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Emerging technologies such as quantum cascade lasers enabled the investigation of the most interesting, yet
very little explored, THz part of the electromagnetic (EM) spectrum. These THz sources impose a dire need for
novel materials suitable for optical components at such frequencies, as traditional visible optics is not appropriate
for THz. Here, we explore two-dimensional (2D) photonic crystals (PCs) with either or both constituents made
of polar materials, having a polariton gap within or close to the THz regime. Our objective is to create polaritonic
composites that behave as extraordinary effective homogeneous uniaxial media, with flexibly engineered EM
wave dispersion and high transmissivity in the THz frequency region. Accordingly, it is most important to be able
to identify when 2D composites act as effective bulk uniaxial media. Clearly, deviation from standard effective
medium predictions does not necessarily imply bulk effective medium picture breakdown. We developed a
reliable criterion which provides a clear angular signature of effective medium behavior in 2D composites, even
in the presence of high losses. Relying on this criterion, we characterized polar-dielectric and polar-polar PC
composites acting as homogeneous uniaxial metamaterials for any arbitrary incident angle. We selected certain
cases of effective metamaterial composites which demonstrate a polarization filter behavior. In particular, our
results suggest that an unpolarized source will lead to either an S- or a P-polarized wave just by changing the angle
of incidence of the impinging wave, irrespective of the thickness of the composite metamaterial. Furthermore, we
show that transmission through a LiF/NaCl composite can be as high as 20%, even though transmission through
an identical slab made from either of the two polar constituents would be next to zero. We analyze and discuss the
physical origins underpinning such extraordinary angular transmission profile of these metamaterial composites.
Our results suggest that appropriate mixing of polar materials with each other or with high-index dielectrics
provides a route to making advanced photonic materials that are highly attractive for THz optical components.
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I. INTRODUCTION

THz EM waves, or otherwise known as T rays, lie between
the microwave and IR spectrum with frequencies between 0.1
and 10 THz.1 Despite their immense technological potential
for sensing and tissue imaging, T rays have been very little
explored until recently. One of the main obstacles was the
scarcity of THz sources, which was overcome by the emerging
technology of quantum cascade lasers (QCLs).2–4 This stresses
the need for optical components, as for example polarizing
filters and converters, beam diverters and splitters, collimators,
and lenses, that are functional at this regime. Nevertheless,
standard materials that are used for such components in the
visible spectrum do not possess the suitable optical properties
to be functional at THz. Accordingly, there is a pressing
urge to search for metamaterials which are promising for
versatile dispersion engineering of T rays while exhibiting
high transmissivity. THz metamaterials with such properties
would be highly attractive candidates for optical components
at this frequency regime.

Exotic uniaxial effective metamaterials at visible frequen-
cies have been previously reported.5,6 Such metamaterials
are essentially 2D photonic crystal (PC) arrangements of
thin metallic wires and were shown to possess superfocusing
properties. They owe such extraordinary lensing properties to
an unusual shape of the surface of wave normals7 (or otherwise

known as equifrequency surfaces, EFS8), which is not possible
in any natural material. In particular, they exhibit a hyper-
bolic EFS emanating from an indefinite effective permittivity
tensor,9 with principal elements of opposite sign. We note that
hyperbolic EFS can emanate also from an indefinite effective
permeability tensor, typical of magnetic metamaterials.10 This
curious type of EFS introduces allowed propagation directions,
despite the existence of a negative permittivity or permeability
along certain principal direction(s). At the same time, the open
form of the hyperbola in wave vector space cannot impose an
upper bound on the permissible parallel component of the
wave vector11,12 and thus supports the transfer of the dark
(evanescent) components of the source through the uniaxial
metamaterial. In other works, this novel type of engineered
EM dispersion facilitates EM propagation inside the effective
uniaxial metamaterial even in cases where this would be
prohibited in either or both of its respective constituents.

Polar materials also possess a negative permittivity within
a certain frequency range known as the polariton gap, which
makes them also good candidates for the aforementioned type
of uniaxial metamaterials with hyperbolic dispersion. Since
for many materials the polariton gap falls within or close to
the THz spectrum, polar materials become highly attractive
constituents for metamaterials functional at THz. Previously
researchers have employed a 2D polar PC with spatial
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arrangement chosen so that the polaritonic gap overlaps with
the photonic band gap of a corresponding metallodielectric
PC.13 They have found very frequency selective field reconfig-
uration, which goes from extreme localization to complete field
expansion around the polar material within a small frequency
window. In this paper, we will study 2D polaritonic PCs that
behave as bulk effective homogeneous uniaxial metamaterials
for arbitrary illumination and are functional at THz, and thus
suitable for optical components at such frequencies.

In particular, by composites acting like bulk uniaxial ef-
fective media we mean composites demonstrating a reflective
and transmissive behavior that can be entirely described by
a permittivity (and/or permeability) tensor with elements that
are independent of the thickness of the composite and the
angle of incidence of the impinging wave. Standard effective
medium descriptions14–16 that have been extensively used
thus far are approximate descriptions. Accordingly, it is of
the utmost importance to develop a reliable criterion that
ascertains the validity of a homogenized effective medium
picture. Clearly, failure of a certain effective medium theory
(EMT) to accurately depict the EM response of the system does
not necessarily imply that the system cannot be described by
an effective medium. The need for a criterion that provides a
signature for a bulk effective medium behavior is immense.

