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We present and analyze unique phenomena of enhanced transmission through systems of subwavelength
dielectric cylinders embedded in an epsilon near zero host. Our analysis shows that these phenomena are due to
Mie-resonance modes arisen in the dielectric cylinders. Subwavelength waveguides and lenses are proposed based
on coupling of these modes between neighboring cylinders. Finally, the proposed phenomena and their possible
applications are numerically demonstrated in the THz regime in a realistic polaritonic material of LiF rods in KCl.
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I. INTRODUCTION

The area of metamaterials emerged from a paper by
Veselago1 and attracted renewed interest due to the works
by Pendry.2 Metamaterials are characterized by unusual phe-
nomena and properties, not encountered in natural materials.
In particular, there are metamaterials with both negative
electrical permittivity and magnetic permeability, and thus
negative refractive index;1–8 there are also giant permittivity
metamaterials9 or giant permeability, etc.

A category of metamaterials which has attracted increased
attention recently is metamaterials with permittivity near
zero (ENZ), or both permittivity and permeability near zero,
i.e., zero index metamaterials (ZIM). The increased attention
to those materials is due to their intriguing properties.10–25

Namely, ultranarrow ENZ channels can “squeeze” electro-
magnetic (EM) waves at will.10–14 Such an effect was also
demonstrated experimentally.13,14 Total transmission without
changing the phase, forming a plane wave front, by using
matched impedance zero-index metamaterials, was also shown
theoretically.15

It is worth mentioning that to achieve small negative per-
mittivity values or permittivity near zero, one is not essential
to resort to metamaterials. Materials with small negative and
near zero permittivity in the THz regime are already available
in nature. Such materials are polaritonic materials.26,27 These
are ionic crystals where an incident electromagnetic (EM)
wave excites and couples with optical phonons supported by
the crystal.26 As a result, the permittivity of such materials
obeys a Lorenz dispersion model;27 at frequencies below
their plasma frequency (in the THz regime; frequency at
which one of the ionic sublattices moves longitudinally
against the other) these materials exhibit negative values of
the real part of the permittivity, a feature which may be
exploited in achieving plasmonic phenomena or metamaterial
properties in structures of simple geometries (note that the
permittivity of metals in the THz has very large negative
values, making essential the fabrication of complicated-shape
inductive elements as to adjust the structure impedance with
that of the free space). Moreover, close to the plasma frequency
the real part of the permittivity in polaritonic materials is near

zero, allowing the observation of a variety of interesting phe-
nomena and applications associated with ENZ materials and
metamaterials.

Such phenomena are total transmission and total reflection
of EM waves through ENZ or ZIM materials with embedded
proper defects, as proposed by some researchers. In particular,
Hao et al.16 analytically and numerically demonstrated that
embedding perfect electric conductor (PEC) defects into a
ZIM region yields super-reflection (the incident wave is totally
blocked) of EM waves incident in that region. Nguyen et al.17

investigated the case of dielectric cylindrical defects placed
into a ZIM. The proposed structure allowed us to achieve total
transmission and total reflection effects. Similar phenomena
have been observed in an ENZ region with dielectric defects,
as established by Xu and Chen18 for excitation of the structure
by a TM-polarized wave. These phenomena were predicted
analytically and numerically.

In this paper we show numerically that an ordered linear
arrangement of dielectric subwavelength cylindrical scatterers
embedded in an ENZ host acts as a narrow subwavelength
channel where the wave propagates by being transferred
from scatterer to the next scatterer. The net result is a very
efficient narrow subwavelength waveguide which is capable
of operating even in the presence of corners with a minimum
backscattering; this narrow channel also provides the basis
of building lenses with subwavelength resolution. Besides
our numerical demonstration of such important functioning,
we propose real composite materials, such as self-organized
polaritonic systems, at which the above mentioned phenomena
can be observed. Finally, we reveal the physics underlying this
electromagnetic wave propagation along a narrow channel
consisting of a linear succession of scatterers (reminiscent
of the one-dimensional tight-binding electronic transfer from
atom to atom): It is due to the appearance at each scatterer of
a very sharp Mie resonance (which in the limit of zero-host
permittivity becomes a true eigenstate, analogous to the px

atomic orbital). This resonance also leads to almost total
transmission in systems of dielectric scatterers embedded
in ENZ media. We confirm this physical picture in the
next section by performing both numerical and analytical
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FIG. 1. (Color online) Geometry of the unit cell of our periodic system along the y direction; the unit cell consists of an ENZ region (1) and
an embedded dielectric cylinder [region (2)]. The left and right materials surrounding region (1) are considered as air. The upper and bottom
boundary conditions of the unit cell are equivalent to a perfect magnetic conductor (PMC) in the case of TE polarization. The geometrical
values are typically as follows: R = 4 μm, d = 30 μm, and a = 100 μm.

calculations in a prototype system consisting of a finite slab
of ENZ material in which a single cylindrical scatterer is
embedded with periodic boundary conditions (BCs) along the
y direction (see Fig. 1).

