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We present a thorough investigation of the electromagnetic resonant modes supported by systems of polaritonic
rods placed at the vertices of canonical polygons. The study is conducted with rigorous finite-element eigenvalue
simulations. To provide physical insight, the simulations are complemented with coupled mode theory (the
analog of LCAO in molecular and solid state physics) and a lumped wire model capturing the coupling-caused
reorganizations of the currents in each rod. The systems of rods, which form all-dielectric cyclic metamolecules,
are found to support the unconventional toroidal dipole mode, consisting of the magnetic dipole mode in each
rod. Besides the toroidal modes, the spectrally adjacent collective modes are identified. The evolution of all
resonant frequencies with rod separation is examined. They are found to oscillate about the single-rod magnetic
dipole resonance, a feature attributed to the leaky nature of the constituent modes. Importantly, we observe that
ensembles of an odd number of rods produce larger frequency separation between the toroidal mode and its
neighbor than the ones with an even number of rods. This increased spectral isolation, along with the low quality
factor exhibited by the toroidal mode, favors the coupling of the commonly silent toroidal dipole to the outside
world, rendering the proposed structure a prime candidate for controlling the observation of toroidal excitations
and their interaction with the usually present electric dipole.
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I. INTRODUCTION

The toroidal dipole, first considered by Zel’dovich in 1958,
is the first of the toroidal multipoles, a peculiar electromagnetic
excitation that differs from the more familiar electric and
magnetic multipoles which involve the separation of negative
and positive charges (the electric ones) or the closed circulation
of electric currents (the magnetic ones). In contrast, the toroidal
dipole results from poloidal currents circulating on a surface of
a gedanken torus along its meridians. Zel’dovich connected the
excitation of the static toroidal dipole, called the anapole, with
parity nonconservation in atomic spectra [1], a feature also
experimentally observed in later years [2,3]. The importance
of the static anapole has been discussed for a number of
solid-state systems including ferroelectric and ferromagnetic
nano- and microstructures, multiferroics, macromolecules,
molecular magnets etc. [4–9].

In the dynamic case, an oscillating toroidal dipole emits
radiation with the same angular momentum and parity prop-
erties as the electric dipole. However, the toroidal and electric
dipoles have some differences: The toroidal moments interact
with the time derivatives of the incident fields, the toroidal
dipole radiated power scales with ω6 (rather than ω4 for the
electric dipole), and their vector-potential fields do not coin-
cide [10–14]. Despite their distinct characteristics, toroidal
multipoles are not considered in classical electrodynamics
textbooks [11–14]. Other peculiar phenomena which have
been associated with toroidal multipoles are the violation
of the action-reaction equality, nonreciprocal refraction of
light, and the propagation of nontrivial vector potential in the
complete absence of fields [10,15,16]. In nature, materials that
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contain molecules of toroidal topology, such as some important
macromolecules and complex proteins [17,18], are expected
to exhibit toroidal-related electromagnetic properties, while
anapoles have recently been connected with universe dark
matter [19].

Toroidal multipoles have attracted growing attention be-
cause of their unusual properties and their connection to the
electric multipoles. However, given their silent nature, their
role may easily be overshadowed by the usually much stronger
electric and magnetic multipoles. Thus, special care should
be exercised in systems where the relation between the time
dependent charge distribution acting as the source and the far
field radiation is investigated [20–25]. In this respect, the rapid
evolution of metamaterials has proven to be a valuable tool for
understanding toroidal-related phenomena and has moreover
provided the means for the direct experimental evidence of
the toroidal response as seen in Ref. [26]. Strong toroidal
response has been observed in various systems comprising
metamolecules of split-ring resonators, metallic arrays, metal-
lic bars, etc. [27–33]. Moreover, interesting applications have
already been reported, such as a toroidal lasing spaser [34] and
the potential use of toroidal qubits in naturally environmentally
decoupled artificial atoms [35].

Recently, the range of metamaterials that support toroidal
modes has been extended to all-dielectric structures [36–38],
which have the advantage of almost zero resistive losses in
contrast to metallic-based toroidal metamaterials. In particular,
in Ref. [36] a metamolecule of four polaritonic rods placed at
the corners of a square was found to support a toroidal dipole
mode. By performing scattering simulations it was shown that
the toroidal mode was substantially contributing to the overall
metamaterial response for a certain spectral region.

In this paper, we revisit the polaritonic-rod toroidal
metamaterial. Rather than investigating the excitation of the
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toroidal mode through scattering simulations, we perform a
comprehensive analysis of the supported eigenmodes focusing
on the toroidal mode and its frequency-adjacent modes. We
characterize each mode by its distinctive field distribution
and by calculating the relevant multipole moments in order to
identify the dominant contribution. We show that, contrary to
common belief, the toroidal dipole resonance has a substantial
imaginary part due almost exclusively to radiation leakage,
hence favoring coupling to incoming/outgoing radiation of ap-
propriate character, facilitating thus mode excitation/detection.
We thoroughly investigate all TE10-based collective modes
supported by ensembles of N = 2–8 polaritonic circular rods
placed at the vertices of regular polygons (in TE modes the
electric field is parallel to the rod axis and in particular local
TE10 modes in each cylinder constitute the building block
of the toroidal mode). More specifically, we are interested in
the evolution of the collective mode resonance frequencies
with rod separation and particularly the spectral isolation
of the toroidal mode with respect to the neighboring ones.
Amongst else, we find that the cyclic metamolecule of an
odd number of rods (N = 3,5,7) can prove advantageous in
terms of the frequency separation between the toroidal mode
and its neighbors. The enhanced frequency separation, the
absence of Ohmic losses, and the leaky nature of the toroidal
mode in the polaritonic rod metamolecules render the proposed
structure a prime candidate for controlling and exploiting
toroidal excitations.

The paper is organized as follows: In Sec. II we investigate
the natural modes supported by a single polaritonic rod,
focusing on the spectral range around the TE10 (magnetic
dipole) mode with resonance frequency f10. The N = 2 system
is thoroughly examined in Sec. III for the purpose of under-
standing TE10 collective mode formation and interpreting the
evolution of the resonant frequencies with rod separation. We
find that collective mode frequencies, in contrast to the LCAO
experience, do not remain lower (the symmetric one) or higher
(the antisymmetric one) than the single cylinder frequency
f10. Instead, they are interchanging sides depending on the
rod distance. This counterintuitive result can be explained
by the leaky nature of the constituent modes. As a result,
their coupling is mediated by oscillating field tails instead of
evanescent ones. This explanation is quantitatively verified by
substituting a linear combination of the isolated-rod modes in
the frequency-squared functional of the system (corresponding
to the energy functional in the case of LCAO) and minimizing
it. The cross (off-diagonal) terms of the coupling matrix,
responsible for frequency splitting, are indeed oscillating.
Another important observation is that the oscillation of the
collective mode frequencies about f10 can be highly asym-
metric leading to steep segments in the frequency-separation
curve. This is because the TE10 modes within each rod can
be significantly deformed in the coupled system (compared
to the isolated rod). We recover this coupling-caused current
deformation with a wire model, i.e., by approximating the
displacement current distribution in each rod with a pair of
lumped current wires; these currents, which are determined by
solving a 2N × 2N eigenvalue problem, acquire asymmetric
values effectively reproducing the local mode deformation.
This current deformation is the analog of the dipole type
charge deformation in each atomic orbital appearing in the
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FIG. 1. Schematics of the cyclic metamolecules under study
for N = 3,4. In all cases, identical, infinitely-long polaritonic rods
of circular cross section and a radius R = 8 μm are located at
the vertices of regular polygons. The rod material is LiTaO3 with
permittivity εr = 41 around 2 THz.