This paper is organized as follows: In Sec. II we develop
two different criteria, thickness based and angle based, that
assert the validity of a bulk effective medium picture for
the case of 2D PC composites. We then demonstrate the
application of such criteria in a well-studied system—that of
a 2D dielectric photonic crystal. We show that both of these
criteria arrive at a very reliable identification of the spectral
range where the 2D PC medium behaves as a bulk uniaxial
effective medium for any arbitrary incident EM wave (on and
off the periodic plane). In Sec. III we test the transferability
of such criteria to polaritonic composite structures. We
find that only the angle-based criterion is appropriate and
generalize its form to encompass 2D composites with lossy
and resonant constituents. We use such criterion to characterize
effective medium behavior of candidate polaritonic-dielectric
and polaritonic-polaritonic structures. Subsequently, we in-
vestigate the transmission properties of selected composites in
Sec. IV. We analyze and explain their extraordinary angular
transmission profile, which can make them suitable optical
components, in Sec. V. Finally, we present our conclusions in
Sec. VI.

II. EFFECTIVE MEDIUM BEHAVIOR SIGNATURE
IN 2D PERIODIC COMPOSITES

Effective medium pictures for heterogeneous compos-
ites have been developed since the beginning of the 20th
century,14,15 with more recent research16 targeting the specific
case of two-dimensional (2D) photonic crystals (PCs) of
cylindrical rods. In particular, it was found that at the long-
wavelength limit a 2D PC with rods of dielectric constant ε1

that are embedded in a host material (matrix) with dielectric
ε2 behaves as an effective medium with distinctly different
permittivity for propagation with electric field parallel to the
rods (E waves) [see Fig. 1(a)], and for propagation with
magnetic field parallel to the rods (H waves) [see Fig. 1(b)].

In other words the expected effective permittivity for E waves,
εE , would be

εE = frε1 + (1 − fr )ε2, (1)

while the expected effective permittivity for H waves, εH ,
would be

εH = ε2
(1 + fr )ε1 + (1 − fr )ε2

(1 − fr )ε1 + (1 + fr )ε2
, (2)

with fr representing the fraction covered by the rod cross
section on the periodic plane, known as filling ratio. We
recognize in Eq. (2) the Maxwell-Garnett result,15 which
applies to cermet topologies, as is the case of a nonoverlapping
PC.

There have been a number of works that attempt to go
beyond the simple effective medium formulas shown above,
and extend the frequency range of the description of the system
as a homogenized medium.17–22 However, the dire question
that remains is the following: Are there any identifiable
signature behaviors for an effective medium behavior of
a heterogeneous composite structure? Evidently, mismatch
between actual transmission or reflection and the one predicted
from a homogenized model does not necessarily imply failure
of effective medium picture. It would be of particular interest
to be able to identify a signature for a bulk effective medium
behavior of a certain composite by properly analyzing its
transmissive or reflective behavior. In the following, we
proceed to develop criteria establishing such signature of bulk
effective medium picture.

Let us consider a composite material slab composed of
a sufficient number of meta-atom building blocks. If such
composite behaves as a bulk effective metamaterial, then its
optical properties should be independent both of its thickness
and of the angle of incidence. Since the optical response
is distinctively different for E waves and H waves, it is
expected that the optical response of a 2D periodic composite
metamaterial would be described with a permittivity tensor
given by

ε =

⎡
⎢⎣

εH 0 0

0 εE 0

0 0 εH

⎤
⎥⎦ . (3)

If in addition an effective magnetic behavior is present,
then the optical constitutive parameters would also include
a permeability tensor given by

μ =
⎡
⎣μE 0 0

0 μH 0
0 0 μE

⎤
⎦ . (4)

In the above expressions, we assumed that the rods of the
2D composite are aligned along the y axis, which is also
the optical axis of the uniaxial metamaterial, and arranged
periodically on the xz periodic plane (as seen in Fig. 1). The
E and H superscripts in the elements of the permittivity
and permeability tensors correspond to the constitutive pa-
rameters under E-wave and H-wave incidence, respectively.
In Appendix A, we recap the expected transmission T and
reflection R, as well as the reflectivity over transmissivity ratio
r/t for a general homogeneous uniaxial medium of thickness
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L, constitutive parameters given by Eqs. (3) and (4), and under
the illumination conditions depicted in Fig. 1.

For a thickness-based test of effective medium validity we
assume normal incidence; i.e., θI = 0. If the composite does
behave like an effective medium, then the complex reflectivity
r and transmissivity t must satisfy Eq. (A3) for any arbitrary
thickness L, with χ given by Eq. (A7). Let us define a parameter
η given by

η ≡ 1

χ − 1/χ
. (5)

Evidently, such parameter should be independent of L. After
application of Eq. (A3) for two different thicknesses, L and 2L
respectively, it is easy to show after some math manipulation

|Re(η)| =

∣∣∣∣∣∣∣Re

⎡
⎢⎣i

sin
[
cos−1 ( r

t )2L

2( r
t )L

]
2
(

r
t

)
L

⎤
⎥⎦

∣∣∣∣∣∣∣ (6)

and

|Im(η)| =

∣∣∣∣∣∣∣Im
⎡
⎢⎣i

sin
[
cos−1 ( r

t )2L

2( r
t )L

]
2
(

r
t

)
L

⎤
⎥⎦

∣∣∣∣∣∣∣ . (7)

Note that cos−1 in the above equations represents the
principal value of the function. Equations (6) and (7) imply
that for a composite material that behaves as an effective
medium the actual calculated values of the right-hand side
must be more or less constant. Put differently, Eqs. (6) and
(7) provide the means to quantify the applicability of the
effective medium picture for a certain system, by calculating
the variance of the quantities |Re(η)| and |Im(η)|, with different
values of the sample thickness L. The larger the magnitude
of such variance the larger the deviation from the effective
medium picture. Also, for particular cases with only inherently
lossless constituents, the right-hand side of Eq. (7) should
yield zero. The mere appearance of a significant imaginary
part in η would signify the breakdown of effective medium
behavior.

