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We present band structure results for elastic waves in periodic composite mate- 
rials consisting of scatterers (spheres, cubes, or rods) embedded in a homogeneous 
polymer matrix. The material of the scatterers is a high density material (such as 
Steel, Ni, Pb, Cu, etc.). In all cases, we find wide full band gaps in fee, bee and SC 
structures for a wide range of filling ratios. We show that the existence of these 
wide gaps can been analyzed and predicted by using the single scattering results. 
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There is a growing interest in recent years for the prop- 
agation of elastic (EL) and acoustic (AC) waves in random 
and periodic composite materials [l] - [14]. The interest 
among solid state physicists is mainly connected to the 
question of the existence or not of spectral gaps in periodic 
systems or localized waves in disordered systems in analogy 
with what happens to the electrons in solids. The attention 
to the acoustic and elastic waves in connection with gaps 
or localization is not only due to their many applications 
(in geophysics, medicine, oil exploration, etc.) [15, 161 
but to their rich physics as well: EL waves are full vec- 
tor waves with different velocity of propagation between 
the longitudinal and the transverse component; in the EL 
and AC wave equation there is a term proportional to the 
mass density variation which may cause the appearance of 
novel behavior. Furthermore, ACW and ELW in structures 
exhibiting localized eigenwaves (i.e. mobility gaps) offer 
themselves for an accurate experimental investigation of 
open questions regarding the problem of disorder induced 
localization. 

The difficulty to construct composites sustaining local- 
ized eigenstates, was greatly reduced following the sugges- 
tion by John and Rangarajan [17] and by Economou and 
Zdetsis [ 181; they pointed out that the existence of bands of 
localized eigenstates in random systems is directly related to 
the existence of gaps in periodic systems since both are due 
to destructive interference of the multiple scattered waves. 
For this reason attention has been focused on the easier 
problem of ACW and ELW propagation in periodic sys- 
tems for which one can employ computational methods that 
have been already developed for the electronic propagation 
in periodic crystals. 

The study of acoustic and elastic wave propagation in 
periodic binary composites consisting of spheres embedded 
in a host (3-D) or from cylinders embedded in a host (2-D), 
shows [4, 8, 9, 11, 121 that gaps can exist under rather 
extreme conditions. These conditions concern mainly the 
density and velocity contrast of the components of the com- 
posite, the volume fraction of one of the two components, 
the lattice structure and the topology [ll, 121; they are 
realized in a Be or Si or SiOz matrix with embedded Au or 
Pb spheres placed periodically in an fee lattice [ 121. For 
2-D square lattice, full band gaps have been found only in 
Au cylinders in Be host [8]. However, the 2-D hexagonal 
lattices have proven more favorable for the creation of the 
gaps; in particular, rods from MO, AlzOs, Fe, and steel 
embedded in Lucite host exhibit relatively wide gaps [ 111. 
From the experimental point of view, Kinra and Ker [3] 
have measured the phase velocity of longitudinal waves 
through 3-D periodic polymer matrix composites as a func- 
tion of frequency. Vasseur et. al. [23] studied numerically 
the elastic band structure of 2-D commercially available 
composite materials such as epoxy reinforced C or glass fi- 
bres and they found several extremely large complete band 
gaps in those systems. 

Recently, considerable progress was achieved in un- 

derstanding the above results and in predicting favorable 
material combinations [ 191. Whenever the scattering cross- 
section from a single spherical inclusion exhibits’srrong and 
well-separated resonances with a considerable background 
in between attributed to either a rigid or soft sphere (in either 
case the field inside the inclusion is zero), a wide gap is ex- 
pected. One can understand this basic result by considering 
two limiting channels of propagation in a composite: one is 
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using the host material and avoids the inclusions; the other 
is employing the inclusions and hops coherently among 
them by a linear combination of the resonances in analogy 
with the LCAO in molecules and solids. In the spectral 
region of high background between two well-separated res- 
onances neither channel is operational and consequently no 
propagation is expected to take place. This explanation was 
confirmed by comparing single sphere cross-sections with 
band structure results under various conditions [ 191. 

In Fig.1 we show a case (Pb spherical inclusion in an 
epoxy host) which according to the previous reasoning is 
expected to exhibit as a periodic composite wide spectral 
gaps. Fig.la shows the total cross-section of a transverse 
plane wave scattered by a Pb spherical inclusion embedded 
in epoxy. In Fig.lb the Pb sphere has been replaced by a 
rigid sphere (p -+ cc, ~1 + cc, X + cc, c~ + 0, Q + 0) 
where p is the density, ~1 and X are the Lame elastic coeffi- 
cients and cc, ct the longitudinal and the transverse velocities 
: c$ = (A + 2p)/p, 4 = p/p; Fig.lc shows the cross-section 
calculated by subtracting from the Pb scattering amplitude 
the rigid sphere scattering amplitude [26,27,19]. 