LCAO method and being responsible for the van der Waals
interactions. Finally, Sec. IV is devoted to many-rod (N =
3–8) systems. After a systematic analysis of the N = 3 and
N = 4 structure (Secs. IV A and IV B), we proceed to compare
respective systems in terms of the spectral separation between
the toroidal mode and its neighbors. Systems of an odd number
of rods are found to offer better spectral isolation thus favoring
the excitation/detection of toroidal dipoles.

II. PHYSICAL SYSTEM

The structure under study is depicted in Fig. 1 for N = 3,4.
Rods of circular cross section are arranged at the vertices of a
regular polygon lying on the xy plane with their axes parallel to
the z axis. The cylinders extend to infinity along z and possess
a radius of R = 8 μm. They are made of LiTaO3 embedded
in an infinite homogeneous medium, in this case air. LiTaO3

is an ionic crystal that exhibits strong polaritonic response
due to the excitation of optical phonons [39,40]; LiTaO3 rods
can be realized with various crystal growth methods [41].
At frequencies below the phonon resonances (ωT /2π =
26.7 THz and ωL/2π = 46.9 THz is the frequency of the
transverse and longitudinal phonons, respectively) LiTaO3

exhibits high permittivity and very low dissipation losses. In
particular, in the frequency range under consideration, around
2 THz, the real part of the LiTaO3 permittivity is nearly flat and
equal to εr = 41. Throughout this investigation the material
losses have been omitted since they are negligible compared
to the radiation losses for all the relevant modes.

The single cylindrical rod, the metaatom of the cyclic meta-
molecule, supports electromagnetic modes whose complex
frequencies and field profiles are shown in Fig. 2. These results
were obtained by using the suitable Bessel (inside the cylinder)
and Hankel (outside the cylinder) functions, Jn(kcylr) and
H (1)

n (kairr) with kcyl = k0nLiTaO3 and kair = k0nair, to describe
the field profile and subsequently imposing the appropriate
boundary conditions at the rod interface [42]. A homogeneous
system of linear equations is formed that admits a nontrivial
solution when its determinant is zero. Assuming a wave vector
in the xy plane (kz = 0) and TE polarization (E ≡ Ezẑ) the
system boils down to

v
J ′

n(u)

Jn(u)
− u

H (1)′
n (v)

H
(1)
n (v)

= 0, (1)

where u = kcylR and v = kairR. The Bessel functions are
transcendental, meaning that for each value of n there is an
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FIG. 2. First four eigenmodes and corresponding eigenfrequen-
cies (stars in the complex frequency plane) of TE polarization
(E ≡ Ezẑ) for the metaatom, an isolated polaritonic rod, assuming
kz = 0. Insets show the polarization current (color) and magnetic
field (arrows in logarithmic scale) distribution. The TE10 (magnetic
dipole) mode lies at f10 = (2.183,0.07) THz; the material losses for
this mode are negligible (<5% of radiation losses).

infinite number of roots denoted by the integer m. Therefore,
Ez-polarized solutions are denoted by TEnm, where subscript
n refers to the azimuthal and subscript m to the radial order.
Returning to Fig. 2, the complex resonance frequencies of
the supported modes in the frequency range 0–4 THz (TE00,
TE10, TE20, and TE01) are shown with stars on the complex
plane. The field profiles are also included: color represents
the only nonzero component of the polarization current, J ≡
Jzẑ = iωε0(εr − 1)Ezẑ, while arrows represent the magnetic
field which lies in the xy plane. TE00 is the lowest order
mode (zero order azimuthal and radial variation) and, as an
electric dipole mode, is characterized by the highest radiation
losses (highest imaginary part of the resonant frequency).
Next in ascending frequency, at f10 = (2.183,0.07) THz,
lies the TE10 mode, which constitutes the basic element for
building toroidal collective modes in the N > 1 systems.
This mode is of magnetic dipole nature: The current forms
a loop (closes through infinity), inducing a magnetic moment
which for the orientation in Fig. 2 (arbitrary due to cylindrical
symmetry) is along the y axis. The free-space wavelength at
the resonance, λ10 = 137.4 μm, is much larger than the radius
of the rod R = 8 μm (∼λ10/17); a consequence of the high rod
permittivity. The quality factor is low, Q10 = �{f }/2�{f } ∼
15, indicating high radiation leakage. The field profile of the
three nonzero components {Ez,Hr,Hφ} for r > R is given by
(constants aside){

iH
(1)
1 (kr) sin(φ),

H
(1)
1 (kr)

r
cos(φ),H (1)′

1 (kr) sin(φ)

}
, (2)

with Bessel functions taking the place of Hankel functions for
r < R. Note the faster radial decay and the distinct azimuthal
variation of Hr . In the spectral neighborhood of the magnetic
dipole we also find the TE20 and TE01 modes. In parallel to
the analytic solution, and having in mind the investigation of
the N > 1 systems, we perform eigenvalue analysis with the
commercial software COMSOL Multiphysics R© [43] imple-
menting the full-wave vectorial finite element method (FEM),
which determines the complex eigenfrequency and field profile
of each mode.

Having obtained the field distribution, we determine the
dominant multipole moment for each mode. We calculate the
multipole moments by integrating the polarization currents J
with the use of the corresponding expressions to be found in
Ref. [31]. For convenience we repeat here the toroidal dipole
moment expression:

T = 1

10c

∫
d3r[(r · J) · r − 2r2J], (3)

where c is the speed of light.
The dominant multipole moments of the single cylinder

eigenmodes shown in Fig. 2 verify their electromagnetic nature
imprinted in the field distribution. The fundamental TE00 mode
has a strong electric dipole moment component p, TE10 is
characterized by a dominant magnetic dipole moment m, and
TE20 has a strong magnetic quadrupole moment Q(m). Finally,
the TE01 mode has a dominant toroidal dipole moment T,
which is intuitively expected given the formation of poloidal
currents (inward and outward counterpropagating currents
shown in Fig. 2). Toroidal dipole excitations related to modes
of the TE01 type are discussed in Ref. [38].