In order to evaluate the thickness criterion developed above,
we test it on a well-studied system. In particular, we will
investigate a two-dimensional photonic crystal composed of
Si rods in a square lattice arrangement embedded in air,
under illumination conditions shown in Fig. 1 and normal
incidence. As drawn in Fig. 1 both the interface and propa-
gation direction z lie along the �X symmetry direction. We
take the dielectric constant of Si to be equal to 11.56 and
diameter of the rods to be 0.6a, with a being the lattice
constant of the square lattice, corresponding to a filling
ratio fr = 0.2827. For this type of dielectric PC, which has
frequency scalable properties,24,25 we will quote frequency f
in dimensionless units, f a/c, with c being the velocity of
light.

We proceed now to apply the thickness test for such
structure. For this purpose, we calculate with the transfer
matrix method (TMM),26 the ratio of the complex reflection
and transmission amplitudes r/t , for different thicknesses L.
In particular, we vary L from 1a, to 30a with a step of 1a

and from 30a to 60a with a step of 2a. In this manner, we
are able to construct numerically the absolute value of the real

FIG. 1. (Color online) EM waves incident from vacuum, with
an angle θI , into a uniaxial anisotropic medium corresponding to a
homogenized 2D PC composite. k1, and k2 represent the wave vectors
in vacuum and inside the homogenized uniaxial medium, respectively.
In (a) we see a case with the electric field perpendicular to the plane
of incidence xz (E polarization or E waves). Conversely in (b) we see
a case with the magnetic field perpendicular to the plane of incidence
xz (H polarization or H waves) (Ref. 23).

and imaginary parts of η with the use of Eqs. (6) and (7), for
values of L ranging from 1a to 30a with a step of 1a. From
these we are able to obtain the average values of |Re(η)| and
|Im(η)| over many thicknesses, and associated variances as a
function of the dimensionless frequency f a/c.27–29 We have
included in these quantities data with L � 2a, as we always
observe an abrupt change in |Re(η)| and |Im(η)| from L = 1a

to L = 2a, implying that we do not have bulk properties for a
single layer of cylinders.

We plot the average values of |Re(η)| and |Im(η)|, |Re(η)|
and |Im(η)|, respectively, in Figs. 2(a) [3(a) ] and 2(c) [3(c)]
for the case of E waves (H waves) versus the dimensionless
frequency f a/c. The corresponding variances are shown in
Figs. 2(b) and 2(d) [3(b) and 3(d) ] for the case of E waves
(H waves). Note that the PC band gap regions along �X for
E waves are shown in Fig. 2 as lightly shaded regions. There
are no band gaps along �X for H waves, but we indicate
the band edge at the X symmetry point where the first and
second bands anticross with the vertical dotted lines in Fig. 3.
The dark-shaded region represents a frequency region where

035128-3



FOTEINOPOULOU, KAFESAKI, ECONOMOU, AND SOUKOULIS PHYSICAL REVIEW B 84, 035128 (2011)

FIG. 2. (Color online) Quantifying validity
of effective medium picture with the thickness
test in a 2D dielectric PC structure for E waves
[incident as shown in Fig. 1(a) for θI = 0]. The
absolute values of the real and imaginary part
of η are calculated numerically for different
thicknesses L (Refs. 27–29). The corresponding
averages are shown in panels (a) and (c), respec-
tively, with the respective variances shown di-
rectly below [panels (b) and (d)]. The prediction
for the η parameter from EMT [Eq. (1)] is shown
as the dotted line in (a). The dashed line represent
the value corresponding to a refractive index
np extracted from the band structure along �X

direction [shown in the inset of panel (b)]. The
light-shaded region represent band gap regions,
while the dark-shaded region is a region were no
data could be obtained (Ref. 27–29).

it was not possible to have data due to low |r/t | values for
many thicknesses.27–29 The dotted horizontal line in Figs. 2(a)
and 3(a) represents the |Re(η)| calculated with the use of
the effective medium dielectric constant [Eq. (1) and Eq. (2),
respectively]. We also extract a refractive index np from the
band structure25 along �X,8 i.e., np = ck/ω, with k being the
wave vector along �X. Incidentally, we note that a retrieved
refractive index from r/t given from Eq. (D3), following the
procedure detailed in Appendix D, is in excellent agreement
with the band structure extracted index. We show the latter
in the inset of Fig. 2(a) [3(a)] for the case of E waves [H
waves]. We have calculated a |Re(η)| value corresponding to
this index and depict this as a dashed line in Figs. 2(a) and 3(a).
Note that field averaging, Maxwell-Garnett EMTs, and band
structure based homogenization would predict a zero value for
|Im(η)|.

For both E waves and H waves we observe that the band
structure and numerically extracted |Re(η)| value agree well
for frequencies where the variance is low. As the variance
increases also the disagreement between the two increases.
This coincides with the appearance of an increasing imaginary
part in η—which is also characterized by very high variance—
signifying the breakdown of the effective medium picture.
What is surprising is that when we are inside band gaps, there
is a large extracted imaginary part of η, but nevertheless the
variance of |Im(η)| is low. We could argue that the system can
be described perhaps in such cases by an artificial effective
medium. We will discuss this point further later in this
section.