II. TRANSMISSION AND REFLECTION IN ENZ
STRUCTURES WITH EMBEDDED DIELECTRIC

CYLINDERS—RESONANT TOTAL TRANSMISSON

The structure forming the basis of our investigations here is
shown in Fig. 1 and consists of four distinct regions: Regions
(0) and (3) are filled with air and are separated by an epsilon
near zero (ENZ) (ε1 ≈ 0) region (1). A dielectric cylindrical
scatterer [region (2)] with radius R is embedded inside
region (1) and has permittivity ε2. We focus on nonmagnetic
materials, i.e., the permeability in all regions is the vacuum per-
meability μ = μo. The upper and bottom walls of the system
in our numerical investigations are set to be perfect magnetic
conductors in the case of TE polarization; these boundary
conditions are in the present case equivalent to a periodic
arrangement of cylinders along the y direction with a period
d and, hence, they allow us to restrict our study of the prop-
agation of TE electromagnetic waves (either numerically or
analytically) only within the strip of width d as shown in Fig. 1.

We consider an EM wave impinging at normal incidence
from the left into the unit cell illustrated in Fig. 1. Such a wave
will be of the form �Einc = Eoẑe

i(k0x−ωt) for TE polarization.
We will omit the time variation e−iωt throughout the rest of
the paper and we shall set Eo = −iωμ.

A. Case in the absence of cylinder

We examine first the case without the cylinder, i.e., R being
set equal to zero. Thus the problem reduces to a plane wave
incident on a uniform and isotropic ENZ slab (1) located
between two uniform and isotropic regions (0) and (3).

Based on the solution of problem 4, p. 299 of Ref. 28, the
fields in region (0) can be written as

�E = −iωμẑ(eik0x + ρe−ik0x), (1a)

�H = 1

iωμ
∇ × �E = ik0ŷ(eik0x − ρe−ik0x), (1b)

while the electromagnetic fields in region (3) are of the form

�E = −iωμẑteik0(x−a), (2a)
�H = ik0ŷteik0(x−a), (2b)

with ko as the wave vector of free space ko = ω/c. In
the above relations ρ and t are reflection and transmission
amplitudes (in the absence of the cylinder), which can be
calculated by matching the parallel components of the fields
Ez and Hy at the boundaries of the system x = 0 and x = a.
For region (1) the electric and magnetic fields must satisfy
the Maxwell equation �E = −(1/iωε1)∇ × �H . Taking into
account that ε1 tends to zero, we can conclude that ∇ × �H
must vanish in order to keep the electric field finite.10 Besides
the relation ∇ × �H = 0 ⇒ �H = −∇φ + �a (with φ a scalar
potential and �a a constant vector), we must satisfy the relation
∇ · �H = 0 ⇔ ∇2φ = 0. Thus, the gradient of any potential φ

satisfying the Laplace equation can be added to �H = �a and
the equations ∇ × �H = 0 and ∇ · �H = 0 will still be satisfied.
However, in the present case, based on problem 4 of Ref. 28,
we conclude that Hy = const. = H1, and Hx = 0 in region
(1) in the absence of the cylinder and for k1 → 0. Indeed,
according to Ref. 28 and for normal incidence, the magnetic
field in region (1) in the absence of the cylinder is of the
form (A1e

ik1x + A′
1e

−ik1x)ŷ; but k1 = ωn1/c = 0 for n1 = 0.
Hence, �H = (A1 + A′

1)ŷ ≡ H1ŷ, where H1 = A1 + A′
1 and

A1, A′
1 are constants. Moreover, electric and magnetic fields

in region (1) should satisfy equation �H = (1/iωμ)∇ × �E,
which taking into account that �H = H1ŷ and that �E = Ezẑ

gives ∂Ez/∂x = −iωμH1. Integrating this last relation, we
obtain the fields in ENZ region (1):

�E = −iωμẑ(H1x − E1), (3a)
�H = ŷH1, (3b)

where H1, E1 are constant unknown coefficients.
Applying the boundary conditions, i.e., equating the tan-

gential components of the magnetic and electric fields at the
interfaces x = 0 and x = a, gives simple relations for all the
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unknown coefficients of the problem:

t = 1

1 − ik0
a
2

, H1 = ik0t,

(4)

E1 = ik0a − 1

1 − ik0
a
2

, ρ = − ikoa

2 − ikoa
.