III. TWO-ROD SYSTEM: INTERPRETATION OF
COLLECTIVE MODE EVOLUTION WITH

ROD SEPARATION

The TE10 mode supported by a single polaritonic rod is
the building block for the formation of the toroidal mode in
Ref. [36]. Obviously, ensembles of any number of polaritonic
rods in a regular polygon arrangement can also foster toroidal
modes. We begin by investigating the TE10 collective modes
in the simplest case of the two-rod system, N = 2. This way
we can focus on understanding and physically interpreting
the evolution of collective mode frequencies with separation
distance. To this end, we complement the FEM simulations
with a coupled mode theory (CMT) approach and a lumped
wire model (WM), providing valuable physical insight.

The two-rod system supports four TE10 collective modes,
two consisting of x-oriented (i.e. along the line connecting the
centers of the two rods) local TE10 modes and two consisting
of y-oriented local TE10 modes (mode orientation is associated
with the direction of the magnetic dipole moment). We first
focus on the x-oriented collective modes: Figure 3(a) depicts
the evolution of the resonant frequencies with rod separation
for both even and odd collective modes. The same is done in
Fig. 3(c) for the quality factor. The field profiles of the two
collective modes are depicted in Fig. 3(b) for a structure with
rod separation s = 21 μm. Clearly, the mode in the upper panel
is odd (antisymmetric) with respect to the yz mirror plane of
the structure, whereas the mode in the lower panel is even
(symmetric). Note that the even collective mode resembles a
magnetic dipole with a net moment along the x axis, whereas
the odd collective mode has a zero net dipole moment but
strong quadrupole moment.

As anticipated, coupling results in frequency splitting, i.e.,
two collective modes with frequencies above and below the
isolated-rod frequency f10, respectively. What is interesting is
that the odd (even) mode does not remain strictly above (below)
f10. Rather, the resonant frequencies oscillate (in this case
symmetrically) about f10. In fact, the shape of the oscillation
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FIG. 3. Results for x-oriented TE10 collective modes of two-rod structure: (a) Evolution of resonant frequencies with rod separation s. The
oscillation about f10 is symmetric. The full-wave numerical solution can be accurately recovered with the coupled mode theory (CMT) and
reproduced with the wire model (WM). (b) Polarization current (color) and magnetic field distribution (arrows, logarithmic scale) for the two
modes at s = 21 μm. (c) Quality factor evolution with rod separation.

can be described quite accurately by Y1(2πs/λ10)/s. This is
consistent with Ref. [44]: The propagating state mediating the
coupling in our case is the radiation leakage of the modes
themselves, described by Eq. (2). Since it is only Hr that is
nonzero along the coupling direction for this specific local
dipole orientation, a translation operation along x primarily
results in a scaling of the resonator coupling coefficient with
H

(1)
1 (kr)/r . Naturally, the imaginary part of this coupling

coefficient can be associated with the collective mode resonant
frequency (whereas the real part with �{f }) explaining the
Y1(2πs/λ10)/s variation. The intersections fe = fo (e for
even, o for odd) where frequency splitting vanishes are clearly
marked in Fig. 3(a). They are seen to nicely correspond to the
zeros of the Y1(2πs/λ10) function (s/λ10 = 0.35,0.86,1.37).
Note that intersections occur at f10, i.e., it holds fe = fo = f10.
Finally, the decay of the oscillation is physically anticipated,
since power density decreases with separation and, thus,
coupling becomes weaker. There is also quality factor splitting,
Fig. 3(d), originating from the fact that isolated modes couple
in the far field as well, leading to constructive or destructive
interference of the radiated fields [45]. The shape of the �{f }
oscillation (not shown) can be described by J1(2πs/λ10)/s.
This is manifested in the quality factor by the intersections
Qe = Qo which occur at the zeros of the J1(2πs/λ10) function
(s/λ10 = 0.61,1.12). Again, it holds Qe = Qo = Q10 ∼ 15.

The full-wave results can be accurately reproduced with
a CMT framework [46,47] which amounts to substituting a
linear combination of the isolated rod modes in the frequency-
squared functional of the two-rod system and minimizing (in
direct analogy with the LCAO method). Details regarding the
formulation can be found in Appendix A. The results are
shown in Figs. 3(a) and 3(c) with circular markers. Clearly,
the agreement with the full-wave simulations of the coupled
system is exceptionally good corroborating the validity of the
results.

We now return to the oscillations of the collective mode
frequencies about f10 with increasing s, which is an atypical
and initially counterintuitive result. It can be explained by the
fact that the two isolated-rod modes forming the collective
mode are leaky. As a result, their coupling is mediated by

oscillating field tails instead of evanescent ones (which is
the case for bound waveguide modes in electromagnetics or
wave functions in quantum mechanics). This claim can be
further corroborated by turning to CMT. More specifically,
the cross term of the coupling matrix which is responsible
for frequency splitting (see Appendix A) acquires positive or
negative values depending on rod separation. Being an overlap
integral of the two isolated-rod mode profiles over one rod’s
cross section, this is only possible when oscillating mode tails
are involved, not evanescent ones. As mentioned, the periodic
oscillation of fe and fo about f10 with a shape determined
by the propagating state mediating resonator coupling has
also been noted in the context of guided-wave photonic
circuits [44].

The collective modes of y-oriented TE10 local modes are
examined in Fig. 4. The field distribution of both odd and
even modes for a separation distance s = 21 μm are presented
as insets. The even collective mode, red line in Fig. 4(a), is
characterized by the presence of polarization currents that
oscillate in the inward and outward parts of each rod with
opposite directions. These currents produce a vortex of the
magnetic field that threads both current loops and corresponds
to a precursor of the toroidal dipole mode which will be
thoroughly discussed in Sec. IV. In Fig. 4(a) we observe
that unlike the x-orientation case, the oscillations about f10

are highly asymmetric, of larger amplitude, and with steep
transitions between the local minima and maxima for both
even and odd collective modes. This behavior can be explained
as follows: In the case of y orientation the maximum of
the radiation pattern is towards the adjacent rod. This leads
to the deformation of the polarization current distribution
within the rods, significantly affecting the resonant frequencies
of the collective modes. The phenomenon is analogous to
the charge redistribution within each atom which leads to
induced dipole moments and the van der Waals interaction. An
inset in Fig. 4(a) presents the distribution of the polarization
current in the rods at points 1, 2, and 3 marked along the
red curve (given the symmetry of the fields, only one rod is
presented). The local dipoles in the coupled system are most
significantly deformed at points 1 and 3 where the resonant
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FIG. 4. Results for y-oriented TE10 collective modes of two-rod structure: (a) Evolution of frequencies with rod separation s. The field
profiles are shown as insets for a rod separation of 21 μm (color: Jz, arrows: magnetic field). The oscillation about f10 is highly asymmetric.
This is attributed to current redistribution within each rod due to coupling as shown in the inset depicting the distribution of the polarization
current at points 1, 2, and 3 marked on the red curve. All features observed can be successfully reproduced with a lumped wire model (see text
for details), the results of which are shown with dashed curves in Fig. 4(a). (b) Ratio of currents I1 : I2 [see inset for definition] determined
by the four wire model as a function of s. The current ratio oscillates about unity in an asymmetric fashion similar to that in (a). The current
values for points 1–3 on the even solution are included as insets.

frequency is farthest away from f10. In contrast, at point 2
where f = f10 the local dipole modes are almost perfectly
symmetric.

