W. A.; Shaulov, A. A.; Auld, B. A.: Proc. Ultrason.
Symp. IEEE, New York (1985) 642.

[88] Smith, W. A.: Proc. Symp. Appl. Ferroelec. IEEE, New York
(1986) 249.

[89] Auld, B. A.: In: Ultrasonic Methods in Evaluation of Inhomo-
geneous materials (Eds. A. Alipi, W. G Mayor) Nijhoff, Dor-
drecht (1987) 227. Baste, S.; Gerard, A.: ibid, 381.

[90] Smith, W. A.; Shaulov, A. A. Ferroelect. 87 (1988) 309.
[91] Auld, B. A. Mater. Sci. Eng. A122 (1989) 65.
[92] Smith, W. A.: Proc. Ultrason. Symp. IEEE, New York (1989)

755.
[93] Takeuchi, H.; Masuzawa, H.; Nakaya, C.: Proc. Ultrason.

Symp. IEEE, New York (1990) 697. Smith, W. A.; ibid 757.
[94] Smith, W. A.; Auld, B. A.: Modeling 1–3 Composite Piezo-

electrics: Thickness-Mode Oscillations. IEEE Trans. Ultrason.
Ferroelec. Freq. Contr. 38 (1991) 122 and references therein.

[95] Smith, W. A.: Proc. SPIE Symp. 1733 (1992) 3. See also in
Recent Advances in Adeptive & Sensory Materials and their
Applications, April 27–29 (1992) 825.

[96] Smith, W. A.: Modeling 1–3 composite piezoelectrics –– hy-
drostatic response. IEEE Trans. Ultrason. Ferroelec. Freq.
Contr. 40 (1993) 41 and references therein.

[97] Sigalas, M.; Economou, E. N.: Band structure of elastic waves in
two dimensional systems. Solid State Commun. 86 (1993) 141.

[98] Ruffa, A. A.: Acoustic wave propagation through periodic bub-
bly liquids. J. Acoust. Soc. Am. 91 (1992) 1.

[99] Dowling, J. P.: Sonic band structure in fluids with periodic
density variations. J. Acoust. Soc. Am. 91 (1992) 2539.

[100] Esquivel-Sirvent, R.; Cocoletzi, G. H.: Band structure for the
propagation of elastic waves in superlattices. J. Acoust. Soc.
Am. 95 (1994) 86.

[101] Kushwaha, M. S.; Halevi, P.; Martı́nez, G.; Dobrzynski, L.;
Djafari-Rouhani, B.: Theory of acoustic band structure of peri-
odic elastic composites. Phys. Rev. B49 (1994) 2313.

[102] Kushwaha, M. S.; Halevi, P.: Band-gap engineering in periodic
elastic composites. Appl. Phys. Lett. 64 (1994) 1085.

[103] Vasseur, J. O.; Djafari-Rouhani, B.; Dobrzynski, L.; Kushwaha,
M. S.; Halevi, P.: Complete acoustic band gaps in periodic
fibre reinforced composite materials: the carbon/epoxy compo-
site and some metallic systems. J. Phys.: Condens. Matter. 6
(1994) 8759.

[104] Kushwaha, M. S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani,
B.: Kushwaha et al. Reply. Phys. Rev. Lett. 75 (1995) 3581.

[105] Kushwaha, M. S.; Halevi, P.: Giant acoustic stop bands in two-
dimensional periodic arrays of liquid cylinders. Appl. Phys.
Lett. 69 (1996) 31.

[106] Kushwaha, M. S.; Djafari-Rouhani, B.: Complete acoustic stop
bands for cubic arrays of spherical liquid balloons. J. Appl.
Phys. 80 (1996) 3191.

[107] Kushwaha, M. S.; Halevi, P.: Stop bands for cubic arrays of
spherical balloons. J. Acoust. Soc. Am. 101 (1997) 619.

[108] Kushwaha, M. S.: Stop-bands for periodic metallic rods: Sculp-
tures that can filter the noise. Appl. Phys. Lett. 70 (1997) 3218.