B. Case in the presence of cylinder

Let us consider now the dielectric cylinder [region (2)]
embedded in region (1), as shown in Fig. 1. The solutions we
have obtained up to now in region (1) in the absence of the
cylinder can serve as the “incident” wave to be scattered by
the cylinder. This scattered field will be scattered next at the
plane segments of width d for x = 0 and x = a. This process
will go on back and forth giving rise to a complicated multiple
scattering process. We shall include this multiple scattering
process assuming that the fields are almost constant at x = 0
and x = a for the width d. As we shall show later on, this is a
very reasonable approximation if R 
 (d/2) 
 a/2.

We shall proceed now with the first order scattering by
the cylinder of the incident wave as described by Eqs. (3a),
(3b), and (4). The fields in region (2) inside the cylinder obey
vector Helmholtz equation ∇ × (∇ × �E) = k2

2
�E.29 Due to its

cylindrical shape it is convenient to write the solutions of
this equation as an infinite sum of Bessel functions times
exponential functions of the angle θ :

�E = −iωμẑ

∞∑
m=−∞

AmJm (k2r) eimθ .

(Note that the position vector �r is measured from the center
of the cylinder.) Since the incident electric field as given by
Eq. (3a) is proportional to x = (a/2) + r cos θ plus a constant,
we have to keep only the terms with m = 1, m = 0, and
m = −1 (with properly related coefficients Am) to produce
the necessary θ dependence. Thus

�E = −iωμẑAJ1(k2r) cos θ − iωμẑAoJo(k2r), (5a)

with A = 2A1 = −2A−1 a constant to be determined from the
continuity of the electric field and the tangential component of
the magnetic field at the boundary of the cylinder. Using the
equation �H = (1/iωμ)∇ × �E and Eq. (5a) we obtain

�H = 1

r
r̂AJ1 (k2r) sin θ + θ̂k2[AJ ′

1(k2r) cos θ + AoJ
′
o(k2r)]

(5b)

(the derivatives in the Bessel functions J1 and J0, denoted by
a prime, are with respect to their argument).

The “incident” field to the cylinder is to first order equal to
the field in region (1) in the absence of the cylinder as given by
Eqs. (3a), (3b), and (4). Therefore, the total fields to this order
in region (1) satisfying Maxwell equations are obtained by
combining the incident field determined by formulas (3) and
the scattered field in which we keep only the term proportional
to cos(θ ) plus a term independent of θ . These scattered fields
are of the form of Eqs. (5a) and (5b) with the Bessel functions
replaced by the Hankel functions H (1)

n (z) as the value of the
variable z = k1r approaches zero. To simplify the notation we

shall set H (1)
n (z) ≡ Xn(z). Thus

�Esc = −iωμẑA1sX1(z) cos θ − iωμẑA0sX0(z), (6a)

�Hsc = 1

r
r̂A1sX1(z) sin θ + θ̂k1[A1sX

′
1(z) cos θ + A0sX

′
0(z)],

(6b)

where A1s and A0s are constants to be determined by the
boundary conditions at r = R. The lowest order incident
fields in cylindrical coordinates x = (a/2) + r cosθ and y = r

sinθ are �Einc = iωμẑ[E1 − (a/2)H1 − H1r cos θ ] and �Hinc =
H1(r̂ sin θ + θ̂ cos θ ). Thus, to lowest order the total field,
“incident” plus scattered, in region (1) are

Ez = −iωμ

(
H1

a

2
− E1

)
− iωμH1r cos θ

− iωμA1sX1(z) cos θ − iωμA0sX0(z), (7a)

Hr = H1 sin θ + 1

r
A1sX1(z) sin θ,

(7b)
Hθ = H1 cos θ + A1sk1X

′
1(z) cos θ + A0sk1X

′
0(z).

The continuity of Ez and Hθ for r = R leads to the
following equations:

A1s = 2H1RQ/{X1(z1)−z1X
′
1(z1)−Q[X1(z1)+z1X

′
1(z1)]},

(8a)

A0s ≡ ηĀ0s = ηz2J
′
0(z2)/[J0(z2)z1X

′
0(z1)−X0(z1)z2J

′
0(z2)],

(8b)

where

η ≡ H1
a

2
− E1 = 1, Q ≡ H2

H1R2
= J1(z2) − z2J

′
1(z2)

J1(z2) + z2J
′
1(z2)

,

(9)
z2 = k2R, z1 = k1R.