Although this highly asymmetric oscillation cannot be
described with a closed-form function as in the x orientation,
the intersections fe = fo still correspond to the zeros of
J1(2πs/λ10), s/λ10 = 0.61,1.12, as one would anticipate
given that it is now Ez that mainly mediates resonator coupling,
see Eq. (2). This time, the collective mode frequencies at the
intersections are not exactly equal to f10. At the intersection
points the current distribution in each rod is almost, but not
exactly, symmetric. This small asymmetry, as opposed to
the perfect symmetry in an isolated rod, accounts for the
small difference between fe = fo and f10. In other words,
the self-effect known as coupling induced frequency shift
(CIFS) [47], quantified by the main diagonal elements of the
coupling matrix in the CMT framework, is not as weak and
becomes noticeable when frequency splitting vanishes.

CMT is not capable of accurately recovering the collective
mode frequencies in this case, since it cannot account for
current deformation: The collective modes are built directly
from the isolated, perfectly symmetric TE10 modes. However,
the features observed in Fig. 4(a) can be successfully repro-
duced by making use of a simple lumped wire model (see
Appendix B for details), capable of reproducing the fact that
up and down currents in each rod are not in general equal. More
specifically, the current distribution in each rod is described
with a pair of current-carrying thin wires as shown in the
schematic inset of Fig. 4(b). The distance between the two
wires within each rod was kept constant at 7 μm as it has
been found to effectively reproduce the TE10 modes under

consideration. Having two degrees of freedom for each rod we
can effectively allow for mode deformation. For the two-rod
structure, a 4 × 4 eigenvalue problem is formulated, which can
be solved to produce four eigenvalues Z and four eigenvectors
I for each value of separation distance s. The eigenvalues Z

correspond to the collective impedance in each wire and the
eigenvectors I to the currents in the wires. The imaginary part
of the impedance is proportional to the resonant frequency of
the system (the real part accounts for losses and can thus be
associated with the imaginary part of the resonant frequency),
whereas the current vector describes current redistribution.
Two of the four solutions obtained correspond to the y-oriented
odd and even collective modes. The imaginary part of the
normalized eigenvalues Z/Z10 is plotted in Fig. 4(a) with
dashed lines. The eigenvalue Z10 corresponds to a single pair
of wires at a distance equal to 7 μm, i.e., the isolated-rod
TE10 mode. The results are found to successfully reproduce
the features of the collective mode frequency evolution.

The deformation of the local dipoles is manifested in
the ratio I1 : I2 (or, equivalently, I3 : I4) of the further-away
currents to the nearby currents [see insets in Fig. 4(b)]. This
ratio is plotted versus the separation distance s in Fig. 4(b).
Just like the collective mode frequencies, it oscillates around
unity in a similarly asymmetric fashion. The amplitudes of the
four currents for points 1, 2, and 3 on the even branch are
also included as insets. Just like the eigenmode polarization
currents [insets in Fig. 4(a)] the lumped wire currents are most
significantly deformed at points 1 and 3 where the imaginary
part of the normalized eigenvalue Z/Z10 is furthest away from
unity. In contrast, at point 2 where �{Z} ∼ �{Z10} the inside
and outside currents are equal in amplitude.
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FIG. 5. (a) TE10 collective modes supported by the three-rod cyclic metamolecule with a rod separation of 21 μm as obtained by the
accurate full wave numerical calculation. Color shows the current distribution and arrows the magnetic field. They are numbered according to
their resonant frequency in ascending order. (b) Toroidal dipole moment Tz, magnetic dipole moments mx and my , and quadrupole magnetic
moments Q(m)

yx and Q(m)
yy (absolute values) for each of the six modes A to F of Fig. 5(a). The moments are shown normalized to the maximum

value within each panel.

We conclude that when collective modes of leaky resonant
modes are concerned, irrespective of the symmetry (even or
odd with respect to the mirror planes of the structure), each
collective mode can be found on either side of f10 depending
on the rod distance. In addition, depending on the radiation
pattern the fields of each resonator can significantly disturb
each other leading to asymmetric oscillations of the resonant
frequencies about f10 with large amplitudes.

IV. MANY-ROD CYCLIC METAMOLECULES

We turn now to the study of many-rod cyclic meta-
molecules. In each case we solve for the TE10-based collective
modes and examine their evolution with rod separation. We
are particularly interested in identifying the toroidal mode
supported by such systems and in determining the conditions
for spectrally separating it from its neighbors.

A. Three-rod cyclic metamolecule

The three-rod metamolecule supports six TE10 collec-
tive modes. Their profiles are depicted in Fig. 5(a) for a
configuration with a rod separation s = 21 μm (s/λ10 ∼
0.15). Color corresponds to Jz (the sole component of the
polarization current) and arrows correspond to the magnetic
field (logarithmic scale). The logarithmic scale helps to better
convey the direction of the magnetic field. The collective
modes are ordered according to their resonant frequency (real
part) in ascending order. Modes B and C and modes D and
E, respectively, have the same resonant frequency, i.e., they

are degenerate. Figure 5(b) presents the calculated absolute
values of the relevant multipole moments and in particular the
toroidal dipole moment Tz, the magnetic dipole moments mx

and my , and quadrupole magnetic moments Q(m)
yx and Q(m)

yy for
each of the six collective modes. The moments are calculated
by integrating each eigenmode current distribution using the
suitable formulas found in Ref. [31]. In order to provide a fair
comparison between the collective modes, we normalize each
current distribution with the square root of the stored electric
energy in the corresponding eigenmode.

Clearly the fields in each rod closely resemble the TE10

mode of the single rod (properly rotated depending on
the specific mode), as one would anticipate for TE10-based
collective modes. Note that all collective modes in Fig. 5(a)
involve strong interaction between the constituent modes as
evidenced by the directions of the respective E-field maxima.
In fact, these interactions result in the deformation of the
local currents, as discussed in Sec. III. Depending on the
coupling strength, the local current deformation may give
rise to a nonzero total current in each rod and hence to a
nonzero electric dipole moment, which would otherwise be
zero due to the perfectly antisymmetric current distribution
in the TE10 isolated-rod mode. Mode A is the toroidal mode
supported by the structure. Its distinct trademark is the ringlike
structure of the magnetic field threading all three current loops.
This conclusion is rigorously proven by the results shown in
Fig. 5(b) according to which mode A consists exclusively
of the toroidal dipole moment (and a nonresonant electric
dipole moment appearing only when the net current in the
metamolecule is nonzero). Notice that the coexistence of both
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FIG. 6. (a),(b) Mode frequencies and quality factors as a function of rod separation for the six collective modes in the N = 3 system. Curve
colors correspond to the frames surrounding the mode distributions in Fig. 5(a). (c) Evolution of the lower branch of toroidal nature into a TE00

collective mode with increasing s. Points 1–3 are clearly marked in Fig. 2(a). (d) Evolution of the upper branch (a kind of spatially diffused
toroidal mode) into a TE01 collective mode with decreasing s. (e) Comparison of field distributions for points 2 and 4 (s = 80 μm) belonging
to different branches of mode A [see Fig. 5(a)]. The magnetic fields of local dipoles can connect with each other producing a stretched toroidal
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toroidal and electric dipole moments provides the possibility
of mutual cancellation of their fields outside the source region
(by adjusting their magnitude and phase) and therefore of
extremely high Q factors. The current distribution of modes
B and C corresponds to magnetic quadrupole moments, an
observation verified by the dominant Q(m)

yx and Q(m)
yy values.

