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Optical systems with gain and loss that respect parity-time (PT) symmetry can have real eigenvalues
despite their non-Hermitian character. Chiral systems impose circularly polarized waves which do not
preserve their handedness under the combined space- and time-reversal operations and, as a result, seem to
be incompatible with systems possessing PT symmetry. Nevertheless, in this work we show that in certain
configurations, PT symmetric permittivity, permeability, and chirality is possible; in addition, real
eigenvalues are maintained even if the chirality goes well beyond PT symmetry. By obtaining all three
constitutive parameters in realistic chiral metamaterials through simulations and retrieval, we show that the
chirality can be tailored independently of permittivity and permeability; thus, in such systems, a wide
control of new optical properties including advanced polarization control is achieved.
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The field of parity-time-reversal (PT) symmetry, initially
introduced in the context of quantum mechanics [1–4],
has attracted increasing interest because, according to this
concept, it is possible even for non-Hermitian Hamiltonians
to exhibit real eigenvalues. This occurs if the potential V
satisfies Vðr − r0Þ ¼ V�ð−rþ r0Þ, where r is the position
operator and r0 is the point with respect to which the parity
transformation is defined (the asterisk denotes the complex
conjugate). The eigenvalues remain real below some
critical value of the potential, the so-called exceptional
point, abovewhich they become complex. Because paraxial
beam propagation is described by a Schrödinger-like
equation, the PT concept quickly found fertile ground in
optics, where the required loss is naturally occurring
and gain can be easily introduced; there, the role of the
potential is played by the refractive index n and therefore
nðr − r0Þ ¼ n�ð−rþ r0Þ [5–11]. The extension of PT
symmetry to systems in which the space reversal is
along the propagation direction and the eigenvalues refer
to those of the scattering matrix [12–21] led to novel
phenomena, such as coherent perfect absorption [13,14],
the PT-laser absorber [15,16], and anisotropic transmission
resonances [18]. Most recently, some works combined PT
symmetry with metamaterials [22–28], which could extend
these ideas to new limits; however, an important class
of metamaterials, namely chiral metamaterials (CMMs)
[29–37], remains highly unexplored in the context of PT
symmetry.
In this work, prompted by both the enhanced polariza-

tion control capabilities of chiral metamaterials and the
novel effects associated with PT-symmetric systems, we
attempt to combine both features in the same system; our

goal is to transfer the PT-related phenomena to waves of
arbitrary polarization, from linear to circular, and to achieve
advanced polarization control capabilities, as compared to
those offered by passive chiral metamaterials. As a first
step, we derive the necessary conditions for a chiral system
to be PT symmetric; then for the system shown in Fig. 1,
we obtain the full scattering matrix for arbitrary values of
the constitutive coefficients (ε, μ, κ); next we examine how
the obtained general results are modified if PT invariance is
imposed. To our surprise, we find that both the eigenvalues
and the PT-related functionalities are still preserved,
independently of whether the PT requirement is violated
in κ. This is unexpected, since it is only natural for the

FIG. 1. A system of two homogeneous chiral slabs for the
realization of a chiral PT-symmetric structure. The complex
material parameters εi, μi, and κi are the relative permittivity, the
relative permeability, and the chirality parameter, respectively,
and the subscript i ¼ fg; lg denotes whether they are located in
the “gain” or the “loss” region. For PT symmetry the shown
parameters should satisfy εg ¼ ε�l , μg ¼ μ�l , κg ¼ −κ�l , and
Lg ¼ Ll. The amplitudes of the incident (b; c) and scattered
(a; d) waves are shown, where the subscript þ (−) accounts for
right- (left-) circularly polarized [RCP (LCP)] waves.
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results to depend on the additional constitutive parameter
(κ) as well, and not to be tuned solely via ε and μ. However,
this result turns out to be of utmost importance for chiral
systems, because it allows retaining an unbroken PT phase
with all its benefits and controlling the chirality simulta-
neously and independently from the PT-related function-
alities, thus enabling new optical capabilities, such as
anisotropic transmission resonances with polarization con-
version and unidirectional polarization conversion with no
reflection, as we demonstrate explicitly. Finally, by simu-
lations and retrieval we obtain various sets of values of the
constitutive coefficients in realistic chiral metamaterials
possessing either PT symmetry or extensions beyond this
symmetry; these sets of values are such as to demonstrate
that all our theoretical findings can take place in actual
systems.
To find the conditions for PT symmetry in systems