The differentiation denoted by the prime is with respect to the
argument.

The first order scattered wave by the cylinder reaches the
plane segments at x = 0 and x = a, it is reflected back to
region (1) [the effects of which (to lowest order) are to add
terms as in Eqs. (3a) and (3b) with H1 and E1 replaced by H ′

1
andE′

1] and it is transmitted to the regions x < 0 and x > a.
These transmitted waves, as a result of Snell’s law, propagate
along the ∓x direction in the limit k1 → 0, and for x = 0−
and x = a+, respectively; their amplitudes depend on y or
equivalently on the angle θ . However, this dependence is very
weak around y = 0 (or equivalently, around the θ = π and
θ = 0), varying as δ θ4, where δ θ = θ − π or θ , respectively.
Thus, for a range of values of |y| less than d/2, the amplitude
of the transmitted to the vacuum waves is almost constant, i.e.,
to a very good approximation and for |y| � d/2 they behave
as plane waves propagating along the ±x direction. As was
pointed out before, these transmitted waves for 0 � |y| � d/2
are associated with additional waves reflected back to region
(1) approximately of the form of Eqs. (3a) and (3b). These
additional reflected [to region (1)] and transmitted (to the
vacuum) waves will be approximated by their values at y = 0
(i.e. at θ = π and at θ = 0) and for x = 0 and x = a.
These additional reflected to region (1) fields of the form
�E = −iωμẑ(H (1)

1 x − E
(1)
1 ), �H = ŷH

(1)
1 will create additional

second order scattered by the cylinder waves which in turn will
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be reflected back to region (1) giving rise to second order terms
approximately of the form �E = −iωμẑ(H (2)

1 x − E
(2)
1 ) and

�H = ŷH
(2)
1 and so on. Summing the resulting geometric series,

we obtain the total field (to all orders) within region (1). This
total field will modify the reflection ρ and the transmission t

in the absence of the cylinder to the following values of ρ̄ and
t̄ , respectively:

t̄ = 1

1 − iw
+ �1

1 − iw
[X1(s) − sX′

1(s)] + �0

iw
sX′

0(s),

(10a)

ρ̄ = −iw

1 − iw
− �1

1 − iw
[X1(s) − sX′

1(s)] + �0

iw
sX′

0(s),

(10b)

where s = k1a/2, w = k0a/2, and

�1 = A1s/(1 − M), (10c)

�0 = A0s/(1 + K), (10d)

M = A1s[X1(s) − sX′
1(s)/iw], (10e)

K = A0s[X0(s) − sX′
0(s)/iw]. (10f)

Notice that besides omitting the y dependence for 0 �
|y| � d/2 and keeping the s and z1 small but finite (s ≈
0.02 and z1 ≈ 0.002), in Eqs. (3) we have taken the limit k1 →
0, we have implicitly used another approximation as well.
Indeed, up to now we have taken into account (approximately)
the propagation and multiple scattering along the x direction
(i.e., for θ around 0 and π ) and we have ignored the propagation
around θ = ±π/2. This omission is reasonable for the terms
associated with J1 and X1 since these terms are proportional
to cos(θ ), as shown in Eqs. (6a) to (8b) and cos(θ ) ≈ 0 for θ ≈
± π/2. But the θ -independent terms proportional to J0 and X0

in Eqs. (6a) to (8b) are not negligible in the directions θ ≈
± π/2; hence, a propagation along the θ ≈ ± π/2 direction
takes place which also has to be taken into account in view
of the periodicity in the y direction; this periodicity implies
that there will be incident waves to the cylinder located at the
n = 0 unit cell coming from all the other cylinders located
at the unit cells of n = 0 since all these other cylinders will
emit scattered radiation along the y direction due mainly to
their θ -independent part. These additional incident waves on
the n = 0 cylinder will produce additional scattering along
the x direction (due mainly to the θ -independent term) and,
hence, will renormalize the coefficient �0 appearing in the
transmission and reflection formulas. This renormalization
is taken into account only to first order (i.e., by omitting
multiple scattering effects involving waves propagating in the
y direction) as described in the Appendix.