Moreover, the three local magnetic dipoles only partially
cancel each other producing nonzero net dipole magnetic
moments (directed along x and y, respectively) also imprinted
in the nonzero values of mx and my ; for this reason along with
the term quadrupole we also use the term partial magnetic
dipole. In modes D and E, all three local magnetic dipole
moments combine in a net moment m, which is parallel to the
x or y axis, respectively, also proven by the high mx and my

values. Finally, in mode F the values of the above moments
are insignificant. Mode F seems to radiate its magnetic field
radially (the magnetic lines of course return back). Based on
this phenomenological observation and in order to preserve a
consistency in the terminology of all the N -rod systems under
consideration, we term this type of mode hereinafter magnetic
pseudomonopole. Nonetheless we mention that in the case
of N = 3 the pseudomonopole exhibits a nonzero magnetic
octupole moment O(m)

yxx , also marked in the deduced radiation

pattern. Concluding the characterization of the modes, it
should be stressed here that obviously in a scattering scenario,
depending on the specific excitation (direction of incidence,
phase front, etc.) the contribution of each moment to the
scattered power is expected to vary.

The evolution of the collective mode frequencies with rod
separation is depicted in Fig. 6(a). In agreement with the
behavior of the two-rod structure, each collective mode can
cross to the other side of the TE10 resonant frequency f10

as rod separation increases. The unique feature in this case
is that mode A [red line in Figs. 6(a) and 6(b)] consists
of two disconnected branches. The lower branch is a true
toroidal mode at small separations and evolves into a TE00

collective mode for large separations. This can be verified
by observing Fig. 6(c), which demonstrates that the field
inside the rods is progressively deformed until the first-order
azimuthal variation vanishes. The upper branch is a kind of
spatially diffused toroidal mode for large s [see Figs. 6(e)
and 6(f)] and evolves into a TE01 collective mode as separation
decreases, Fig. 6(a). Notice in Fig. 6(d) how the first-order
azimuthal variation gradually gives its place to a first-order
radial variation. This transformation to collective modes based
on other than the TE10 single-rod mode is to be expected when
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the frequencies of the TE10-based collective modes approach
the frequencies of other single-rod modes. Note that in the
N = 3 structure frequency splitting is stronger compared to
the two-rod structure (compare maximum deviation from f10

in Fig. 6 and Figs. 3 and 4, respectively). In fact, considering
the high imaginary part of the TE00 and TE01 modes (Fig. 2),
the corresponding collective modes are expected to deviate
even more significantly from f00 = 0.72 THz and f01 =
3.67 THz, respectively (Fig. 2). As a result, the evolution
of a TE10 collective mode into a TE00/TE01 collective mode
becomes possible, something that was not witnessed in
the N = 2 structure. Obviously, coupling mode theory can
describe this phenomenon only if the scheme includes (besides
the TE10) the TE00 and TE01 modes for each rod. The lumped
wire model can qualitatively reproduce this feature.

It is also important to note the different characteristics of
the magnetic field distribution for points 2 and 4 in Fig. 6(a)
which share the same s value (80 μm) but belong to different
branches of collective mode A. They are highlighted in
Fig. 6(e). The magnetic fields of local dipoles in point 2 (lower
branch) connect with each other forming a unidirectional
magnetic field vortex threading the current loops in each rod,
characteristic of a toroidal mode. On the other hand, in point
4 the magnetic field forms again broad and spatially diffused
closed loops which, however, avoid the rods which form local
dipoles. The above observation holds for the entire upper and
lower branch as illustrated in Fig. 6(f) where the magnetic field
lines are compared for two different points on the lower (s =
25 μm) and upper (s = 90 μm) branch of collective mode A.
In the lower branch, the magnetic field lines pass through the
rods threading the current loops, whereas on the upper branch
they bypass them. To emphasize this qualitative difference the
lower branch is indicated in Figs. 6(a) and 6(b) with a contin-
uous line, while the upper one is shown with a dashed line.

The evolution of the collective mode quality factors
with rod separation is depicted in Fig. 6(b). Importantly,
the toroidal mode possesses a relatively low quality factor,
indicating strong coupling to plane waves which favors its
excitation/detection. Especially for s < 30 μm its quality
factor is the lowest among all collective modes. A local
maximum is observed at s = 55 μm (s/λ10 ∼ 0.4). At this
point the magnetic field torus is least connected since the
magnetic field is mainly localized inside the rods. The insets
in Fig. 6(b) demonstrate this weakening of the magnetic
field torus. A second observation is that the quality factor
of mode B (the neighbor of the toroidal) shown in light blue
decreases with rod separation. Therefore, the linewidth of the
resonance (quantified by the half power bandwidth, HPBW)
increases, something that affects the spectral isolation of the
toroidal mode. This will be examined in detail in Sec. IV C.
Finally, although the two branches of the toroidal mode are
disconnected, if we wanted to define a transition point between
them this could be where the quality factor curves (red and
blue) intersect. In fact, this happens at a normalized rod
separation of ∼0.62 (s = 85 μm), consistent with the first
zero of the J1(2πs/λ10) function.

B. Four-rod cyclic metamolecule

Turning to the four-rod metamolecule we find eight TE10

collective modes. Their field profiles are depicted in Fig. 7(a)
for a configuration with s = 21 μm. They appear according
to their resonant frequency (real part) in ascending order.
Note that modes C & D and modes E & F, respectively,
are degenerate. Importantly, the neighbor of the toroidal
(mode B) is not doubly degenerate as in the three-rod
structure. As will be shown in detail in Sec. IV C, this is a
distinct difference between even-numbered and odd-numbered
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FIG. 7. (a) TE10 collective modes supported by the four-rod cyclic metamolecule with a rod separation of 21 μm as obtained by the
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systems and affects the spectral isolation of the toroidal
mode. The absolute value of the relevant multipole moments
(toroidal dipole, magnetic dipole, and magnetic quadrupole
moment) for each mode is presented in Fig. 8(b). Regarding
mode characteristics, mode A (the lowest-frequency TE10

collective mode for small separations) is the toroidal mode
of the structure, exhibiting a large toroidal moment Tz. It also
features the lowest quality factor among all collective modes
for small separations, indicating strong coupling to plane
waves. The excitation of the toroidal dipole in a four-rod-based
metamaterial has been thoroughly discussed in Ref. [36]. The
toroidal mode appears in the relevant scattering numerical
experiment, and at the same time its critical contribution to
the multipole decomposition is demonstrated. Modes B and
G are clearly magnetic quadrupoles verified both by the field
distribution and by their large magnetic quadrupole moments
Q(m)

yx and Q(m)
yy , respectively. Modes C and D have a nonzero

net magnetic moment also evident in the increased values
of mx and my and are termed partial magnetic dipoles. In
modes E and F all local moments are aligned giving rise
to a strong net dipole moment with a clear direction which
is also reflected in the large dipole moments mx and my in
Fig. 7(b); they are, thus, termed magnetic dipoles. Finally,
as in the three-rod structure, the highest-frequency collective
mode for small separations (mode H) is phenomenologically
termed a magnetic pseudomonopole.

