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Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe
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We demonstrate theoretically that the resonance frequencies of high-Q microcavities in two-
dimensional photonic crystal membranes can be tuned over a wide range by introducing a subwavelength
dielectric tip into the cavity mode. Three-dimensional finite-difference time-domain simulations show that
by varying the lateral and vertical positions of the tip, it is possible to tune the resonator frequency without
lowering the quality factor. Excellent agreement with a perturbative theory is obtained, showing that the
tuning range is limited by the ratio of the cavity mode volume to the effective polarizability of the
nanoperturber.
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Solid-state optical microresonators are of great interest
to a wide range of fields such as biosensing, nonlinear
optics, low-threshold lasers, and cavity quantum electro-
dynamics [1,2]. Two cavity properties that are commonly
desired, but often incompatible, are very high quality
factors (Q) and very small mode volumes. Photonic crystal
microcavities in thin semiconductor membranes [3–5]
promise a good compromise between these features. One
of the difficulties associated with such monolithic ultra-
small resonators is to match their resonance frequencies
with those of interest in a given application. This is espe-
cially a concern since fabrication tolerances make it nearly
impossible to realize the exact design parameters.
Temperature tuning has been used to meet a resonance
condition, as was recently shown in the case of coupling
between a quantum dot and a microcavity [6]. In fact, this
was possible due to the temperature sensitivity of the
quantum dot. In general, however, it is desirable to inde-
pendently tune the cavity resonance without manipulating
the system that it couples to. In this Letter we show that the
introduction of a subwavelength dielectric object, such as a
scanning probe, can achieve this.

A scanning near-field optical microscope (SNOM) tip
has recently been used to image the intensity distribution in
a low-Q photonic crystal microresonator [7]. The central
idea in our current work is to investigate how the presence
of an external dielectric nanometer-sized object, such as a
SNOM tip, can modify the resonance condition of a pho-
tonic crystal microresonator [see Fig. 1(a)]. This scheme is
analogous to a technique common in microwave engineer-
ing whereby the frequency of a resonator is adjusted by
insertion of dielectric stubs [8]. In that case, because
microwave resonators are typically closed, scattering
from the object does not cause any loss, and the cavity Q
is determined by absorption. However, when a dielectric
object is placed into the field of an open cavity, such as a
photonic crystal slab resonator, scattering dominates.
Indeed, it has been shown experimentally that coupling
of a glass fiber tip can shift the resonance frequency of a
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high-Q microresonator at the cost of reducing its quality
factor [9]. Since a photonic crystal microcavity has a very
small mode volume and relies on the precise arrangement
of dielectric material at the subwavelength scale, one might
expect that introducing the slightest external object would
spoil the quality factor [10]. In what follows we show that
this is not necessarily the case. It turns out that a small
dielectric object acts in the same fashion as an atom which,
within classical linear dispersion theory, changes the fre-
quency of a high-finesse cavity according to its polariz-
ability and its position relative to the nodes of the cavity
mode [11,12].

We consider a dielectric cylindrical tip near a
membrane-type photonic crystal, consisting of a high index
slab that is perforated with a hexagonal lattice (lattice
constant a � 420 nm) and surrounded by air. We assume
a slab dielectric constant � � 11:76, a thickness of 250 nm,
and a hole radius r � 0:3a. As Fig. 1(a) shows, the reso-
nator is formed about a defect of reduced radius r � 0:15a,
similar to the optimization in Ref. [3]. By reducing the
radius of just two holes to r � 0:23a on either side of the
defect and then shifting them outwards by 0:11a, we create
a nondegenerate dipole mode with a mode profile as shown
in Fig. 1(b). The mode has a frequency !a=2�c � 0:284
in the center of the 2D band gap. The Q is about 13 000,
corresponding to a resonance linewidth of 15 GHz at � �
1500 nm. Crystals over 5� 5 �m2 in lateral size sur-
rounded by up to 1 �m of air were simulated using the
3D finite-difference time-domain (FDTD) method with
Liao’s absorbing boundary conditions [13–15].
Computational meshes were 14 or 20 grid points per a
parallel to the membrane and had doubled resolution nor-
mal to the membrane [16]. Grid-cell volume averaging of
the dielectric constant was employed to reduce staircasing
errors [17]. Quality factors and cavity mode frequencies
were obtained by fitting a damped harmonic wave to time
traces of the total E-field energy in the cavity.