There are two broad resonances (the first is a double 
one) in the Pb sphere - epoxy matrix cross-section (Fig.la), 
well separated by a region of non negligible scattering. This 
strong background scattering cross-section in the region be- 
tween the resonances is due to the contribution of the rigid 
sphere as the results of the subtraction of this contribution 
show (Fig.lc). In the longitudinal incident wave scattering 
concerning the same system, the cross-sections - not pre- 

sented here -have almost the same form with those of Fig.1. 
An exception is that the first resonance is not a double 
one and that the peaks are a little lower. The previous 
reasoning suggests that a wide gap is expected between first 
and second resonance with its width to be narrower than the 
spectral distance between them. Also, the resonances are 
expected to coincide in position with the flat bands of the 
system (due to level repulsion and hybridization some de- 
viations are expected). Indeed, as will be discussed below, 
this turned out to be the case. The half arrows in Fig.la 
(with the G in between) show the position and the width of 
the gap and the regular arrows indicate the positions of flat 
bands (see Fig.2). 

The single sphere scattering cross-section for the op- 
posite case of Pb as matrix and epoxy as sphere was also 
calculated. What was found is that in the longitudinal in- 
cident wave scattering case the result of the subtraction of 
the corresponding background (soft sphere) is two very low 
resonances, while in the transverse incident wave case the 
cross-section is very smooth and low. These results are not 
favorable for gap creation. Indeed, explicit band structure 
calculations show no gaps in this case. 

The conclusion of the above discussion is that periodic 
composites consisting of polymers (such as epoxy) as a host 
with high density metal inclusions (such as Pb) are expected 
to produce wide spectral gaps in ELW propagation. An 
additional advantage is that polymer materials are easily 
fabricated. Below we present EL wave band structure com- 
putational results for 3-D periodic composites consisting of 
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Total dimensionless cross-sections vs &a for Pb 
sphere in epoxy matrix (a), rigid sphere in epoxy 
matrix (b). The third panel (c) represents the cross- 
section calculated by subtracting from the Pb sphere 
scattering amplitude the rigid sphere scattering ampli- 
tude. The incident wave is transverse, a is the radius 
of the sphere and Ict, = w/q0 the transverse wave 
number in the medium of the matrix. The arrows 
indicate the positions of the flat bands and the half 
arrows (with the symbol G in between) the position of 
the gap in the corresponding fee periodic composite 
with volume fraction of the spheres x=0.262. 
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Fig.2 Elastic wave band structure for a fee periodic com- 
posite consisting of Pb spheres in epoxy matrix. The 
volume fraction of the spheres is 0.262, w is the fre- 
quency, a is the lattice constant and c the transverse 
wave velocity in the epoxy (ctO). 

Fig.3 The width of the gap over the midgap frequency vs 
filling ratio for a periodic composite consisting of 
Pb spheres in epoxy matrix and fee (solid line), bee 
(dotted line) and SC (dashed line) structure. The 
dotted-long dashed line corresponds to Pb cubes in 
epoxy matrix and SC structure. 

inclusions formed by a high density metal such as steel, Pb 
and W and embedded in epoxy. 

For a locally isotropic medium, the elastic wave equation 
is [25]: 

where ui is the i-th component of the displacement vector 
ii(?); A(3 and ~(3 are the Lame coefficients [25] and 
p(?) is the density. For periodic media f(?‘) (f = p,X 
or p-l) can be expanded in terms of its Fourier compo- 
nents fd. The displacement vector ri(+‘) which satisfies 
Bloch’s theorem can be expanded in terms of plane waves: 
ri(3 = cfi ri#? 

.+ 
where I? = k + G, and the summation 

-# 
is over G. Keeping N reciprocal vectors, d, in the previous 
sum and substituting in Eq.(2.1), we get a 3N x 3N matrix 
eigenvahte equation for the 3N unknown coefficients CR. 
The number N is increased until the desired convergeny 
is achieved. In the present calculations we kept NdOO G 
vectors to achieve convergence better than 5 % . 

Fig.2 shows the band struch~~ of elastic waves prop- 
agating in an fee lattice consisting of Pb spheres (p = 
11.357g/cms, cl = 2.158 km/s ct = 0.860 km/s) em- 
bedded in epoxy (p = 1.180g/cm3, cc = 2.54Okm/s 
ct = 1.160 km/s); the radius of the spheres is 0.25 of the 
lattice constant corresponding to tilling ratio 0.262. There 
is a complete band gap for all the directions in the Brillouin 
zone between the 6th and 7th bands. The lower edge of the 
gap is at F point, the upper edge of the gap is at W point and 
the width of the gap over the midgap frequency, Aw/ws, is 
0.24. 