The evolution of collective mode frequencies with rod
separation is depicted in Fig. 8. The behavior is entirely
analogous to the three-rod case [cf. Fig. 6(a)]. Mode A consists
of two disconnected branches. The lower branch is of toroidal
nature and evolves into a TE00-based collective mode for large
separations. On the other hand, the upper branch is a spatially
diffused toroidal mode (indicated with a dashed line) with
the magnetic field lines bypassing the rods, as in Fig. 6(f).
It evolves into a TE01-based collective mode as separation
decreases. The main difference with the three-rod structure is
that the toroidal mode is not well separated from its neighbor
[light blue line in Fig. 8] for small s values. The two modes start
separating for s > 60 μm, where mode A has already begun
evolving into a TE00-based collective mode and where the

resonance linewidth of mode B is quite wide [see Fig. 9(b)]. As
a result, exciting the mode A without exciting mode B as well
seems challenging. This indicates that the three-rod structure
can provide better toroidal-dominated response compared to
the one observed for the four-rod structure in Ref. [36].

C. Toroidal dipole: Spectral isolation in N = 3–8 cyclic
metamolecules

Having systematically identified the TE10 collective modes
and their various features for systems of N = 3,4 rods, we are
now interested in the structure that provides the highest degree
of spectral isolation for the toroidal mode, something that is
expected to facilitate its unambiguous excitation/detection. To
this end, we examine structures with N = 3–8 and compare
them on this basis. We find that odd-numbered structures
are advantageous (something already indicated by the three-
and four-rod structures, Secs. IV A and IV B). A physical
interpretation for this feature is provided below. Figure 9
depicts the resonant frequency evolution of the toroidal mode
(red curves) and its closest neighbor (blue curves) for N = 3–8
systems in the rod separation range 17 μm < s < 80 μm. In
order to investigate the spectral isolation of the toroidal mode,
apart from the central frequencies we also need the resonance
linewidths of the neighbor and the toroidal. Thus, we also plot
the half-power bandwidth (HPBW), �f3dB = f/Q (shaded
areas). In all cases, for small rod separation values the HPBW
of the toroidal mode is significant, of the order of 200 GHz;
for larger separation values it decreases. That is the toroidal
response is expected to be wideband for small rod separation
and narrowband for large rod separation. On the contrary the
neighbor mode exhibits low HPBW, of the order of a few GHz,
for small separation values and increases as rod separation
becomes larger. This is a feature that may further contribute to
the identification of the toroidal mode.

We now focus on the N = 3 and N = 4 case presented in
Figs. 9(a) and 9(b). In the N = 3 system, closest to the toroidal
mode lies the quadrupole/partial magnetic dipole shown in
Fig. 6(a) (mode B). As is evident in Fig. 9(a), the two modes
are farthest away for s < 25 μm and 60 μm < s < 80 μm.
In the intermediate region the two resonances significantly
overlap. Exploiting the 60 μm < s < 80 μm region is not a
favorable option since the toroidal mode has already begun
evolving into a TE00 collective mode. In addition, the HPBW of
the neighboring mode is significantly increased. The optimum
operating point is, thus, smin = 17 μm where the quality factor
of the second mode is maximum leading to a resonance span
of only 20 GHz, much smaller than the frequency distance of
127 GHz separating the two modes.

The N = 4 system is examined in Fig. 9(b). This time
the neighbor of the toroidal mode is the quadrupole shown
in Fig. 8(a) (mode B). As already noted in Sec. IV B the
two modes are not well separated for small s values. In
particular, for smin = 17 μm the spectral separation of the
central resonances is only 35 GHz. Although the resonance
linewidth of the second mode is narrow, exciting the toroidal
mode alone would be challenging. For greater separation
values the behavior of the system is similar to the N = 3 case
with the two resonances overlapping for separation values up to
60 μm. The spectral isolation increases only after the toroidal
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mode has entered the TE10-to-TE00 collective mode transition
phase.

Moving on to systems with N > 4 we find that spectral
isolation is enhanced (at the cost of a larger metamolecule).
Interestingly, the advantage of the N = 3 compared to the
N = 4 system is generally observed when comparing N =
2n − 1 with N = 2n systems. In particular, we compare the
first row in Fig. 9 examining odd-numbered systems with
the second row of Fig. 9 examining even-numbered systems.
Systems with N = 3,5,7 exhibit systematically higher spectral
isolation for the toroidal mode compared with N = 4,6,8
systems: The frequency distances between the toroidal mode
and its neighbor at smin = 17 μm are {127, 35, 180, 100, 193,
140} GHz for N = 3–8, respectively. This behavior is at-
tributed to the characteristics of the mode close to the toroidal.
To better demonstrate this, we present in Fig. 10 a comparison
of selected TE10 collective modes for the N = 7 and N = 8
systems. Figures 10(a)–10(d) depict four characteristic modes
of the N = 8 system in ascending resonance frequency and
for a rod separation of s = 21 μm. They are formed by
an azimuthal or radial arrangement of the local magnetic
dipoles with fixed or alternating directions. The corresponding
modes of the N = 7 system are depicted in Figs. 10(e)–10(h).
Modes (a), (e) are the toroidal modes of the systems and modes
(b), (f) their respective (partial) magnetic polypole neighbors.
We are interested in determining why (e) is more separated
from (f) than (a) from (b). Focusing on the N = 8 case, we
note that modes (b) and (d) are characterized by a radial
arrangement of the local dipoles with alternating and fixed
directions, respectively. In mode (b) (alternating local moment
directions) the nearby currents in adjacent rods are of the same
sign, and the electric field experiences a variation with N = 8
zeros along the fictitious circumference connecting the rod

axes. On the other hand, in mode (d) the nearby currents
in the adjacent rods are of opposite sign and the number of
the zeros is 2N = 16, explaining the higher frequency of
mode (d): 2.663 vs 2.059 THz. In the N = 7 system, mode
(f) [corresponding to mode type (b) of the 8-rod system] is
not so well defined. In particular, mode (f) fails to fulfill the
type (b) distribution, since the alternating direction pattern
is not commensurate with the odd number of rods. Instead,
mode (f) emerges as a hybridization of mode type (b) with
mode type (d), and the number of zeros is N + 1 = 7 + 1 = 8
[the current distribution is shown saturated in the inset of
Fig. 10(f) to better illustrate this fact]. This results in an
increase of its resonant frequency [recall that mode type (d)
features a faster variation along the circumference], leading
to a larger frequency separation from the toroidal mode. This
also explains why the advantage of odd-numbered systems
diminishes as N increases: The characteristics of mode type (d)
are inherited for only one pair of adjacent rods meaning that the
bump in frequency becomes less pronounced as N increases.
Note, finally, that the second partial magnetic polypole of the
N = 7 system, shown in Fig. 10(g), emerges in a similar
manner as a hybridization of mode types (a) and (c) which
results in a decrease of its resonant frequency.