Analyzing the transmission formula (10a) it results in
the conclusion that the transmission coefficient becomes
resonant, leading to large |t̄ | values, at the poles of the
quantity Q of Eq. (9), i.e., where the denominator of Q

vanishes. This happens when J1(k2R) = −k2RJ ′
1(k2R), which

can be recast to J0 (k2R) = 0 [resulting by applying the
recurrence relation J ′

1(k2R) = J0(k2R) − (1/k2R)J1(k2R)]. It
follows that a resonance at the transmission coefficient |t̄ | will
appear whenever z = k2R coincides with any of the zeros of
the Bessel functionJ0(z); the lowest resonance will appear
when k2R = 2.404826 or λ2 = 1.306 D, D = 2R. Another

resonance, but a broader one and at lower frequency, will
appear when Ā0s [see Eq. (8b)] exhibits a resonance behavior.
This resonance is associated with a cylindrically symmetric
scattered wave and its shape and frequency are affected by the
coupling of the cylinders along the y direction, as is shown in
Fig. 2.

In Fig. 2 we compare our analytic results [Figs. 2(b) and
2(d)] based on Eqs. (8a) to (10f) for the EM transmission
amplitude |t̄ | in the system shown in Fig. 1 with the corre-
sponding accurate results [Figs. 2(a) and 2(c)] obtained by
solving numerically Maxwell’s equations with the Microwave
Studio (MW) commercial software, for R = 4 μm, ε2 = 40ε0,
ε1 = 0.001ε0, and a = 100 μm. We present both cases of large
d (where the couplings along the y direction are negligible)
and the small d (where these couplings are appreciable). In the
case of large d the analytical results practically coincide with
the numerical ones [see Figs. 2(a) and 2(b)] thus justifying
the various approximations we employed in deriving Eqs. (8a)
to (10f). In the case of small d [Figs. 2(c) and 2(d)], in spite
of using the renormalized �0as a result of the couplings in
the y direction, there are appreciable differences which, for
the low frequency resonance, we attribute to our omission
of the multiple-scattering effects along the θ ≈ ±π/2 direction
(see the Appendix), while for the resonance at f = 4.54 THz,
to our complete neglect of the couplings along the θ ≈ ±π/2
direction, which in any case are weak as shown by the
sharpness of the resonance peak. We plot also in Fig. 2(a)
the EM transmission amplitude for the system shown in Fig. 1
in the absence of the cylinder [dashed line in Fig. 2(a)]. We
also draw an inset in Fig. 2(a) showing the direction of the
electric field at the second resonance at 4.54 THz.

Focusing on Figs. 2(a) or 2(b), one can clearly see two
resonances. A broad one at around 1.5 THz, which broadens
and moves to lower frequencies, tending to disappear, as one
reduces the distance of the cylinders along the y direction
[compare Figs. 2(a) to 2(c)], increasing the coupling of those
cylinders. This resonance comes from the resonance of the
Ā0s of Eq. (8b) and corresponds to a cylindrically symmetric
wave. The second resonance at 4.54 THz is the resonance
coming from the condition J0(k2R) = 0 mentioned above, and
corresponds to asymmetric field distribution along x, as shown
in the inset of Fig. 2(a).

This second resonance is the resonance of interest in the
present work and responsible for the impressive waveguide
feature presented below. This is because it is this resonance
that is very sharp even for rather small d [see Fig. 2(c)], it is
strongly confined in the y direction and it couples efficiently
with identical resonances appearing in cylinders along the x

direction as we shall show later. The nature of this resonance is
of Mie type and occurs when the wavelength inside the cylinder
is about equal to the average between its diameter and half
of its circumference. In the present case, where the electrical
permittivity of the scatterer is much higher than the permittivity
of the surrounding medium, the resonance becomes very sharp
and tends to coincide with the corresponding natural EM
mode in the cylindrical scatterer; this mode is associated with
strong displacement currents inside the scatterer, leading to
the possibility of a high magnetic field. Similar resonances
have been described in the paper by O’Brien and Pendry30

for high-index dielectric cylinders when the polarization of
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FIG. 2. (Color online) Comparison of the results for the transmission amplitude |t̄ | based on Eqs. (8a) to (10f) with the numerical results
based on the Microwave Studio (MWS) for the system of the unit cell which is shown in Fig. 1 with R = 4 μm, ε1 = 0.001ε0, ε2 = 40ε0, and
a = 100 μm. (a) Large d , d = 100 μm, MWS. (b) Large d , formulas (8a) to (10f). (c) d = 30 μm, MWS. (d) d = 30 μm, formulas (8a) to
(10f) including the renormalization due to couplings along the y direction (see text). The incident wave is a TE polarized wave (i.e., �E along
the axis of the cylinder). Dashed line shows the corresponding transmission for the system with no cylinder. The sharpness of the resonance is
due to the large ratio ε2/ε1 and the omission of any losses. The inset shows the displacement currents and the electric field distribution of the
sharp resonant mode at the frequency 4.54 THz.