[109] Kushwaha, M. S.; Halevi, P.: Ultrawideband Filter for Noise
Control. Jpn. J. Appl. Phys. 36 (1997) L 1043.

[110] Kushwaha, M. S.; Djafari-Rouhani, B.: Sonic stop-bands for
periodic arrays of metallic rods: Honeycomb structure. J.
Sound Vib. 218 (1998) 697.

[111] Kushwaha, M. S.; Djafari-Rouhani, B.; Dobrzynski, L.; Vas-
seur, J. O.: Sonic stop-bands for cubic arrays of rigid inclu-
sions in air. Eur. Phys. J. B3 (1998) 155.

[112] Kushwaha, M. S.; Akjouj, A.; Djafari-Rouhani, B.; Dobrzynski,
L.; Vasseur, J. O.: Acoustic spectral gaps and discrete transmis-
sion in slender tubes. Solid State Commun. 106 (1998) 659.

[113] Kushwaha, M. S.; Djafari-Rouhani, B.: Giant sonic stop bands
in two-dimensional periodic system of fluids. J. Appl. Phys. 84
(1998) 4677.

[114] Kushwaha, M. S.; Djafari-Rouhani, B.; Dobrzynski, L.: Sound
isolation from cubic arrays of air bubbles in water. Physics
Letters A248 (1998) 252.

[115] Economou, E. N.; Sigalas, M.: Classical wave propagation in
periodic structures: Cermet versus network topology. Phys.
Rev. B48 (1993) 13434.

[116] Sigalas, M.; Economou, E. N.: Elastic waves in plates with
periodically placed inclusions. J. Appl. Phys. 75 (1994) 2845.

[117] Economou, E. N.; Sigalas, M.: Stop bands for elastic waves in
periodic composite materials. J. Acoust. Soc. Am. 95 (1994)
1734.

[118] Sigalas, M. M.; Economou, E. N.; Kafesaki M.: Spectral Gaps
for Electromagnetic and Scalar Waves: Possible Explanation
for Certain Differences. Phys. Rev. B50 (1994) 3393.

[119] Kafesaki, M.; Sigalas, M.; Economou, E. N.: Elastic wave
band gaps in 3-D periodic polymer matrix composites. Solid
State Commun. 96 (1995) 285.

[120] Sigalas, M.; Economou, E. N.: Attenuation of multiple-scat-
tered sound. Europhys. Lett. 36 (1996) 241.

[121] Sigalas, M.: Elastic wave band gaps and defect states in two-
dimensional composites. J. Acoust. Soc. Am. 101 (1997) 1256.

[122] Sigalas, M. M.: Defect states of acoustic waves in a two-di-
mensional lattice of solid cylinders. J. Appl. Phys. 84 (1998)
3026.

[123] Mon, K. K.: Spectral gaps for elastic waves in continuous peri-
odic composites. J. Appl. Phys. 78 (1995) 5981.

[124] Hernandez-Cocoletzi, H.; Krokhin, A.; Halevi, P.: Reality of
the eigenfrequencies of periodic elastic composites. Phys. Rev.
B51 (1995) 17181.

Classical vibrational modes in phononic lattices theory and experiment 807



[125] Vasseur, J. O.; Djafari-Rouhani, B.; Dobrzynski, L.; Deymier,
P. A.: Acoustic band gaps in fibre composite materials of bor-
on nitride structure. J. Phys.: Condens. Matter 9 (1997) 7327.

[126] Hoskinson, E.; Ye, Z.: Phase Transition in Acoustic Propaga-
tion in 2D Random Liquid Media. Phys. Rev. Lett. 83 (1999)
2734.

[127] Vines, R. E.; Wolfe, J. P.; Every, A. V.: Scanning phononic
lattices with ultrasound. Phys. Rev. B60 (1999) 11871.

[128] Caballero, D.; Sánchez-Dehesa, J.; Rubio, C.; Martı́nez-Sala, R.;
Sánchez-Perez, J. V.; Meseguer, F.; Llinares, J.: Large two-di-
mensional sonic band gaps. Phys. Rev. E60 (1999) R6313–
R6316.