with chiral response, we cast Maxwell’s equations
∇ ×E ¼ iωB, ∇ ×H ¼ −iωD combined with the con-
stitutive relations D ¼ εε0Eþ iðκ=cÞH and B ¼ μμ0H −
iðκ=cÞE [38] into an eigenproblem with a Schrödinger-like
Hamiltonian (ε, μ are the relative permittivity and per-
meability, respectively, κ is the chirality parameter express-
ing the magnetoelectric coupling, and c is the vacuum
speed of light, see Supplemental Material [39]). To achieve
PT symmetry, first we require that the Hamiltonian ¯̄H
commutes with the PT operator and then we investigate
how the eigenvectors of ¯̄H are transformed under the
action of space and time reversal. For a PT-symmetric
Hamiltonian with nondegenerate spectrum to have real
eigenvalues, the eigenvectors F should also be PT sym-
metric [21]; i.e., PTF ¼ F. In our case, the eigenvectors of
¯̄H appear as pairs of right-circularly polarized [RCP or (þ)]
and left-circularly polarized [LCP or (−)] waves denoted as
Fþ, F−, and, while time reversal (t → −t) does not affect
their handedness, the action of space reversal (r → −r)
transforms it between left and right, thus implying an
apparent incompatibility of chiral systems with PT sym-
metry. However, because F� share a common (degenerate)
eigenvalue ω (i.e., ¯̄HF� ¼ ωF�), this can be real if certain
symmetries are preserved. For example, as is shown in the
Supplemental Material [39], Sec. I, if the action of the PT
operator maps RCP waves onto LCP waves and vice versa
(PTF� ¼ F∓), then the eigenvalue ω is real. This, for
example, can be achieved in systems with material param-
eters that change only along the z direction (x → x, y → y,
z → −z); for waves propagating along the z direction, we
find that the conditions, so as to have a PT-symmetric
chiral system, read as follows:

εðzÞ¼ ε�ð−zÞ; μðzÞ¼μ�ð−zÞ; κðzÞ¼−κ�ð−zÞ: ð1Þ

The reason for the minus sign in the last relation is the
fact that κ is a pseudoscalar since it connects polar vectors

(E and D) to axial vectors (B and H, respectively). The
conditions Eq. (1) are a generalization of the conditions
originally reported in Ref. [22] for nonchiral metamaterials
and can be realized in practice, e.g., by homogeneously
embedding chiral media in loss and gain, as depicted in
Fig. 1. The system of Fig. 1 consists of two homogeneous
chiral gain or loss slabs which are assumed to be infinite on
the xy plane and have finite length along the z direction.
Without loss of generality, gain (loss) is assumed to be
embedded entirely in the left (right) slab.
To study the scattering properties of the double-slab

system, we assume that circularly polarized waves arrive at
normal incidence from either side of the system (propa-
gating along the z direction) and measure the scattered
fields. The amplitudes of the incident (b; c) and scattered
(a; d) waves are shown in Fig. 1, where the subscriptþ (−)
accounts for RCP (LCP) waves (the handedness is defined
as seen from the source [34]). Although PT symmetry
requirements impose certain relations [see Eq. (1)] between
the coefficients in the loss and gain regions, we start with
slabs of arbitrary lengths, Lg, Ll, and arbitrary material
parameters εg, εl, μg, μl, κg, κl to obtain general expres-
sions. Because of the two possible circular polarizations at
each of the two sides, the system can be described by four
input and four output ports and hence by a 4 × 4 scattering
matrix, consisting of eight reflection and eight transmission
amplitudes fr; tg. Regardless of the side of incidence, we
find that rþþ ¼ r−− ¼ tþ− ¼ t−þ ¼ 0, where the second
subscript indicates the incident and the first the output
polarization. For the remaining eight, nonzero scattering
coefficients, we find

rL;þ− ¼ rL;−þ ≡ rL ¼ rL;nonchiral;

rR;þ− ¼ rR;−þ ≡ rR ¼ rR;nonchiral;

tL;þþ ¼ tR;þþ ≡ tþþ ¼ tnonchiraleþik0ðLgκgþLlκlÞ;

tL;−− ¼ tR;−− ≡ t−− ¼ tnonchirale−ik0ðLgκgþLlκlÞ; ð2Þ

where the subscript L or R denotes incidence from “left” or
“right,” respectively, and k0 is the free-space wave number
(the subscript nonchiral denotes the same system with
κg ¼ κl ¼ 0). From Eq. (2) it is evident that, although the
transmission is the same from both sides, as is typical in
reciprocal systems [10], the reflection depends on the side
of incidence. Note also that, while the reflection amplitudes
are always identical to those of the nonchiral counterpart,
the transmission amplitudes tþþ; t−− are in general differ-
ent, but can be made equal to tnonchiral if Lgκg þ Llκl ¼ 0.
In this case the system responds macroscopically as non-
chiral, despite having local chirality; i.e., the local chirality
is spatially balanced. We emphasize that the results Eq. (2)
hold for slabs of general (not necessarily PT) geometrical
and material parameters. The results for the scattering
matrix simplify considerably and, as a result, its four
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eigenvalues appear in two degenerate pairs (see
Supplemental Material [39]):