Fig.3 shows the Aw/ws vs the tilling ratio for a Pb 
spheres-epoxy matrix system for three different structures: 
fee, bee, and sc. The curves are almost the same for both 
fee and bee structures; the maximum Aw/ws is almost 0.24 
at filling ratios around 0.25. For SC structure, the maximum 
Aw/w~ is 0.2 at filling ratio 0.28. The gap appears for filling 
ratios between 0.1 and 0.57 for both fee and bee structures 
while for SC structure there is gap for filling ratios between 
0.13 and 0.46. This is consistent with the empirical obser- 
vation which states that the cermet topoiogy is better for 
gap appearance than the network topology [ 10,111. In the 
case of spherical scatterers, the cermet topology exists for 
tilling ratios less than 0.74,0.68, and 0.52 in fee, bee, and SC 
structures respectively (for filling ratios greater than those 
values the spheres overlap which corresponds to network 
topology). Thus, in sc structures the transition from cermet 
to network topology appears at smaller filling ratios than 
for both fee and bee structures. 

Comparing the results of the sc structure with scatterers 
either cubes or spheres, we found that the maximum value 
of Aw/w9 appears for spheres. On the other hand, the 
gaps appear in a wider range of tilling ratios for the case 
of cubes. This can be explained by noting that the tran- 
sition from the cermet to network topology appears at the 
filling ratio 1 (the cubes are touching each other only in the 
extreme case where the edge is equal to the lattice constant). 

There are no gaps in systems consisting of isolated epoxy 
scatterers in Pb background which is in accordance with 
the previously mentioned requirements for the appearance 
of gaps. We also studied structures consisting of tetragonal 
rods connecting nearest neighbors in sc lattice [24]. We 
did not find any gaps for either Pb rods in epoxy or epoxy 
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rods in Pb background. This is further support the empirical 
requirement which states that the cermet topology is more 
favorable for the appearance of the gaps [ 10,111. 

Full band gaps were found for several other systems. 
In all the cases, the fee structures give slightly wider band 
gaps than the bee structures while the SC lattices give even 
smaller gaps. Plastics, such as epoxy or PMMA, are ideal 
materials for the background medium and the maximum 
value of Aw/ws appeared for filling ratios of the isolated 
spherical scatterers between 0.25 to 0.5. As scatterer mate- 
rial, we used W, Ni, Fe, Cu, Steel, and Ag. The densities 
and velocities of these materials as well as the maximum 
value of hw/w, for epoxy host and fee lattice are given in 
the following table. 

W 
Y y2;is) ct f;is) P (s/cm3) max(b/wy) 

5:894 3:219 
18.700 0.75 

Ni 8.968 0.55 
Fe 6.064 3.325 7.860 0.50 
cu 4.726 2.298 8.960 0.50 
Steel 5.940 3.220 7.800 0.50 

Ag 3.789 1.950 10.635 0.50 

For all these systems the gap appears between the 6th 
and 7th bands. Also, the scatterer is the high density ma- 
terial in accordance with the previous experience. On the 
other hand, the velocities of the scatterers are either smaller 
(for the Pb) or higher (for all the other materials) than those 
of the matrix material. From the present results, it seems 
that high density scatterers in a low density background is 
the mosr important condition for the appearance of gaps. 

It is worth mentioning that experiments on two systems 

similar with those that we have studied in the present work 
have already been done [3]. The first system consists 
of Steel spheres embedded in plastic (PMMA) forming 
a tetragonal lattice and the second one consists of Glass 
spheres in plastic (epoxy) forming a SC lattice. The re- 
sults from our calculations for the dispersion curve of the 
longitudinal-like waves (these are the only modes that have 
been measured in the experiments) are in good agreement 
with the measurements (the differences are less than 15 %) 
However, our calculations show that none of those systems 
exhibit a full band gap, although, in particular for the Steel 
in PMMA system, full band gaps can be found in SC struc- 
tures instead the tetragonal structure that they used in the 
original experiment [3]. 

In all examined cases (epoxy as host and W, Ag, Fe, Ni, 
Cu as sphere material) for which wide gaps where found, 
the single scattering study gave cross-sections similar to 
that shown in Fig.1 with the two broad resonances and the 
noticeable contribution of the background between them. 
In all these cases the single-scattering study gave also good 
estimations for the position of the gap as obtained from the 
corresponding band structure calculations. 

Finally, the above mentioned as well as additional single 
scattering results, strongly indicate that the density contrast 
of the two materials (scatterer - matrix) is a much more 
important parameter for the appearance of a gap than the 
velocity contrast. 
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