[129] Sigalas, M.; Garcia, N.: Importance of coupling between long-
itudinal and transverse components for the creation of acoustic
band gaps: The aluminum in mercury case. Appl. Phys. Lett.
76 (2000) 2307.

[130] Kafesaki, M.; Sigalas, M.; Garcia, N.: Frequency Modulation
in the Transmittivity of Wave Guides in Elastic-Wave Band-
Gap Materials. Phys. Rev. Lett. 85 (2000) 4044.

[131] Wang, X. F.; Kushwaha, M. S.; Vasilopoulos, P.: Tunability of
acoustic spectral gaps and transmission in periodically stubbed
waveguides. Phys. Rev. B65, 035107 (2002).

[132] Sainidou, R.; Stefanou, N.; Modinos, A.: Formation of abso-
lute frequency gaps in three-dimensional solid phononic crys-
tals. Phys. Rev. B66 (2002) 212301.

[133] Gupta, B. C.; Ye, Z.: Theoretical analysis of the focusing of
acoustic waves by two-dimensional sonic crystals. Phys. Rev.
E67 (2003) 036603.

[134] Garcia, N.; Nieto-Vesperinas, M.; Ponizovskaya, E. V.; Tor-
res, M.: Theory for tailoring sonic devices: Diffraction domi-
nates over refraction. Phys. Rev. E67 (2003) 046606.

[135] Lai, Y.; Zhang, Z. Q.: Large band gaps in elastic phononic
crystals with air inclusions. Appl. Phys. Lett. 83 (2003) 3900.

[136] Sainidou, R.; Stefanou, N.; Modinos, A.: Green’s function
formalism for phononic crystals. Phys. Rev. B69 (2004)
064301.

[137] Zhang, X. D.; Liu, Z. Y.: Negative refraction of acoustic waves
in two-dimensional phononic crystals. Appl. Phys. Lett. 85
(2004) 341.

[138] Wang, G.; Wen, X. S.; Wen, J.H.; Shao, L. H.; Liu, Y. Z.:
Two-Dimensional Locally Resonant Phononic Crystals with
Binary Structures. Phys. Rev. Lett. 93 (2004) 154302.

[139] Martinez-Sala, R.; Sancho, J.; Sanchez, J. V.; Gomez, V.; Lli-
nares, J.; Meseguer, F.: Sound attenuation by sculpture. Nature
378 (1995) 241.

[140] Parmley, S.; Zobrist, T.; Clough, T.; Perez-Miller, A.; Makela, M.;
Yu, R.: Phononic band structure in a mass chain. Appl. Phys.
Lett. 67 (1995) 777.

[141] J. Vasseur, J. O.; Deymier, P. A.: Propagation of acoustic waves
in periodic and random two-dimensional composite media. J.
Mater. Res. 12 (1997) 2207.

[142] Vasseur, J. O.; Deymier, P. A.; Frantziskonis, G.; Hong, G.;
Djafari-Rouhani, B.; Dobrzynski, L.: Experimental evidence for
the existence of absolute acoustic band gaps in two-dimen-
sional periodic composite media. J. Phys.: Condens. Matter 10
(1998) 6051–6064.

[143] Robertson, W. M.; Rudy, J. F.: Measurement of acoustic stop
bands in two-dimensional periodic scattering arrays. J. Acoust.
Soc. Am. 104 (1998) 694–699.

[144] Montero de Espinoza, F. R.; Jimenez, E.; Torres, M.: Ultraso-
nic Band Gap in a Periodic Two-Dimensional Composite.
Phys. Rev. Lett. 80 (1998) 1208–1211.

[145] Torres, M.; Montero de Espinoza, F. R.; Garcia-Pablos, D.;
Garcia, N.: Sonic Band Gaps in Finite Elastic Media: Surface
States and Localization Phenomena in Linear and Point De-
fects. Phys. Rev. Lett. 82 (1999) 3054–3057.