λ1;2 ¼ ðrL þ rR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrL − rRÞ2 þ 4tþþt−−
q

Þ
.

2: ð3Þ

From Eq. (2) we notice that tþþt−− ¼ t2nonchiral, and
hence, the scattering matrix eigenvalues are identical to
those of the nonchiral counterpart for slabs of general (non-
PT) geometrical and material parameters.
In general, due to the presence of gain and loss,

jλ1;2j ≠ 1. However, if we apply PT conditions an excep-
tional point emerges, below which jλ1j ¼ jλ2j ¼ 1 (PT
phase), while λ1, λ2 become an inverse conjugate pair above
it, satisfying jλ1jjλ2j ¼ 1 [16,18] (broken PT phase).
Because the eigenvalues are found to be independent of
chirality, the exceptional point does not depend on chirality
as well and, therefore, the PT aspect can be tuned
independently from the chiral aspect. The experimental
criterion introduced in Ref. [18] for locating the exceptional
point is now expressed as

RL þ RR

2
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TþþT−−
p ¼ 1; ð4Þ

where Ri≡ jrij2, i¼fR;Lg, and Tj≡ jtjj2, j ¼ fþþ;−−g.
In addition, the generalized unitarity relation [18], which
holds both below and above the exceptional point, is now
expressed as

j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TþþT−−
p − 1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

RLRR

p

: ð5Þ

According to this expression there exists a flux-conserv-
ing scattering process for incident waves on a single side if
and only if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TþþT−−
p ¼ 1, and one of RL or RR vanishes,

which is known as anisotropic transmission resonance
(ATR) [18]. Although this holds for the mean quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TþþT−−
p

, this process is not strictly flux conserving for
excitation with only RCP or LCP waves, as Tþþ ≠ T−−
when the PT conditions Eq. (1) are satisfied. However,
inspection of Eq. (2) reveals that if ImðLgκg þ LlκlÞ ¼ 0,
then Tþþ ¼ T−− ≡ T, and flux-conserving ATRs are
possible. This can be fulfilled if κ is not PT symmetric,
while ε and μ are; it is a case beyond full PT symmetry.
As for the chiral features of our system, after applying

Eq. (2) on the optical rotation θ ¼ ½argðtþþÞ − argðt−−Þ�=2
and ellipticity η ¼ ð1=2Þsin−1½ðjtþþj2 − jt−−j2Þ=ðjtþþj2 þ
jt−−j2Þ� [34], we find that θ depends only on the real part of
κ, ReðκÞ, and η only on its imaginary part, ImðκÞ (see
Supplemental Material [39]). For PT-symmetric systems
and for systems with properly balanced ReðκÞ [such as
ReðLgκg þ LlκlÞ ¼ 0], θ is always zero, while the elliptic-
ity of the transmitted wave can be tuned by adjusting ImðκÞ
in the loss and gain slabs. When going beyond the full PT
symmetry (i.e., only ε and μ being PT symmetric) in order

to satisfy ImðLgκg þ LlκlÞ ¼ 0, η is always zero; i.e., the
output wave is linearly polarized, while the optical activity
can be tuned via ReðκÞ (or the length L of the slabs).
To demonstrate the above conclusions, let us consider a

system that fulfills conditions Eq. (1), such as the system
shown in Fig. 1, with ng ¼ 2 − 0.2i, nl ¼ 2þ 0.2i (where
n¼ ffiffiffiffiffi