electric field is perpendicular to the axis of the cylinder. In the
case of Ref. 30 and for the zeroth-order resonance only, the
azimuthally directed displacement current is enhanced which
results in an enhanced magnetic field along the cylinder axis.
This enhanced magnetic field can lead to artificial magnetism
in a composite consisting of such a system of cylinders.30

Moreover, Peng et al.31 theoretically and experimentally
demonstrated the existence of a Mie resonance in the case
of the electric field being parallel to the axis of a high-index
dielectric cylinder. Also, it is well known from other theoretical
and experimental studies of the appearance of Mie resonances
in subwavelength particles.32–35

To demonstrate more clearly the potential of the above
mentioned resonance (at 4.54 THz) to provide subwavelength
guiding, we also show the field distributions at the x–y plane,
at the resonance, and in the case of a single cylinder embedded
in an ENZ (ε1 = 0.001ε0) matrix as calculated by Microwave
Studio. Figure 3(a) shows the Ez field while Fig. 3(b) shows the
magnetic field Hy distribution for TE polarized incident wave.
As seen in Fig. 3(a), the electric field Ez is concentrated along
the x direction, with two lobes of opposite sign resembling the
form of a px atomic orbital. This field, for large ε2, leads to

large displacement currents of opposite direction at the two x

sides of the cylinder (see also the inset in Fig 2), which yield
a strong magnetic field [see Fig. 3(b)] and lead to a dramatic
increase of the transmission at 4.54 THz compared with the
case of no cylinder [dashed line in Fig. 2(a)].

III. SUBWAVELENGTH GUIDING AND LENSES WITH
SUBWAVELENGTH RESOLUTION BASED ON ENZ

PHENOMENA

The px-like form of the electric field at the cylinder Mie
resonance discussed in the previous section suggests the
possibility of subwavelength guiding of an EM wave in a chain
of such cylinders along the x direction using the coupling of
the waves/modes belonging to neighboring cylinders (in a way
similar to electron propagation along a one-dimensional chain
of atoms by employing the tight-binding scheme consisting
of px atomic orbitals). Such a subwavelength guiding is
confirmed in Fig. 4(a), in a chain of cylinders of radius
R = 4 μm and permittivity ε2 = 40ε0 embedded in an ENZ
medium of ε1 = 0.001ε0. The distance between the centers of
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FIG. 3. (Color online) Electric Ez (a) and magnetic Hy (b) field distribution for the first resonant mode associated with the first zero of
J0(k2R) (at frequency 4.54 THz) of a single cylinder of radius R = 4 μm, the permittivity of which is ε2 = 40ε0 embedded in an ENZ matrix
with ε1 = 0.001ε0, for a plane TE wave incident on the cylinder according to Microwave Studio.

the cylinders is a0 = 12 μm. Notice the strong confinement
along the chain of cylinders even if the chain is bent [Fig. 4(b)].
(This confinement provides a further justification for the
omission of the couplings along the y direction.)

The dispersion relation of such a “waveguide” of cylinders
has also been calculated around the frequency 4.55 THz and
is shown in Fig. 5. It is evident from Fig. 5 that the guided
mode is slow (its phase velocity is smaller than the free-space
velocity c).

We stress again that the proposed waveguide made of a
chain of cylinders in an ENZ matrix can also be used as a
corner structure. For example, the Ez field distribution shown
in Fig. 4(b) corresponds to a change of propagation direction
by 45 deg. This is accompanied by a weak backscattering, as
shown in Fig. 4(b), where part of the power is reflected at
the turn and interferes with the incoming field leading to a
weaker total field as the corner is approached. Nevertheless,
such a system is still efficient and can be used to change the

directions of the transported energy over distances of several
wavelengths.