[146] Meseguer, F.; Holgado, M.; Caballero, D.; Benaches, N.; San-
chez-Dehesa, J.; Lopez, C.; Llinares, J.: Rayleigh-wave at-
tenuation by a semi-infinite two-dimensional elastic-band-gap
crystal. Phys. Rev. B59 (1999) 12169–12172.

[147] Torres, M.; Montero de Espinoza, F. R.; Aragon, J. L.: Ultraso-
nic Wedges for Elastic Wave Bending and Splitting without
Requiring a Full Band Gap. Phys. Rev. Lett. 86 (2001) 4282–
4285.

[148] Cervera, F.; Sanchis, L.; Sanchez-Perez, J. V.; Martinez-Sala,
R.; Rubio, C.; Meseguer, F.; Lopez, C.; Caballero, D.; San-
chez-Dehesa, J.: Refractive Acoustic Devices for Airborne
Sound. Phys. Rev. Lett. 88 (2002) 023902.

[149] Yang, S. X.; Page, J. H.; Liu, Z. Y.; Cowan, M. L.; Chan, C. T.;
Sheng, P.: Ultrasound Tunneling through 3D Phononic Crys-
tals. Phys. Rev. Lett. 88 (2002) 104301.

[150] Yang, S. X.; Page, J. H.; Liu, Z. Y.; Cowan, M. L.; Chan, C. T.;
Sheng, P.: Focusing of Sound in a 3D Phononic Crystal. Phys.
Rev. Lett. 93 (2004) 024301.

[151] Yablonovitch, E.: Applied physics –– How to be truly photonic.
Science 289 (2000) 557.

[152] El-Boudouti, E. H.; Djafari-Rouhani, B.; Khourdifi, E. M.;
Dobrzynski, L.: Surface and interface elastic waves in superlat-
tices: Transverse localized and resonant modes. Phys. Rev. B48
(1993) 10987.

[153] El-Boudouti, E. H.; Djafari-Rouhani, B.: Acoustic waves in
finite superlattices. Phys. Rev. B49 (1994) 4586.

[154] Camley, R. E.; Djafari-Rouhani, B.; Dobzynski, L.; Maradudin,
A. A.: Transverse elastic waves in periodically layered infinite
and semi-infinite media. Phys. Rev. B27 (1983) 7318.

[155] Auld, B. A.; Beaupre, G. S.; Herrmann, G.: Horizontal shear
surface-waves on a laminated composite. Electron. Lett. 13
(1977) 525.

[156] Nizzoli, F.; Sandercock, J. R.: In: Dynamical Properties of So-
lids (Eds. G. K. Horton and A. A. Maradudin) North Holland,
Amsterdam (1990) 281.

[157] Abrahams, E.; Anderson, P. W.; Licciardello, D. C.; Rama-
krishnan, T. V.: Scaling Theory of Localization: Absence of
Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 42
(1979) 673.

[158] Gay, D.: Matériaux Composites. Hermes, Paris (1991).
[159] Kushwaha, M. S.; Djafari-Rouhani, B.: Band-gap engineering

in two-dimensional periodic photonic crystals. J. Appl. Phys.
(2000) 2877.

[160] Kushwaha, M. S.; Martinez, G.: Magnetic-field-dependent band
gaps in two-dimensional photonic crystals. Phys. Rev. B65
(2002) 153202.

[161] Kafesaki, M.; Economou, E. N.; Sigalas, M. M.: Elastic Waves
in Periodic Composite Materials. In: Photonic Band Gap Mate-
rials (Ed. C. M. Soukoulis) Kluwer Academic Publishers, Dor-
drecht (1996) 143–164.

[162] Einspruch, N.; Witterholt, E. J.; Truell, R.: Scattering of a
Plane Transverse Wave by a Spherical Obstacle in an Elastic
Medium. J. Appl. Phys. 31 (1960) 806.