As a confirmation of the reliable prediction of effective
medium validity through the thickness test, we compare
the transmission versus thickness L between the actual PC
and a suitable homogeneous medium for both E waves

FIG. 3. (Color online) Same as in Fig. 2
but for the case of H waves [incidence as
shown in Fig. 1(b) for θI = 0]. Here, we do not
have any band gap in the plotted region along
the propagation direction (�X). The vertical
dashed lines (not present in Fig. 2) represent the
frequency where the first and second band of the
H waves anticross at the X symmetry point.
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FIG. 4. (Color online) E-wave transmission
results vs PC thickness, for various frequencies,
designated in each panel in dimensionless units
f a/c, with a being the lattice constant and c
the velocity of light. We compare transmission
between the actual PC medium (filled circles),
a homogenized medium with permittivity corre-
sponding to the field-averaging effective permit-
tivity [Eq. (1)] (solid lines), and a homogenized
medium with refractive index np extracted from
the band structure [inset of Fig. 2(b)] (dotted
line). The transmission results corresponding to
band structure extracted index are not shown
for the cases of panels (g) and (h) because the
respective frequencies lie beyond the first band
edge. We have zoomed inside panel (c) and show
this in the bottom panel. This highlights the
excellent agreement between actual PC trans-
mission and the transmission corresponding to
a homogenized medium with refractive index
np . Note the apparent discrepancy for this case
with a homogenized medium with permittivity
corresponding to the field-averaging formula of
Eq. (1).

and H waves at normal incidence. The transmission for the
actual PC structure is calculated with the TMM method,26

while we use the formulas in Appendix A to calculate the
transmission of the homogenized PC. We assume two different
types of homogenized media. For the first type we assume
optical parameters which correspond to field averaging for the
case of E waves [Eq. (1)] and Maxwell-Garnett theory for
the case H waves [Eq. (2)]. For the second type, we assume
the band structure extracted refracted index, shown in the
insets of Figs. 2(b) and 3(b) for E waves and H waves,
respectively.

We plot the results in Figs. 4 and 5, respectively, for various
dimensionless frequencies, f a/c, which are designated inside
the corresponding subfigures. The TMM results are indicated
with the filled solid circles. The effective medium results
according to Eqs. (1) and (2) are shown as solid lines, while the
results corresponding to the second type of effective medium
with parameters extracted from the band structure are plotted
as dotted lines. The effective medium description from Eqs. (1)
and (2) does not seem to cover the full frequency range of
effective medium picture validity as predicted by the thickness
test. On the other hand, we find most excellent agreement
between actual transmission and transmission of the second
type of homogenized medium up to dimensionless frequencies
of f a/c = 0.08 for E waves and f a/c = 0.15 for H waves. We
can see this clearly in the bottom panels of Figs. 4 and 5 which
are a zoomed version of panels Fig. 4(c) and 5(c), respectively.
These results suggest that indeed the thickness test is a rigid

indicator for the suitability of an effective medium picture for
the dielectric PC.

Despite the clear reliability of the thickness test developed
above, there are certain shortcomings. An obvious one is the
requirement to obtain r/t for a large number of thicknesses,
which makes it overly tedious. However, the main disadvan-
tage of the thickness test is that it cannot be applied to lossy
media, which is the case of polaritonic composites. This is
because as absorption increases with thickness, t becomes
negligible. We therefore are in need of a test that does not
require very large thicknesses, so that it would be transferable
in lossy media composites, which is the case of our interest in
this paper.

We will construct a second test probing the angular response
of r/t for the actual structure, with incident angles θI as
seen in Fig. 1. If the effective medium picture is valid the
angular response of the system should also be close to that
corresponding to a homogeneous medium. After some math
manipulation we obtain from Eq. (A3)

sin2 θI = c2

ω2L2
[B(θI = 0) − B(θI )] ≡ A(θI ) (8)

for the case of E waves and H waves.
The quantity B in expressions (8) is

B(θI ) = Re

(
cos−1

(
r
t

)
2L

2
(

r
t

)
L

+ lπ

)2

θI

, (9)
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FIG. 5. (Color online) Same as in Fig. 4 but
for the case of H waves, with the bold lines
representing transmission corresponding to the
Maxwell-Garnett permittivity, expressed in Eq.
(2). The extracted band structure index np used
for the transmission spectra given with the dotted
lines is given in the inset of Fig. 3(b).

with cos−1 representing the principal value of the function
and the integer l representing the choice of the branch.
Accordingly, if the system behaves as a homogeneous medium,
one of the branches of A(θI ) defined in Eq. (8) will be
common for different thicknesses L. This common branch
should additionally show a sin2 functional dependence with
the angle of incidence θI for both E waves and H waves. In
other words, the sin2 functional form of A(θI ) constitutes a
signature for a behavior of the composite as a bulk uniaxial
effective metamaterial. In the following, we call the search for
such signature the “angle test.”