D. Cyclic metamolecules of elliptical rods

In the expectation of a toroidal mode closer to the ideal
one, we investigate finally the case of cyclic metamolecules
made of elliptical rods of equal cross-sectional area to
the circular ones. In particular, we investigate the toroidal
mode supported by a six-elliptical-rod metamolecule and
compare it with that of the circular-rod counterpart, Fig. 11.
The radius of the metamolecule is constant throughout and
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equal to 25 μm (the corresponding rod separation is also
25 μm), and the eccentricity e of the elliptical rods in
Figs. 11(a) and 11(c) is equal to e = 0.9. The magnetic field
lines and magnetic field distribution (color) for the toroidal
mode are presented for three distinctive cases. In Fig. 11(a)
the elliptical rods are arranged with their major axes along
the azimuthal direction; in Fig. 11(b) the rods are of circular
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radial direction. The eccentricity of the ellipse is equal to e = 0.9, and
the radius of the metamolecules is equal to 25 μm. (d) Dependence of
the single-rod TE10 resonant frequency on the eccentricity. Frequency
splitting for the x-(blue curve) and the y-oriented (green curve)
magnetic dipoles as shown in Fig. 11(e). (e) Polarization current
distribution of the x- and y-oriented magnetic dipoles.

cross section and in Fig. 11(c) the elliptical rods are arranged
with their major axes along the radial direction. Comparing the
field distribution in Figs. 11(a) and 11(b), we observe that the
confinement of the magnetic field lines in the elliptical rods
with the azimuthal arrangement is enhanced; this implies the
formation of better-defined toroidal modes. On the contrary,
in the case of the radial arrangement, Fig. 11(c), the magnetic
field lines escape the characteristic path of the torus leading
to poorly-defined toroidal modes. It is also interesting to note
that the resonant frequency of the toroidal mode for the three
systems is very different: 2.57, 2.03, and 1.61 THz for cases
(a)–(c), respectively. This is due to the fact that the toroidal
mode is formed by different single-rod TE10 modes as a result
of the cylindrical symmetry breaking lifting the degeneracy.
Indeed, the ellipse supports two TE10 magnetic dipole modes
with different resonant frequencies: one with the magnetic
moment along the major axis (x orientation) and the other
along the minor axis (y orientation) [the distribution of the
corresponding currents for e = 0.9 are depicted in Fig. 11(e)].
Figure 11(d) shows the evolution of the resonant frequencies
for the x-oriented (blue curve) and y-oriented (green curve)
TE10 modes with respect to the ellipse eccentricity. Actually,
the x-oriented TE10 mode is expected to be close but higher
than the mode in a slab of thickness equal to the minor
axis of the ellipse and length equal to the major axes of
the ellipse. In particular for the case of eccentricity equal to
e = 0.9, the ratio between the x-oriented TE10 resonance in the
ellipse and the corresponding resonance of a slab with cross
section that encloses the ellipse (circumscribed rectangle) is
2.77 THz : 2.49 THz. The toroidal of Fig. 11(a) is formed by
x-oriented magnetic dipoles which explains its high frequency;
in analogy, the low frequency toroidal mode, Fig. 11(c), is
formed by y dipoles. It is important to stress here that the
toroidal spectral isolation is compromised in the elliptical rods
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metamolecules; this is due to the frequency splitting of the
isolated rod modes. Similarly to the TE10 magnetic dipole in
the ellipse, we also expect frequency splitting of the lower and
higher order neighbor modes (e.g., of the type TE00, TE01, and
TE20 seen in Fig. 2). This frequency splitting is expected to
lead to a higher spectral overlap between the collective modes
in the many-elliptical rod metamolecules.

V. CONCLUSION

We have presented a thorough investigation of the electro-
magnetic resonant modes supported by cyclic metamolecules
of N = 2 to 8 polaritonic rods. We have focused our study
on TE10-based collective modes since the TE10 mode is the
building block for the formation of the peculiar toroidal dipole.
In each system, we have identified the toroidal mode [both by
the distribution of the fields and the explicit calculation of
the toroidal dipole moment as defined by Eq. (3)] and those
lying in its spectral neighborhood, and we have investigated
the features of the resonances with varying rod separation. We
have conducted the analysis with finite-element eigenvalue
simulations, and the results have been complemented with
coupled mode theory and a lumped wire model capturing the
coupling-caused reorganizations of the currents in each rod in
analogy with the reorganization of the charges in each atom
within the framework of the LCAO in molecular and solid state
physics. We found that the collective mode eigenfrequencies
oscillate about the single-rod magnetic dipole resonance, a
feature attributed to the leaky nature of the constituent modes.
We have also shown that metamolecules with an odd number of
rods exhibit enhanced spectral isolation for the toroidal mode;
along with its leaky nature this can lead to configurations
that favor the unambiguous excitation and detection of the
unconventional toroidal response.
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APPENDIX A: COUPLED MODE THEORY FRAMEWORK

The framework used is based on Refs. [46,47]. We briefly
outline the formulation to highlight the points requiring
attention. The modes of the N -rod structure can be specified
by finding the extrema of the functional

ω2 =

∫
∇ × H · ε̃−1∇ × H d�̃∫

H · μ̃ H d�̃

, (A1)

where ε̃ and μ̃ are tensors for the general case of anisotropic
materials. This functional is found by dot multiplying the
H -field vector-wave equation with H (unconjugated to allow
for leaky modes) and integrating. Using the magnetic field
as the working variable is important as will be shown in the

next paragraph. The form of Eq. (A1) is reached only when
the boundary term

∮
H · (n̂ × ε̃−1∇ × H) d	 which arises is

zero. In open, leaky systems this is handled by surrounding the
structure with perfectly matched layers (PMLs) backed with
a PEC/PMC boundary condition. For stretched-coordinate
PMLs, integration in Eq. (A1) extends in the complex plane,
denoted by d�̃. Including the PML in the integration domain
also provides a means of compensating for the exponential
divergence observed in the field profile of complex-frequency
eigenmodes [48].