Observing the field profile shown in Fig. 4, one can
see that in contrast to the well-known similar plasmonic
waveguides36–38 consisting of linear chains of plasmonic
particles, the field of the waveguide under consideration is
concentrated between the inclusions and not on the lateral sides
of the waveguide. Thus, the subwavelength confinement in a
single row along propagation direction is expected to be main-
tained even in a system of parallel rows, forming a photonic-
crystal-like structure. Such a system, for subwavelength size
cylinders, is expected to behave as an anisotropic lens with
subwavelength resolution. To verify that, we considered such
a system and we simulated (using Microwave Studio) the
distribution of the electric field Ez behind a PEC (perfect
electric conductor) screen with a narrow slit of width 4 μm.
A TE plane wave of frequency 4.55 THz is incident on the
screen from the left as shown in Fig. 6(a). The frequency

FIG. 4. (Color online) Electric Ez field distribution at the frequency 4.55 THz for: (a) a waveguide based on cylinders of radius R = 4 μm,
distance a0 = 12 μm, and permittivity ε2 = 40ε0, embedded in an ENZ matrix of permittivity ε1 = 0.001ε0; (b) a corner 45◦ angle structure
based on the waveguide shown in (a). The field distribution has been obtained using the Microwave Studio.
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FIG. 5. (Color online) Dispersion characteristics of a waveguide
based on cylinders of radius R = 4 μm and permittivity ε2 = 40ε0,
embedded in an ENZ matrix of permittivity ε1 = 0.001ε0; the
distance between the cylinders is a0 = 12 μm. The black curve shows
the mode of this waveguide and the red curve the light line of ω = ck.
The inset shows a schematic of the waveguide.

of 4.55 THz corresponds to total transmission |t̄ | (|t̄ | ≈ 1)
for a single cylinder in accordance with Fig. 2, as well as
for the system of many cylinders [Fig. 6(b)]. Obviously the
resonance of a single cylinder is broadened to a narrow band
for the system of many cylinders, which proves that the origin
of the total transmission and subwavelength lensing effect
is a Mie resonance of a single cylinder. Figure 6(b) shows
this broadening which is fully equivalent to the creation of
a narrow band around an atomic orbital in the well-known
tight binding (TB) model in solid state physics. As shown
in Fig. 6(a), the incident wave is diffracted on the slit and
excites Mie-resonance modes from the first to the next cylinder
along the x direction, transferring thus the subwavelength slit
image.

IV. ENHANCED TRANSMISSION THROUGH
A POLARITONIC SYSTEM IN ENZ REGIME

Finally, we discuss how we can apply this theory in
realistic materials with ENZ response in the THz regime. Such
materials are polaritonic materials. The particular system that
we will examine is a system LiF cylinders (of μm radius)
embedded in KCl matrix, forming a hexagonal lattice. As it
was recently shown,39 such a system can be realized quite
easily using a self-organization approach known as eutectics
directional solidification.40 Each of the components of our
system (the LiF cylinders and the KCl host) is a polaritonic
material exhibiting an electrical permittivity response of
Lorenz type:26,27

ε = ε∞
ω2 − ω2

L + iωγ

ω2 − ω2
T + iωγ

. (11)

In Eq. (11) ωT is the angular frequency of the transverse
optical phonons in the polaritonic material, ωL is the angular
frequency of longitudinal optical phonons, γ is the damping
factor, and ε∞ is the limiting value of the permittivity for high
frequencies relative to ωL. Notice that Eq. (11) allows an ENZ
response for frequencies ω ≈ ωL.

In our LiF rods in the KCl system the rod radius is R = 1
μm and the nearest neighbor separation (from center to center)
is 4 μm. The KCl is determined by material parameters39 ε∞ =
2.045, fT = ωT /2π = 4.21 THz, fL = ωL/2π = 6.196 THz,
and γ ′ = γ /2π = 0.156 THz, showing an ENZ response
around 6 THz, while for the LiF ε∞ = 2.0272, fT = ωT /2π =
9.22 THz, fL = ωL/2π = 19.106 THz, and γ ′ = γ /2π =
0.527 THz, giving positive values for the LiF permittivity
εLiF at the frequency f (= ω/2π ) range ∼4–8 THz, i.e.,
dielectric-like response.

The transmission coefficient for a TE polarized incident
wave (electric field parallel to the cylinder axis) through a
system of LiF cylinders embedded in KCl is depicted in
Fig 7.