We first apply the angle test for E waves for the same PC
system we investigated with the thickness test for E waves,
i.e., under illumination shown in Fig. 1(a). We do so for
PC thicknesses of L and 2L, for different incident angles θI

ranging from 0◦ to 90◦. We construct the right-hand side
of Eq. (8) from the r/t values calculated from the TMM
method.26 We show in Fig. 6 the different branches of A(θI )
for different values of thickness L. The circles, diamonds,
and x’s represent thicknesses L = 5a, L = 7a, and L = 10a,
respectively, where a is the lattice constant shown in Fig. 1.
Unavoidably, in some cases a range of angles may be missing
from our analysis, as we do not include points with low r/t

values.27

In panels (a), (b), and (c) of Fig. 6 we show the results
for dimensionless frequencies f a/c equal to 0.02, 0.10, and
0.224, respectively. For frequency f a/c = 0.02 we observe
the existence of a common branch that follows excellently a
sin2 θI function, shown as the dashed line for comparison. We
see the corresponding result in Fig. 6(a). The inset in Fig. 6(a)
is a blowup of the middle part of the figure to emphasize such
excellent agreement. For frequency f a/c = 0.10 [Fig. 6(b)]
we observe the existence of branch solutions for L = 5a,

7a, and 10a that lie quite close to each other and close to
the dashed line representing the sin2 θI function, but with
some identifiable disagreement. The latter increases for larger
frequencies. So the angle test implies that the effective medium
picture for E waves starts to break down approximately at
f a/c = 0.10. Such conclusion is in line with the analysis
from the “thickness test.” Our observations for H waves are
similar, which put the effective medium break down point at
about f a/c = 0.13.

It is interesting to check what happens in the band gap,
where surprisingly we find a small variance on |Re(η)| and
|Im(η)| with the thickness test. We show in Fig. 6(c) the
angle test result for a frequency lying well inside the band
gap (f a/c = 0.224). Surprisingly we find a common branch
solution for L = 5a, 7a, 10a in such a case and we point this
out in the figure with the small black arrow. However, this solu-
tion does not follow at all the characteristic sin2 θI dependence.
This result, together with the existence of a high imaginary part
in η, suggests that we may be able to describe the PC in such
a case as an effective medium. However, the effective medium
in this case is just as an artificial parametrization.

From the above we can conclude that the angle test is
sufficient to determine effective medium validity. Because we
can choose smaller thicknesses to apply it, it is transferable to
cases involving lossy components. So, to characterize effective
medium behavior of the polaritonic composites we will rely on
the sin2 characteristic signature of the angle test. Our ultimate
goal is to construct polaritonic composites that behave as
uniaxial metamaterials for any arbitrary angle of incidence.
It is so essential to investigate the effective response of the
medium as a whole, irrespective of the illumination conditions.
Accordingly, we should understand how to transfer knowledge
for effective medium validity frequency ranges for E waves
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FIG. 6. (Color online) The angle test for E waves on a square
dielectric PC (same parameters as the PCs considered in Figs.
2–5). The horizontal axis represents the incident angle θI , and
the vertical axis represents the quantity A(θI ) which is defined
in Eq. (8). The circles, x’s, and diamonds are for PC thickness
values L = 5a, 7a, and 10a, respectively, with a being the lattice
constant. The continuous dashed line represents the sin2 function.
Panels (a), (b), and (c) respectively represent the results for differ-
ent dimensionless frequencies f a/c with c the velocity of light.
In particular f a/c = 0.02, 0.10, and 0.224 in (a), (b), and (c),
respectively.

FIG. 7. (Color online) Incidence out of the periodic plane on a 2D
square photonic crystal, seen as rods in the figure. The embedding
box represents the equivalent homogenized uniaxial medium. We
show the P-polarization case in (a) and the S-polarization case in (b).
ψ indicates the angle between the surface normal and the incident
wave vector k1. The azimuth angle φ represents the angle between
the plane of incidence (shaded parallelepiped) and the x direction.
The latter represents the periodic direction along the surface. Special
cases with φ = 0 or φ = π represent conventional incidence in the
periodic plane, leading to H waves for the P-polarization case and to
E waves for the S-polarization case, as seen in Fig. 1.

and H waves, respectively, as obtained from the angle test,
to cases of arbitrary incidence. We show the square PC,
along with the homogenized slab, in Fig. 7, where we depict
P- and S-polarized waves incident at an arbitrary direction
characterized by the angles ψ and φ, also designated in the
figure. (For incidence out of the periodic PC plane, we cease
to have E and H waves.30)

The propagation inside a general uniaxial medium under
arbitrary illumination is quite complex involving in gen-
eral the simultaneous propagation of two different beams,
corresponding to different surfaces of wave normals31 (also
known as equifrequency surfaces, EFS8,32). One is known
as the extraordinary beam, and the other as the ordinary
beam. We depict a general case in Fig. 8. Note that specific
illumination conditions yield single-beam propagation. These
are the cases with azimuth φ = 0, π , which will yield E
waves or H waves. Also, cases with φ = π/2,3π/2 yield
single-beam propagation, which is extraordinary if the P-
polarized wave is incident, or ordinary if the S-polarized
wave is incident. For consistency and completeness we recap
the dispersion relations ω(k), yielding the surfaces of wave
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FIG. 8. (Color online) The surfaces of wave normals, for a
uniaxial slab with optical axis along y. The outer (inner) ellipse
(sphere) represents the dispersion relation ω(k) for the extraordinary
(ordinary) mode. For waves incident at arbitrary azimuth, coupling
to both extraordinary and ordinary mode occurs. For special cases
of wave incidence, we have coupling to either the extraordinary or
ordinary branch. We see these cases in the figure as solid, bold solid,
dotted, and dashed curves on the two surfaces. The corresponding
incident polarization and wave orientation for each of these special
cases is directly indicated. Note that the azimuth φ is defined in
Fig. 7.

normals for a general uniaxial medium, in Appendix B. In
Appendix C, we recap the 4 × 4 transfer matrix method
(developed by Yeh33) that we employ to precisely calculate
the expected transmission through a uniaxial composite for
arbitrary illumination.