Figure 1(c) displays a contour plot of the relative fre-
quency shift �!=! as a function of the lateral position of a
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http://dx.doi.org/10.1103/PhysRevLett.95.153904


5

FIG. 2. Relative frequency shift (solid symbols, left hand axis)
and inverse Q (open symbols, right hand axis) as a function of
the distance ztip between the surface of the photonic crystal and a
Si tip of 125 nm diameter aligned with the central defect. The
gray area indicates the extent of the membrane. For ztip < 0 the
tip extends into the defect. The dashed line indicates ztip �

30 nm corresponding to the data in Fig. 1. The black curve
(scaled) shows the unperturbed mode profile jE0j

2. The hori-
zontal line indicates 1=Q in absence of the tip.

FIG. 1 (color). (a) Schematic of the system under study. A cylindrical silicon tip with a diameter of 125 nm is placed at height ztip

and lateral position rk above a photonic crystal slab. Reduction of diameters for 3 pores (shaded red) and shift of two of them yields a
cavity resonance at � � 1500 nm with a Q factor of 13 000. (b) Intensity distribution jE0j

2 of the unperturbed mode in a plane 30 nm
above the slab. The black circles outline the air pores (red circles for tuned pores), whereas the white dots mark the original pore
locations in the hexagonal lattice. (c) Calculated resonance frequency shift induced by the tip placed 30 nm above the slab, as a
function of its lateral position. (d) The inverseQ corresponding to (c). The unperturbed cavity has 1=Q � 7:5� 10�5. (e) Contribution
of the z component jEz;0j2 to the unperturbed field intensity, integrated over the extent of the tip above the slab. Field intensities in (b)
and (e) are normalized to the maximum total field intensity jE0j

2.
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silicon tip of 125 nm diameter, placed at a height of 30 nm
above the photonic crystal slab. As expected, the introduc-
tion of high index material in the cavity mode causes a
redshift of the mode frequency, depending on the tip
position. The maximum relative frequency shift of 0.13%
amounts to about 2 nm (or 260 GHz) at � � 1500 nm and
occurs when the tip is placed above the central defect. At a
lateral distance of 200 nm from the central hole, the shift is
already less than 10% of this maximum value, but as the tip
approaches the two shifted holes, again a large tuning of up
to 200 GHz can be achieved. As recently shown by Yoshie
et al. [6], such frequency shifts of many cavity linewidths
open the possibility of controlled quantum optical experi-
ments. Figure 2 displays the dependence of the cavity
resonance on the separation between the tip apex and the
photonic crystal slab (ztip), for the case where the tip is
aligned with the cavity center. The filled circles show that
as the tip is approached from afar (ztip > 0), the frequency
shift grows exponentially with a 1=e length of d � 50 nm.
When the tip is put through the slab (ztip < 0), the increas-
ing amount of dielectric material inserted in the mode
profile continuously detunes the resonance to the red,
saturating at a shift of �!=! � �3:7%. The black curve
in Fig. 2 displays the variation of the unperturbed cavity
mode intensity jE0j

2. The excellent agreement between
this curve and the filled symbols for ztip > 0 indicates
that the frequency shift maps jE0j

2. This direct correspon-
dence of the frequency shift to the mode profile is also
evident from the strong similarity of the lateral images in
Figs. 1(b) and 1(c).

An exciting aspect of cavity tuning with a tip is that a
large frequency shift can be achieved without inducing a
considerable cavity loss. Open symbols in Fig. 2 show that
within the accuracy of the simulations the cavity Q of
13 000 has not been affected at separations down to about
60 nm while the cavity resonance has been tuned by
100 GHz. Even at a height of 30 nm where �! �
260 GHz, the cavity Q remains as high as 5000. If the tip
is pushed closer to or into the central defect hole, however,
the continuous increase of the frequency shift is accompa-
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nied by a strong reduction in Q. In this regime, the tip
perturbs the mode profile and strong out-of-plane scatter-
ing occurs. When the tip extends completely through the
defect slab and the distribution of dielectric material be-
comes more symmetric, the Q recovers to about 1000.