The frequency of 6 THz corresponds to the plasma
frequency of KCl, i.e., Re(εKCl) ≈ 0, and Re(εLiF) = 12. As is
shown in Fig. 7, there is a quite a high transmission peak around

FIG. 6. (Color online) (a) The Ez field distribution for a metamaterial “lens” composed of five layers (along propagation direction) of
subwavelength cylindrical inclusions of radius R = 4 μm, and permittivity ε2 = 40ε0, embedded in an ENZ matrix with ε1 = 0.001ε0 . The
distances between the cylinders are 12 and 15 μm, along x and y axes, respectively. The incident wave has frequency 4.55 THz. (b) Transmission
coefficient |t̄ | through the system depicted in (a); |t̄ | has been calculated through Microwave Studio. Note that the peaks below 3 THz correspond
to Fabry-Perot resonances, occurring when the system length (along the x direction) equals an integer multiple of the effective half-wavelength.
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FIG. 7. Transmission coefficient |t̄ | as a function of frequency
for a hexagonal lattice of LiF cylinders with radius R = 1 μm
and separation (from center to center) 4 μm, embedded in a KCl
matrix. The material parameters for KCl (see text) show an ENZ
response around 6 THz (at which a peak in the transmission appears),
while for the LiF the permittivity is positive in the frequency range
4–8 THz.

that frequency despite the substantial material losses in LiF and
KCl. Note also the quite broadband character of the peak. Of
course, in this case, we cannot achieve total transmission of
EM waves through the structure because the materials exhibit
losses; we see that the losses, unless they are very large, do
not quite eliminate the substantial increase of the transmission
coefficient due to Mie resonances in the cylindrical inclusions
and the transfer of these quasi bound states along the linear
periodic arrangement of identical scatterers.

Finally, one should pay attention to the fact that in
the case of an ENZ matrix it is not necessary to use
dielectrics with large values of permittivity to achieve deep
subwavelength resonances and thus metamaterial phenomena
associated with high-permittivity materials, such as artificial
magnetism and negative refractive index. Even moderate
permittivity inclusions can lead to such phenomena since the
relevant parameter is the ratio ε2/ε1 which must be much
larger than one. This is extremely beneficial in metamaterial-
based applications, as high permittivity materials are usu-
ally associated with high material losses. Moreover, high
permittivity materials are more and more difficult to find
as one goes to higher frequencies, approaching the optical
regime.

V. CONCLUSIONS

In conclusion, we have studied and analyzed the transmis-
sion through systems of subwavelength dielectric cylinders
embedded in an ENZ host. It is shown that due to Mie
resonances associated with a px-like distribution of the
electric field in the dielectric cylinders the transmission is
strongly enhanced. Subwavelength waveguides and lenses

have been proposed based on this enhanced transmission and
the associated subwavelength confinement of the wave in the
direction perpendicular to that of the waveguide. Finally, we
showed that these interesting properties in the THz regime
can be realized in a self-organized polaritonic system of LiF
cylinders embedded in KCl host.
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APPENDIX

As was mentioned in the text, to take into account in our
analytic formulas the periodicity of the system of Fig. 1 along
the y direction, one should also take into account the fields
incident on the n = 0 cylinder along the y direction due to
the presence of all the other cylinders. This field will come
basically from the omnidirectional component of the scattered
field from the other cylinders along y (see Sec. II) and can
be approximately taken into account as follows: The cylinder
located at the nth unit cell in the y direction will emit an
omnidirectional wave which at reaching the cylinder located
at n = 0 will have an amplitude E/(−iωμ) = �0X0(nk1d)
(omitting any scattering in its travel from the n = 0 to the n = 0
cylinder) and it will induce an additional omnidirectional
scattered wave of strength equal to �0X0(nk1d)Ā0s , according
to (8b). Thus, to first order, all the cylinders in the y direction
will produce at the n = 0 cylinder an additional scattered
wave of strength �0X̄0Ā0s , where X̄0 = ∑+∞

n=1 X0(nk1d) +∑−∞
n=−1 X0(nk1d) = 2

∑+∞
n=1 X0(nk1d). This, in turn, will

renormalize A0s to A0s + �0X̄0Ā0s and �0 to �̄0 = (A0s +
�̄0X̄0Ā0s)/(1 + A0s F̄0 + �̄0X̄0Ā0s F̄0), where F̄0 = X̄0(s) −
sX̄′

0(s)/iw. In the present case A0s = Ā0s since η = 1 [see
Eq. (9)]. The summation

∑+∞
n=1 X0(nk1d) can be performed

in terms of the integral
∫ +∞
k1d

X0(x)dx by using the Euler-
Maclaurin summation formula.41 We should mention that the
renormalization described above and due to the couplings
among cylinders in the y direction as a result of the periodicity
along the y direction, is correct to the first order only since
multiple scattering effects involving both the plane surfaces
at x = 0 and x = a and the cylinders located at n = 0
were omitted. For large d, d � 100 μm, these y-direction
couplings are negligible, as the numerical calculations have
shown.
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