We will consider a certain plane of incidence as shown in
Fig. 7 with the electric field either parallel [Fig. 7(a)] or perpen-
dicular [Fig. 7(b)] to the plane of incidence, designated as P and
S polarization, respectively. We consider a PC of thickness L =
20a, and compare the actual transmission versus frequency as
calculated from the numerical TMM with the transmission
corresponding to a homogenized uniaxial effective medium,
calculated with the methodology of Appendix C. We remind
the reader that the band structure extracted homogenized
medium covered the entire range of effective medium validity
for E waves and H waves, respectively. So we will consider
an effective uniaxial medium with permittivity tensor of Eq.
(3) with εE,H = n2

p, where the phase index is extracted from
the band structure for E waves and H waves, respectively [see
corresponding inset figures in Fig. 2(b) and 3(b)].

In Fig. 9 we show such results for P polarization for four
different selected cases of off-plane incident illumination:
(i) ψ = 20◦, ϕ = 90◦; (ii) ψ = 70◦, ϕ = 90◦; (iii) ψ = 20◦,
ϕ = 60◦; (iv) ψ = 70◦, φ = 60◦. The solid lines represent
the actual TMM results, while the solid lines with circles
the band structure extracted homogenized medium results.
We have done the same calculation for S waves (not shown
here). By analyzing all cases, the conclusion is common. The
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FIG. 9. (Color online) Transmission vs dimensionless frequency
f a/c through a 2D PC for out-of-plane incidence and P polarization.
Different incident orientations are considered and indicated inside
panels (a) through (d). The orientation angles ψ and φ are defined
in the schematics of Fig. 7. The transmission through the actual PC
is calculated with Pendry’s TMM method (Ref. 26) and is shown
as the solid lines in the figures. For comparison, we calculate the
transmission for an equivalent homogenized medium with the method
presented in Appendix C. The corresponding result is shown with
the solid lines with circles for optical parameters extracted from the
E-wave and H-wave PC band structures [seen in inset of Figs. 2(b)
and 3(b), respectively].

frequency range of agreement of the actual and homogenized
medium result varies with polarization and illumination angle.
However, we always see agreement for frequencies up to
f a/c = 0.08, which was the predicted overlapping range of
excellent effective medium validity for E waves and H waves.

To resume, the effective medium picture for an arbitrary
orientation is valid for the frequency region where the effective
medium picture is valid for both E waves and H waves. In addi-
tion, we have observed that traditional EMTs may not always
accurately describe effective medium behavior. Accordingly,
in the following we characterize effective medium behavior of
the 2D polar material composites with the angle test.

III. 2D POLARITONIC PHOTONIC CRYSTALS:
EVALUATING THEIR BEHAVIOR AS EFFECTIVE

UNIAXIAL METAMATERIALS

We consider two different polaritonic PC structures, both
consisting of rods with radii, R equal to R = 0.30a, with a
being the lattice constant, in a 2D square lattice arrangement.
The first PC consists of NaCl (salt) rods in a silicon (Si) matrix,
while the second one comprises LiF rods in a NaCl matrix. For
the polar materials, i.e., NaCl and LiF, we assume a Lorentzian
model for the permittivity function ε(ω); i.e.,

ε(ω) = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − iω�

)
. (10)

The parameters in the Lorentzian permittivity function ex-
pressed in Eq. (10) were obtained for both NaCl and LiF
by fitting to the actual experimental values, tabulated in
Ref. 40. From such fitting we obtained for NaCl ε∞ = 2.22,
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FIG. 10. (Color online) Lorentzian fit for the real part (dark lines)
and imaginary part (light-colored lines) of the permittivity ε for NaCl
[panel (a)] and LiF [panel (b)]. The circles and squares represent
the corresponding experimental values as tabulated in Ref. 40. The
vertical lines bound the spectral region with ε < 0 known as the
polariton gap (part of region shown for the LiF case).

ωT = 30.90 THz, ωL = 50.37 THz, and � = 1.20 THz.41

Conversely for LiF we have ε∞ = 1.04, ωT = 57.98 THz,
ωL = 174.22 THz, and � = 4.40 THz. We plot the real
and imaginary parts of the permittivity versus the free-space
wavelength, so we are able to easier compare the free-space
wavelength of light with the size of the elementary building
blocks that we will consider in the following.

The results are shown in Figs. 10(a) and 10(b), respectively.
The circles (squares) represent the real (imaginary) parts of the
experimentally extracted permittivities as tabulated in Ref. 40.
The corresponding dark- and light-colored solid lines represent
the Lorentzian fit values from Eq. (10). The vertical lines in
Fig. 10 signify the region of prohibited propagation within the
bulk polar materials (the permittivity, ε < 0). Such spectral
region is also known as the polariton gap (only part of the
polariton gap region is shown for the case of LiF). The
polariton gap of LiF is close to the NaCl, but lies at higher
frequencies. We will focus our investigation on a spectral
region roughly encompassing the polariton gap of NaCl,
between 35 and 75 μm, which falls in the THz regime. In
this regime, Si has an almost flat permittivity equal to ∼11.56
and a negligible imaginary part, which we will ignore in our
calculations.