εμ
p

) and κg ¼ −0.165þ 0.165i, κl ¼ 0.165þ 0.165i.
The two slabs are of equal length Lg ¼ Ll ¼ L=2, and the
eigenvalues of the scattering matrix, as well as the trans-
mitted and reflected power, are shown in Fig. 2(a) as a
function of the normalized frequency ωL=c. The excep-
tional point, which separates the PT phase from the broken
PT phase (shaded region), is located at ωL=c ¼ 15.4.
Because of the symmetries imposed by Eq. (1) on the
chirality parameter κ, ReðκÞ changes sign across the
system. Hence, the optical rotation θ occurring in the first
slab is subsequently canceled when the wave passes
through the second slab, resulting overall in zero optical
activity, θ ¼ 0, regardless of the location of the exceptional
point. On the other hand, ImðκÞ preserves its sign across the
entire system and, consequently, ImðLgκg þ LlκlÞ ≠ 0,
resulting in η ≠ 0 and, hence, Tþþ ≠ T−−, as shown in
Fig. 2(a). Practically, after the ATR located around ωL=c ¼
9.52 (marked with a vertical dashed line), all higher ATRs
are accompanied by θ ¼ 0 and η ¼ 45 deg; i.e., there exist
multiple operation points of zero reflection and full con-
version of linearly polarized waves into circularly polarized

FIG. 2. PT-chiral system of length L with n ¼ 2� 0.2i. The
chirality is (a) κ ¼ �0.165þ 0.165i and (b) κ ¼ 0.165� 0.165i.
Top row: Eigenvalues λ of scattering matrix. Middle row:
Transmittance Tþþ, T−− and reflectance RL, RR. Bottom rows:
Optical activity θ and ellipticity η. The generalized unitarity
relation Eq. (5) is plotted as RLRR þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TþþT−−
p − TþþT−− ¼ 1

(dashed horizontal line). The shaded area denotes the broken PT
phase and the dashed vertical line marks an ATR with strong
chiral features.
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waves, the handedness of which is controlled by the sign
of ImðκÞ.
Next, we relax the PT condition [last of Eq. (1)] by

setting κg ¼ 0.165þ 0.165i, κl ¼ 0.165 − 0.165i. The
sign change in ImðκÞ leads to η ¼ 0 (and θ ≠ 0) and Tþþ ¼
T−− without affecting the exceptional point, as predicted.
We show below by simulation and retrieval in realistic
chiral metamaterials that such choices are actually obtain-
able, and flux-conserving ATRs, as shown in Fig. 2(b), are
possible, corresponding to unidirectional pure optical
rotation of a linearly polarized wave. At the ATR around
ωL=c ¼ 9.52, in particular (marked with a vertical dashed
line), θ ¼ 90 deg; i.e., x-polarized waves are fully con-
verted to y-polarized waves and are transmitted entirely
without reflection.
To demonstrate our findings with realistic metamaterials,

we employ a chiral metamaterial structure similar to the one
presented in Ref. [35], which consists of two metallic
crosses twisted with respect to each other by 30 deg and
embedded in a dielectric host of low index, nhost ¼ 1.41
[see Fig. 3(a), top, for schematic and Supplemental
Material for details [39]]. To achieve its PT counterpart
(referred to here as PT CMM), we embed the dielectric host
with gain (expressed as the imaginary part of nhost) and we
also tune the relative twist between the two crosses for an
additional control on the effective chirality, κeff . For
ImðnhostÞ ¼ −0.09 and an opposite twist of 30 deg between
the two crosses [see Fig. 3(a), bottom], we achieve PT
symmetry at 220 THz, as observed in the effective
parameters εeff , μeff , and κeff of the loss and gain CMMs
in Fig. 3(b).
In particular, at this frequency we find εCMM ¼

0.365þ 0.299i, εPT-CMM ¼ 0.384 − 0.295i, μCMM ¼
1.527 − 0.149i, μPT-CMM ¼ 1.549þ 0.037i, and
κCMM ¼ 0.028 − 0.014i, κPT-CMM ¼ −0.030 − 0.007i. To

retrieve these parameters we use the procedure outlined in
Ref. [35], for which we perform full-wave simulations with
the commercial software COMSOL MULTIPHYSICS.
Next, we keep the PT-symmetric CMM pair intact and

we introduce an additional nonmagnetic, nonchiral PT-slab
pair (μ ¼ 1, κ ¼ 0) of relative permittivity ε0 � iε00, to
control the PT potential. The homogeneous slabs have
ε0 ¼ 2.1 and are of 500 nm length each, so that the entire
PT structure extends over a total of 1.7 μm (each CMM is
350 nm long). With this configuration, the PT transition
can be implemented at a single frequency (220 THz) with
varying the values of gain and loss, i.e., ε00 (note that the
optical potential involves both the frequency and the
material parameters). The results are shown in Fig. 4(a),
where the schematic on top denotes the four different
material regions.
As we tune ε00, we observe an exceptional point at