[163] Gaunaurd, G.; Uberall, H.: Numerical Evaluation of Modal Re-
sonances in the Echoes of Compressional Waves Scattered
from Fluid-filled Spherical Cavities in Solids. J. Appl. Phys. 50
(1979) 4642. Flax, L.; Gaunaurd, G.; Uberall, H.: Theory of
Resonance Scattering. In: Physical Acoustics vol. XV (Ed. W. P.
Mason) Academic, New York (1981) 191.

[164] Brill, D.; Gaunaurd, G.; Uberall, H.: Resonance Theory of
Elastic Shear-wave Scattering from Spherical Fluid Obstacles
in Solids. J. Acoust. Soc. Am. 67 (1980) 414.

[165] Varadan, V. V.; Varadan, V. K.: Acoustic Electromagnetic and
Elastic Wave Scattering –– Focus on the T-Matrix Approach.
Pergamon Press, New York (1979).

[166] Psarobas, I. E.; Stefanou, N.; Modinos, A.: Phononic crystals
with planar defects. Phys. Rev. B62 (2000) 5536–5540.

[167] Moadinos, A.; Nicolaou, N.: A generalized W.K.B method for
calculating double barrier transmission coefficients. Surf. Sci.
17 (1969) 359.

[168] Liu, Z. Y.; Zhang, X. X.; Mao, Y. W.; Zhu, Y. Y.; Yang, Z. Y.;
Chan, C. T.; Sheng, P.: Locally Resonant Sonic Materials.
Science 289 (2000) 1734–1736.

[169] Psarobas, I. E.: Viscoelastic response of sonic band-gap materi-
als. Phys. Rev. B64 (2001) 012303.

[170] Psarobas, I. E.; Modinos, A.; Sainidou, R.; Stefanou, N.: Acous-
tic properties of colloidal crystals. Phys. Rev. B65 (2002) 064307.

[171] Ayres, V. M.; Gaunaurd, G. C.: Acoustic-resonance scattering
by viscoelastic objects. J. Acoust. Soc. Am. 81 (1987) 301–311.

[172] Sainidou, R.; Stefanou, N.; Psarobas, I. E.; Modinos, A.: Scat-
tering of elastic waves by a periodic monolayer of spheres.
Phys. Rev. B66 (2002) 024303.

808 M. Sigalas, M. S. Kushwaha, E. N. Economou et al.



[173] Miyashita, T.: Sonic crystals and sonic wave-guides. Meas. Sci.
Technol. 16 (2005) R47–R63.

[174] Sutter, D.: Phononische Kristalle. ETH Diploma thesis 2003.
[175] Bedford, A.; Drumheller, D. S.; Sutherland, H. J.: On model-

ing the dynamics of composite materials. Mechanics Today 3
(1976) 1–54.

[176] Whittier, J. S. and Peck, J. C.: Experiments on Dispersive
Pulse Propagation in Laminated Composites and Comparison
with Theory. J. Appl. Mech. 36 (1969) 485–490.

[177] Robinson, C. W. and Leppelmeir, G. W.: Experimental verifica-
tion of dispersion relations for layered composites. J. Appl.
Mech. 41 (1976) 89–91.

[178] Sutherland, H. J. and Lingle, R.: Geometric Dispersion of
Acoustic-Waves by a Fibrous Composite. J. Comp. Mater. 6
(1972) 490–502.

[179] Tauchert, T. R. and Guzelsu, A. N.: Experimental Study of
Dispersion of Stress Waves in a Fiber- Reinforced Composite.
J. Appl. Mech. 39 (1972) 98–102.

[180] Kinra, V. K. and Ker, E. L.: An Experimental Investigation of
Pass Bands and Stop Bands in 2 Periodic Particulate Compo-
sites. Int. J. Sol. Struc. 19 (1983) 393–410.

[181] James, R.; Woodley, S. M.; Dyer, C. M.; Humphrey, V. F.:
Sonic bands, bandgaps, and defect states in layered structures-
Theory and experiment. J. Acoust. Soc. Am. 97 (1995) 2041–
2047.

[182] Shen, M. R. and Cao, W. W.: Acoustic band-gap engineering
using finite-size layered structures of multiple periodicity.
Appl. Phys. Letters 75 (1999) 3713–3715.