We explore in the following whether the proposed polari-
tonic PCs can behave as an effective isotropic medium for
the respective cases of E waves and H waves (see Fig. 1) and
the frequency region of interest. If this is true, our analysis
in Sec. II suggests that the entire composite structure would
behave as a bulk effective uniaxial metamaterial for any
arbitrary incident angle. This offers the possibility for unique

FIG. 11. (Color online) Panel (a) [(b)] shows reflection of E waves
(H waves) at normal incidence on the 2D NaCl/Si square polaritonic
PC vs free-space wavelength. The dotted line represents theoretical
prediction assuming the PC behaves as an effective medium with
permittivity obtained from field-averaging (Maxwell-Garnett) theory
[see Eq. (1) [Eq. (2)] and Fig. 12]. The bold solid line and dashed
lines are the TMM numerical results for the structures with building
block size of 1 and 5 μm, respectively.

dispersion engineering of the ordinary and extraordinary
propagating waves beyond the capabilities of natural materials.
Since our wavelength of interest is targeted around the NaCl
polariton gap region, for each types of polar PCs we will
consider two different structures. These will have identical
composition, the same relative geometric features (i.e., square
lattice of rods with radius R = 0.3a with a being the building
block size), but a different building block size a. PCs with
dispersive constituents cease to have scalable properties, so
an analysis in dimensionless units does not apply—the actual
size of the building block must be known.24

Specifically, we take a = 1 μm for the first structure and
a = 5 μm for the second structure. We consider then EM
waves incident normally through 25 building blocks of the
first structure and 5 building blocks of the second structure, so
that the wave travels through the same polaritonic composite
material thickness. We calculate numerically with TMM26 the
reflection through these structures. The TMM reflection results
for the NaCl/Si composite are shown in Fig. 11(a) for E waves
and in Fig. 11(b) for H waves. The solid lines represent the case
for the structure with 1 μm building block size while the dashed
lines the structure with 5 μm building block size. We also show
for comparison as dotted lines the theoretical reflection value
corresponding to a homogenized medium 25 μm thick, as
calculated from formula (A2) given in Appendix A. We assume
a permittivity predicted from field-averaging EMT [Eq. (1)] for
E waves and Maxwell-Garnett theory [Eq. (2)] for H waves.
These effective permittivities for the NaCl/Si composite are
shown in Fig. 12. The corresponding reflection comparisons
and EMT permittivities for the LiF/NaCl composite are seen
in Figs. 13 and 14, respectively.
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FIG. 12. (Color online) EMT permittivities for the NaCl/Si
polaritonic composite vs free-space wavelength. The dark lines
correspond to the field-averaging result (εE), applicable to E waves,
while the light-shaded lines correspond to the Maxwell-Garnett result
(εH ), applicable to H waves. The solid (dotted) lines represent the real
(imaginary) parts of the aforementioned quantities.

We see that both NaCl/Si and LiF/NaCl composites with
building block size of 1 μm behave excellently as bulk effective
media according to field-averaging (Maxwell-Garnett) theory
for the case of E waves (H waves). However, for the polaritonic
PCs with a building block size of 5 μm, we observe obvious
discrepancies between the actual and the effective medium
predicted results. This does not necessarily mean that these
composites do not behave as effective media. We therefore turn

FIG. 13. (Color online) Same as in Fig. 11 but for the LiF/NaCl
composite. The theoretical predictions for the permittivities used for
the transmission spectra indicated with dotted lines are shown in
Fig. 14, for both E waves and H waves.

FIG. 14. (Color online) Same as in Fig. 12, but for the LiF/NaCl
composite.

to the angle test developed in Sec. II to characterize effective
medium behavior.

Equations (8) and (9) representing the angle test are general
and should thus be appropriate for fingerprinting effective
medium behavior even for composites with lossy constituents.
We confirm this by applying such test for the NaCl/Si
composite with 1 μm building blocks. The reflection behavior
seen in Fig. 11 for this case suggests that we should expect
that composite to behave as a bulk effective medium. We
calculate B(θI ) from Eqs. (8) and (9), with θI being the angle
of incidence. We do this for two different thicknesses L equal
to 5a and 7a, with a representing the building block size of
the polaritonic PC, and for the cases of both E waves and
H waves. Indicatively, we show in Fig. 15 the case for E
waves at 40 μm incident wavelength. We can identify in the
figure clearly the characteristic sin2 effective medium picture
signature.

We uncovered such signature for the most part of the
targeted frequency regime of interest, for the NaCl/Si com-
posite with 1-μm-sized building blocks. However, for certain
frequencies, it was not possible to recover the characteristic
sin2 signature for either or both polarizations. The reason for
this is the following. From the wave dispersion relation we
have

c2

ω2
Re[(kE,H

z )2] = Re(εE,H ) − sin2 θI . (11)

However, around frequencies where media become highly
lossy, Re(εE,H ) can become very large and accordingly sin2 θI

would be much much smaller than Re(εE,H ). In such cases,
it would not be possible to uncover the sin2 θI signature,
even when it exists. This is because the sin2 θI magnitude
becomes comparable to the numerical error of the extracted
large Re(εE,H ) value. So, a supplementary angle test criterion
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FIG. 15. (Color online) Angle test for E-wave propagation at free-
space wavelength of 40 μm for the NaCl/Si PC with building block
with size a = 1 μm. The branches l, of the angle test function B(θI )
defined in Eq. (8), are calculated vs incident angle θI for two PC
thicknesses L. The results for L = 5a are shown with the circles
while the results for L = 7a are shown with the x’s. We find the
existence of a common branch for the L = 5a and L = 7a cases
which in addition follows a sin2 function in terms of θI (solid line).
The latter is the fingerprint of effective medium behavior.