To gain quantitative insight into the modification of the
cavity resonance, we have taken advantage of the estab-
lished theory of dielectric perturbations in microwave cav-
ities [8,18]. Suppose the tip has a dielectric constant of �p
and occupies the volume Vp. Maxwell’s relations imply the
exact expression,

�!
!
�

i
2�Q

�
�
R
Vp
��p���r��Re�E�0 	Ep�dr
 i

!

H
�V Re�Sp� 	nda

R
V Re�E�0 	Dp
H�0 	Bp�dr

(1)
4-2



11.76
6.25
4.00
2.56
1.96

ε
p

FIG. 3. Relative frequency shift (solid symbols, left hand axis)
and inverse Q (open symbols, right hand axis) as a function of
the effective polarizability per length �eff=d � 3��p � 1�=��p 


2��r2
p, for cylindrical tips positioned 30 nm above the central

defect in Fig. 1. Symbol shapes indicate various tip materials (Si,
TiO2, ZrO2, polystyrene, and SiO2 in order of decreasing �p as
indicated). The frequency shift is proportional to �eff (solid
curve). The loss 1=Q can be fitted (dashed curve) with the
sum of the loss without the tip (horizontal dashed line) and a
contribution proportional to �2

eff .
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for the relative frequency shift (�!=!) and induced scat-
tering loss (�Q�1). Here ��r� is the dielectric constant of
the unperturbed system and E0�p�, and H0�p� are the com-
plex electric and magnetic fields of the unperturbed (per-
turbed) system. The integral in the denominator runs over
some volume V enclosing the entire system. The induced
scattering loss is proportional to the integrated flux of Sp �
E�p �H0 �E�0 �Hp through the outer surface �V of V.
We note that this dependence is very different from that of
the frequency shift that is proportional to an integral over
the perturbing volume Vp.

A simple picture for the frequency shift emerges in the
weakly perturbative regime where �!

! � 1 and theQ is not
degraded, in our case corresponding to the range ztip �

30 nm. In this regime, the denominator in Eq. (1) is inde-
pendent of the perturbation, and the frequency shift is set
by the overlap integral of the perturbed and unperturbed
fields within the tip volume Vp only. The field Ep in the tip
is given by Ep � 3E0=��p 
 2�, where the proportionality
constant takes into account the local field effects [18].
Next, we separate the exponential z dependence of E0 �

E0�rk�e�z=2d from its dependence on the lateral tip coor-
dinate rk, and assume that the unperturbed field E0�rk� is
constant over the small tip cross section. We then find

�!�rk; ztip�

!
� �

�eff

2Vcav

jE0�rk�j2

max���r�jE0j
2�
e�ztip=d: (2)

Here Vcav �
R
��r�jE0j

2dr=max���r�jE0j
2� is defined as

the cavity mode volume [3,18] and �eff is the effective
polarizability of the tip

�eff � 3
�p � 1

�p 
 2
Veff ; (3)

equal to the electrostatic polarizability of a volume Veff of
material with dielectric constant �p [19]. The exponential
decay of the cavity mode (with decay length d) limits the
volume of the tip that contributes to the polarizability to
Veff � �r2

pd for a tip of radius rp [20]. This analysis
reproduces all the features of our FDTD results concerning
the frequency shift. First, it yields the exponential decrease
of �!=! as a function of the tip-slab separation ztip (see
Fig. 2). Second, it confirms the direct correspondence
between the frequency shift and the unperturbed mode
profile [see Figs. 1(b) and 1(c)]. Third, Eq. (2) states that
the frequency shift is inversely proportional to the mode
volume, a feature that we have confirmed by simulations of
different cavity designs (e.g., that of Ref. [4]). Further
confirmation is the quantitative agreement of the frequency
shifts in Fig. 2 with the mode volume Vcav � 0:02 �m3