[183] Lu, Y. Q.; Zhu, Y. Y.; Chen, Y. F.; Zhu, S. N.; Ming, N. B.;
Feng, Y. J.: Optical Properties of an Ionic-Type Phononic Crys-
tal. Science 284 (1999) 1822–1824.

[184] Henderson, B. K.; Kinra, V. K.; Gonzales, A. W.: Ultrasonic
diffraction by a square periodic array of spheres. J. Acoust.
Soc. Am. 107 (2000) 1759.

[185] Kinra, V. K.; Day, N. A.; Maslov, K.; Henderson, B. K.; Dide-
rich, G.: The transmission of a longitudinal wave through a
layer of spherical inclusions with a random or periodic arrange-
ment. J. Mech. Phys. Solids 46 (1998) 153–165.

[186] Kinra, V. K.; Henderson, B. K.; Maslov, K.: Elastodynamic
response of layers of spherical particles in hexagonal and
square periodic arrangements. J. Mech. Phys. Solids 47 (1999)
2147–2170.

[187] Maslov, K.; Kinra, V. K.: Acoustic response of a periodic layer
of nearly rigid spherical inclusions in an elastic solid. J.
Acoust. Soc. Am. 106 (1999) 3081–3088.

[188] Maslov, K.; Kinra, V. K.; Henderson, B. K.: Lattice resonances
of a planar array of spherical inclusions: An experimental
study. Mechanics of Materials 31 (1999) 175–186.

[189] Maslov, K.; Kinra, V. K.; Henderson, B. K.: Elastodynamic
response of a coplanar periodic layer of elastic spherical inclu-
sions. Mechanics of Materials 32 (2000) 785–795.

[190] Henderson, B. K.; Maslov, K.; Kinra, V. K.: Experimental in-
vestigation of acoustic band structures in tetragonal periodic
particulate composite structures. J. Mech. Phys. Solids 49
(2001) 2369–2383.

[191] Turner, J. A.; Chambers, M. E.; Weaver, R. L.: Ultrasonic band
gaps in aggregates of sintered aluminum beads. Acustica 84
(1998) 628–631.

[192] Sutter, D.; Krauss, G.; Steurer, W.: Phononic Quasicrystals. MRS
Proc. 805 (2004) 99–104.

[193] Sanchez-Perez, J. V.; Rubio, C.; Martinez-Sala, R.; Sanchez-
Grandia, R.; Gomez, V.: Acoustic barriers based on periodic
arrays of scatterers. Appl. Phys. Lett. 81 (2002) 5240–5242.

[194] Vasseur, J. O.; Deymier, P. A.; Khelif, A.; Lambin, Ph.; Dja-
fari-Rouhani, B.; Akjouj, A.; Dobrzynski, L.; Fettouhi, N.;
Zemmouri, J.: Phononic crystal with low filling fraction and
absolute acoustic band gap in the audible frequency range: A
theoretical and experimental study. Phys. Rev. E65 (2002)
056608.

[195] Rubio, C.; Caballero, D.; Sanchez-Perez, V.; Martinez-Sala, R.;
Sanchez-Dehesa, J.; Meseguer, F.; Cervera, F.: The existence of
full gaps and deaf bands in two-dimensional sonic crystals. J.
Lightwave Technol. 17 (1999) 2202–2207.

[196] Lambin, Ph.; Khelif, A.; Vasseur, J. O.; Dobrzynski, L.; Dja-
fari-Rouhani, B.: Stopping of acoustic waves by sonic poly-
mer-fluid composites. Phys. Rev. E63 (2001) 066605.

[197] Miyashita, T.: Full band gaps of sonic crystals made of acrylic
cylinders in air-Numerical and experimental investigations. Jpn.
J. Appl. Phys. 41 (2002) 3170–3175.

[198] Goffaux, C.; Maseri, F.; Vasseur, J. O.; Djafari-Rouhani, B.;
Lambin, Ph.: Measurements and calculations of the sound at-
tenuation by a phononic band gap structure suitable for an in-
sulating partition application. Appl. Phys. Lett. 83 (2003) 281–
283.