Next, we suppose that the supermodes supported by the
structure can be expressed as a linear combination of the N

isolated-rod modes H = ∑N
i=1 aiHi . In other words, we as-

sume that coupling does not significantly perturb the individual
modes comprising the supermode. Using the magnetic field in
the expansion [and the corresponding version of the functional,
Eq. (A1)] is crucial in order for the supermode trial function to
satisfy the divergence condition ∇ · D = 0 [49]. If the electric
field is instead used then ∇ · ε̃E = ∑N

i=1 ai∇ · δ̃εiEi 	= 0,
where ε̃ ≡ ε̃i + δ̃εi . Obviously, each mode Hi satisfies a vector
wave equation of its own. Taking the inner product with Hj

and omitting the boundary term (zero due to the use of PMLs)
we can write∫

∇ × Hj · ε̃−1
i ∇ × Hi d�̃ = ω2

i

∫
Hj · μ̃iHi d�̃. (A2)

The linear combination is substituted in Eq. (A1) which
can be written in matrix form (uppercase italic bold symbols
indicate N × N matrices, whereas lowercase italic bold
symbols indicate N × 1 vectors):

ω2 = aT K a
aT W a

, (A3)

where

Kij ≡
∫

∇ × Hi · ε̃−1∇ × Hj d�̃, (A4a)

Wij ≡
∫

Hi · μ̃ Hj d�̃. (A4b)

Differentiating the right-hand side of Eq. (A3) with respect
to the complex ai as shown in Ref. [46], we reach

K a − ω2W a = 0. (A5)

Importantly, the supermode frequencies can be directly deter-
mined form solving Eq. (A5) which amounts to finding the
eigenvalues of the W−1 K matrix (and taking the square root).
There is no need to first derive a temporal CMT equation
(see Refs. [46,47]), something which entails the assumption
that all supermode frequencies cluster around a typical value
ω0 making it more approximate. Note that for evaluating
the K matrix it is necessary to make use of Eq. (A2). This
permits us to incorporate in the formulation the zeroing of the
boundary term for each constituent mode, as we did for the
entire supermode in the process of reaching Eq. (A1). To this
end, we introduce in Eq. (A4a) the perturbations to individual
permittivity distributions ε̃−1 ≡ ε̃−1

j + �̃ε
−1
j and use Eq. (A2)
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FIG. 12. TE10 magnetic dipole mode: Schematic for the descrip-
tion of the lumped wire pair equivalent.

to arrive at

Kij = ω2
j

∫
Hi · μ̃j Hj d�̃ − ωiωj

∫
Di · �̃ε

−1
j Dj d�̃,

= Wijω
2
j − 2ωiMijωj . (A6)

Matrix M in Eq. (A6) is responsible for mode coupling. Note
that integration is restricted to regions where �̃ε

−1
j is nonzero.

The off-diagonal elements (i 	= j ) describe resonator-to-
resonator coupling (frequency splitting), whereas the elements
on the main diagonal (i = j ) represent CIFS [47], i.e., the
modification of the isolated-rod frequencies due to the index
perturbations experienced by their own field profiles. In the
case of evanescent coupling, the Mij elements monotonically
decay with resonator separation; it is only when oscillating tails
are involved that they oscillate between positive and negative
values. This oscillating behavior is inherited by the supermode
frequencies as can be seen by writing

W−1 K = (�d − 2W−1�d M)�d

= (�d − 2�)�d , (A7)

where we have introduced the diagonal matrix �d =
diag(ω1,ω2, . . . ,ωN ) containing the isolated-rod resonant fre-
quencies and defined � ≡ W−1�d M which has units of
frequency (both W and M are measured in Joules).

Note that if we further assume that � represents a
small perturbation to the resonant frequency, then �2 is of
second-order smallness. Therefore, in the context of first-order
perturbation theory we can write (�d − 2�)�d ≈ (�d − �)2,
completing the binomial identity, and recover the result
in Ref. [47] which states that one can solve for the
supermode frequencies (instead of their squares) by finding
the eigenvalues of the �d − � matrix.

APPENDIX B: LUMPED WIRE MODEL

In the lumped wire model we assume that the features
of each constituent TE10 magnetic dipole mode can be
approximated by a combination of thin wires, infinitely long
along the z direction, that carry uniform currents. As seen in
Fig. 12, the TE10 dipole mode is characterized by two separated
symmetric areas of positive and negative oscillating displace-

ment currents. Assuming the simplest possible approximation,
we consider that a pair of wires with currents I1 = 1 and
I2 = −1, placed at a fixed position, is able to reproduce the
features of the mode. We note here that the choice of the two
wires facilitates the simplicity of the model; a more accurate
representation of the TE10 would occur by a combination of a
larger number of current-carrying wires. For the N rods system
and for the TE10-based collective modes we assume N pairs
of wires placed at the desirable separation distance. We expect
that in each wire the currents should be capable of reproducing
locally TE10-like field distributions. Up to now we have formed
a system of M = 2N coupled current-carrying wires; each
current Im radiates omnidirectional electromagnetic energy
and at the same time the current in each wire is affected
by the radiation coming from the adjacent M − 1 wires. The
radiation field that each wire m produces and in particular the
Ez component of the electric field reads

Ez,m(r) = −Im

μ0

4
ωH

(1)
0 (k0|r − rm|), (B1)

where |r − rm| is the distance from the mth wire in the xy

plane. At the position of each wire the total field coming from
the adjacent M − 1 wires is the sum of each M − 1 radiation
contribution, and at the same time it is equal to the local electric
field produced by the current Im, Ez,m(r ≡ rm) = ImZm, where
Zm is a term that contains all the impedance contributions in
the wire, and it is the same for all wires Zm = Z, ∀m. For the
electric field at each mth wire we have

ImZ =
M∑

n	=m

−In

μ0

4
ωH

(1)
0 (k0|rn − rm|), (B2)

where |rn − rm| is the distance between the mth and the nth in
the xy plane. The distances and the frequency is constant, ω =
ω10, and the free parameters are the currents Im and impedance
terms Zm. The system of the linear equations corresponds to
an M × M eigenvalue problem, LIcrt − ZcrtIcrt = 0, where

Lnm = −
M∑

n	=m

μ0

4
ωH

(1)
0 (k0|rn − rm|). (B3)

The system has M eigenvalues Z and eigenvectors Icrt =
[I1,I2,...,IM−1,IM ] that correspond to the currents flowing
through each wire. Among the M solutions of the problem
we find the eigenvectors with currents that correspond to the
TE10-based collective mode under consideration. For example
in the case of the isolated-single rod we place a pair of wires
at fixed points at a distance w < 2R; R is the radius of the
rods. The current carrying pair produces a 2 × 2 system with
two solutions, with eigenvalues Z1 and Z2, and eigenvectors
Icrt = [1,−1] and Icrt = [1,1]. Solution Z1 and Icrt = [1,−1]
corresponds to the TE10 dipole mode. We note here that w is a
parameter that can be finer tuned in order to approximate more
effectively the corresponding mode and here is chosen equal
to 7 μm.
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