ε00 ¼ 0.88 and an ATR close to ε00 ¼ 1 (with RR ¼ 0).
The optical rotation θ is everywhere close to zero as is
imposed by the PT conditions, and the available chirality at
this frequency leads to a relatively weak ellipticity of
η ¼ 2.5 deg (this is not a limitation, as η can be very large
in such systems—see Supplemental Material [39]). The
dashed line in the bottom left-hand panel of Fig. 4(a) is
the calculated generalized unitarity relation Eq. (5). The
slight quantitative deviations observed in θ, η, λ, and Eq. (5)

FIG. 3. (a) Unit cell of the basic CMM block (top) and its PT
counterpart (bottom) satisfying the conditions Eq. (1) at 220 THz.
The unit cell is periodically repeated on the xy plane. The length
of the CMM along z direction is w. (b) Retrieved effective
permittivity εeff, permeability μeff, and chirality κeff as a function
of frequency for the structures shown in (a). The results of the top
(bottom) row correspond to the CMM (PT-CMM) system.

FIG. 4. Demonstration of PT transition (exceptional point) with
a realistic PT-chiral metamaterial pair in terms of ε00, the
imaginary part of the permittivity of the auxiliary gain or loss
slab pair (the real part ε0 ¼ 2.1 is constant). The shaded area
denotes the broken PT phase. (a) Numerical calculations at
220 THz for the CMM and PT-CMM blocks of Fig. 3 in the
configuration shown in the schematic on top. (b) Results with the
same CMM and the modified PT CMM, which has chirality of
inverted sign. Panels: Scattering matrix eigenvalues λ (top left),
transmittance Tþþ, T−− and reflectance RL, RR (bottom left),
optical activity θ (top right), and ellipticity η (bottom right). The
dashed line in the bottom left-hand panel is the quantity
RLRR þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TþþT−−
p − TþþT−−. The relaxed PT condition in

(b) does not affect the exceptional point, allowing for the PT
aspect to be tuned independently from the chiral properties.
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from the theoretically expected values (see Supplemental
Material [39]), come from deviations of the retrieved
parameters from the perfect PT conditions. However, the
positions of the exceptional point and the ATR are not
affected.
Because of Tþþ ≠ T−−, the ATR observed in the system

of Fig. 4(a) is not flux conserving for excitation with only
RCP or LCP waves, as mentioned earlier. To achieve the
condition Tþþ ¼ T−−, which corresponds to η ¼ 0 and thus
pure optical rotation θ for a linearly polarized wave, we need
to reverse the sign of chirality in the PT-CMM block, so that
κPT-CMM ¼ ðκCMMÞ�; this obviously is an extension beyond
the PT-invariance relation [last relation in Eq. (1)]. To
demonstrate this possibility, we reverse the twist between the
two crosses in the PT CMM, making it geometrically
identical to the basic CMM (see Supplemental Material
[39]). This modification changes the sign of κPT-CMM,
without practically affecting εPT-CMM and μPT-CMM. The
new parameters at 220 THz are εPT-CMM ¼ 0.356−
0.293i, μPT-CMM ¼ 1.538 − 0.010i, and κPT-CMM ¼ 0.031þ
0.0071i. The simulations with the new system are shown in
Fig. 4(b) and verify that the exceptional point is not affected
by changes in chirality, as predicted by our simple model.
Consequently, the properties of PT-symmetric systems are
still possible, if PT-symmetry is obeyed by permittivity or
permeability independently of PT being satisfied or not
satisfied by the chirality κ. This conclusion is also verified in
the existence of the flux-conserving ATR located close to
ε00 ¼ 1 (with RR ¼ 0).
In conclusion, we have shown that, despite the apparent

incompatibility, the combination of chirality with PT
symmetry in ε and μ is possible in certain systems, allowing
thus the simultaneous exploitation of both. This exploita-
tion is unrestricted as far as κ is concerned, since the
chirality does not affect the eigenvalues of the scattering
matrix and therefore leaves the functionalities related with
the PT phase untouched. This unexpected κ independence
of the PT phase has been shown to be of utmost
importance, as it enables the simultaneous and independent
control of both the PT-symmetric phase and chirality.
Hence, the novel wave propagation and scattering proper-
ties of nonchiral PT-symmetric systems can be combined
with the advanced polarization control properties of chiral
metamaterials at will, allowing for the realization of several
exciting possibilities, such as chiral unidirectional lasers
and wave isolators of arbitrary polarization, in a very
small scale.
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