determined from the unperturbed mode profile of our
cavity. Finally, and most significantly, Eq. (2) predicts
that the frequency shift is proportional to �eff . To inves-
tigate this we performed FDTD simulations for tips of
various radii and materials, fixed above the cavity center
at 30 nm. The closed symbols and the solid line in Fig. 3
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demonstrate that the frequency shift is proportional to the
effective polarizability of the tip. In other words, in the
region ztip > 30 nm the tip acts as a polarizable object that
is weakly coupled to the cavity field, much in the same
manner as an atom that can be described by a classical
dipole of the appropriate polarizability within linear dis-
persion theory [11,12]. This is a remarkable finding be-
cause the tip is not much smaller than the central hole of
the microcavity and its mode volume, so that the validity of
the dipole approximation is not a trivial matter.

Next we turn our attention to the origin of losses induced
by the tip. The power radiated by an object of polarizability
�eff can be modeled as a Rayleigh scattering process
[19,21], resulting in a quadratic dependence on �eff .
Indeed, the open symbols in Fig. 3 display exactly this
dependence when the tip is at the center of the cavity. The
quadratic dependence of the loss versus the linear depen-
dence of the frequency shift on �eff makes it possible to
tune the frequency of high-Q microcavities without incur-
ring prohibitive losses. Both perturbative analysis [21] as
well as FDTD simulations indicate that the robustness of
tip tuning against loss generalizes to other cavities. For the
cavities in Refs. [4,6], for instance, we again find second
order dependence of loss on frequency shift, with a large
shift of �!=! � 0:1% at a high Q � 4500. Intriguing
effects beyond this Rayleigh scattering picture, however,
occur for some tip configurations. For instance, a compari-
son of Figs. 1(b) and 1(d) shows that there are tip positions
where the losses are high even though the electric field
intensity is small (upper right and lower left corners). It
turns out, as shown in Fig. 1(e), that the cavity field at these
points has a large z component (Ez;0). The magnitude of
jEz;0j

2 at these points amounts to about 5% of the maxi-
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mum value of jE0j
2 attained above the center of the cavity.

Substantial loss is induced by scattering of the field into the
tip, which is much more efficient for the z component of
the field than for the field components perpendicular to the
tip [22]. FDTD simulations of the perturbed fields further
confirm the polarization-specific enhanced coupling into
the tip [23]. This disparity between induced loss and the
cavity mode profile underlines a fundamental feature of
Eq. (1): contrary to the frequency shift, the scattering loss
does not depend solely on the fields within the perturbing
volume only. Instead, it is the far-field interference of the
fields encoded in the integrated flux Sp that is the decisive
factor. In this sense, there is a close relation between the
perturbation of a cavity by a tip and the tuning of holes
around a cavity for optimization of the quality factor [3–5].

In conclusion, we have shown that sharp dielectric tips
in the near field can be used to tune photonic crystal
microcavities over a large range without inducing prohibi-
tive losses. Our analysis shows that the tuning range scales
with the ratio of the tip polarizability to the mode volume.
Hence, this scheme is expected to be effective for any
electromagnetic resonance localized in a volume compa-
rable to the perturbing polarizability, as is the case in
microspheres, microdisks, or micropillars [2,6,9]. One ad-
vantage of this scheme is that the tuning process does not
influence the optical properties of emitters in the cavity.
Furthermore, the rapid progress in nanotechnology makes
it feasible to integrate tips for local tuning of individual
resonant devices in photonic crystals that contain many
functional components [24]. Compared to existing meth-
ods for tuning photonic crystals [25], tip tuning can create
and reverse the frequency shift more quickly, and, in con-
trast to ultrafast optical tuning [26], the shift can be main-
tained indefinitely. In other words, tip tuning does not
depend on the material properties of the crystal. The time
scale for tuning is limited only by mechanical resonances
of the tip that can reach the MHz regime [24]. This opens
the possibility of using a photonic crystal microcavity as an
optical switch for integrated optics applications.
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Sandoghdar, Opt. Lett. 29, 174 (2004).

[8] R. A. Waldron, Proc. Inst. Electr. Eng. 107C, 272 (1960);
for a review see O. Klein, S. Donovan, M. Dressel, and G.
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