[199] Sanchis, L.; Cervera, F.; Sanchez-Dehesa, J.; Sanchez-Perez,
J. V.; Rubio, C.; Martinez-Sala, R.: Reflectance properties of
two-dimensional sonic band-gap crystals. J. Acoust. Soc. Am.
109 (2001) 2598–2605.

[200] Sanchis, L.; Hakansson, A.; Cervera, F.; Sanchez-Dehesa, J.:
Acoustic interferometers based on two-dimensional arrays of
rigid cylinders in air. Phys. Rev. B67 (2003) 035422.

[201] Sheng, P.; Zhang, X. X.; Liu, Z. Y.; Chan, C.T.: Locally reso-
nant sonic materials. Physica B338 (2003) 201–205.

[202] Li, Z.; Sheng, P.; Siu, W. L.: Low-frequency soundproof con-
crete. Mag. Concrete Research 55 (2003) 177–181.

[203] Ho, K. M.; Cheng, C. K.; Yang, Z.; Zhang, X. X.; Sheng, P.:
Broadband locally resonant sonic shields. Appl. Phys. Lett. 83
(2003) 5566–5568.

[204] Zhang, S.; Hua, J.; Cheng, J. C.: Experimental and theoretical
evidence for the existence of broad forbidden gaps in the
three-component composite. Chin. Phys. Lett. 20 (2003)
1303–1305.

[205] Meseguer, F.; Holgado, M.; Caballero, D.; Benaches, N.; Lo-
pez, C.; Sanchez-Dehesa, J.; Llinares, J.: Two-dimensional
elastic bandgap crystal to attenuate surface waves. J. Lightwave
Tech. 17 (1999) 2196–2201.

[206] Dhar, L.; Rogers, J. A.: High frequency one-dimensional pho-
nonic crystal characterized with a picosecond transient grating
photoacoustic technique. Appl. Phys. Lett. 77 (2000) 1402.

[207] McIver, P.: Wave interaction with arrays of structures. Appl.
Ocean Res. 24 (2002) 121–126.

[208] Bogomolov, V. N.; Parfeneva, L. S.; Smirnov, I. A.; Misiorek, H.;
Jzowski, A.: Phonon propagation through photonic crystals-
media with spatially modulated acoustic properties. Phys. Solid
State 44 (2002) 181–185.

[209] Khelif, A.; Choujaa, A.; Djafari-Rouhani, B.; Wilm, M.; Bal-
landras, S.; Laude, V.: Trapping and guiding of acoustic waves
by defect modes in a full-band-gap ultrasonic crystal. Phys.
Rev. B68 (2003) 214301.

[210] Khelif, A.; Choujaa, A.; Benchabane, S.; Djafari-Rouhani, B.;
Laude, V.: Guiding and bending of acoustic waves in highly
confined phononic crystal waveguides. Appl. Phys. Lett. 84
(2004) 4400.

[211] Miyashita, T.; Inoue, C.: Numerical investigations of transmis-
sion and waveguide properties of sonic crystals by finite-differ-
ence time-domain method. Jpn. J. Appl. Phys. 40 (2001)
3488–3492.

[212] Sigmund, O.; Jensen, J. S.: Systematic design of phononic
band-gap materials and structures by topology optimization.
Philos. Trans. R. Soc. Lond. Ser. A361 (2003) 1001–1019.

[213] Russell, P. S.; Marin, E.; Diez, A.; Guenneau, S.; Movchan,
A. B.: Sonic band gaps in PCF preforms: enhancing the inter-
action of sound and light. Optics Express 11 (2003) 2555–
2560.

[214] Lide, D. R. (Ed.): CRC Handbook of Chemistry and Physics.
CRC Press, Boca Raton 2001.

[215] Klironomos, A. D.; Economou, E. N.: Elastic wave band gaps and
single scattering. Solid State Commun. 105 (1998) 327–332.

Classical vibrational modes in phononic lattices theory and experiment 809