is required in order to treat these cases. From the same wave
dispersion relation we have that

c2

ω2
Im

[
(kE,H

z )2
] = Im(εE,H ). (12)

So, Eq. (12) becomes for both polarizations

c2

ω2L2
Im

⎡
⎣(

cos−1

(
r
t

)
2L

2
(

r
t

)
L

+ lπ

)2

θI

⎤
⎦ = C(θI ) = C,

(13)

with cos−1 designating the principal value l, the branch order,
and C(θI ) designating the constant function. Equation (13) can
serve as a supplementary angle test criterion, for cases where
failure to obtain the sin2 signature is due to large permittivity
values. It follows from Eq. (13) that for a homogeneous
medium, the function E(θI ) given below,

E(θI ) = 2πc2

ω2L2
{Im[�(θI )]Re[�(θI )]/π + l Im[�(θI )]} ,

(14)
where

�(θI ) =
(

cos−1

(
r
t

)
2L

2
(

r
t

)
L

)
θI

, (15)

is a constant function versus the incident angle θI . We will
investigate accordingly the constant profile of the E(θI )
function and shall call this test the “flat-profile angle test”
in the following.

An example is the case chosen in Fig. 16, corresponding
to E waves through the NaCl/Si composite for a free-space

FIG. 16. (Color online) Flat-profile angle test for E-wave propa-
gation at free-space wavelength of 65 μm for the NaCl/Si PC with
building block with size a = 1 μm. The large, effective permittivity
value does not allow us to recover the sin2 signature. We see
however the clear constant function E(θI ) vs incident angle for two
different lengths of L = 5a and L = 7a, confirming effective medium
behavior.

wavelength of λ = 65 nm. We were not able to recover the sin2

signature, but the structure clearly satisfies the flat-profile angle
test criterion, as we can clearly see in the figure. One must seek
the common branch of E(θI ) for the two thicknesses of L = 5a

and L = 7a. In general, this can emanate from a different
branch order l in Eq. (13). In Fig. 16, we show such common
branch which in this particular case corresponds to l = 0, for
both thicknesses. Equation (12) implies that the constant value
of the E(θI ) function for the common branch solution should
yield the imaginary part of the effective permittivity. Indeed,
Fig. (16) suggests an Im(εE) value of 2.46, which is in excellent
agreement with the value of 2.43 predicted from EMT.

We found that the flat-profile angle test criterion proved
particularly useful for the LiF/NaCl composite. Both con-
stituents of this composite are highly lossy resonant material,
so one would expect to have high permittivity values pretty
much throughout the frequency range of interest. In particular,
when investigating the LiF/NaCl composite with 1-μm-sized
building blocks, mostly we found it was not possible to
characterize it with the sin2 angle test. However, as expected by
the agreement of the reflection spectra with EMT, the structure
demonstrates a constant profile in E(θI ), thus satisfying the
criterion of the flat-profile angle test of Eq. (14).

We turn our attention now to the characterization of the
composites with 5-μm-sized building blocks, where in the
reflection spectra of Figs. 11 and 13 we have identified
apparent departures from the results predicted from the field-
averaging and Maxwell-Garnett theory, respectively. We do
this to understand whether such discrepancies signify effective
medium breakdown, or the limitation of such aforementioned
theories. We first characterize the NaCl/Si composite. We do
so by employing in synergy both the sin2 and the flat-profile
angle test. We will start by applying first the sin2 criterion. If
the structure fails to demonstrate the sin2 signature then we
proceed in applying the flat-profile angle test. If a flat-profile
signature is recovered, this would ascertain effective medium
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FIG. 17. (Color online) Same as Fig. 15 but for E-wave propa-
gation at free-space wavelength of 50 μm for the NaCl/Si PC with
building block with size a = 5 μm.

validity. Otherwise, we will conclude that an effective medium
description would not be appropriate for the case under
consideration.

For E waves with free-space wavelength of 50 μm we
find two common branch solutions l of the function B(θI ),
which agree well with each other and are close to the sin2(θI )
function. We show this in Fig. 17. In other words, the angle test
ascertains that the effective medium picture works reasonably
well at such frequency. Now, if we move to shorter wavelengths
of 40 μm we observe two branch solutions that are close to
each other, but the difference between them and with the sin2

function becomes apparent (see Fig. 18). So a wavelength
of 40 nm signifies a a rough limit where the validity of the
effective medium picture degrades for E waves propagating
through the NaCl/Si PC with 5-μm-sized building blocks.
Conversely, for the case of H waves we could not recover
the sin2 signature in the frequency range of interest. For the
most part of the spectrum, we could not obtain a flat-profile
signature either, which alerts us to an effective medium picture
breakdown.

Now we repeat the same tests for the LiF/NaCl polaritonic
PC with 5-μm-sized building blocks for E waves and H waves.
The structure does not give a sin2 signature for most parts
of the spectrum of interest, but we uncovered a flat-profile
signature in all cases. This means that the LiF/NaCl polaritonic
PC with 5 μm still behaves as an effective medium despite
the discrepancies in the reflection spectra with the theoretical
expectations from a permittivity response according to field-
averaging and Maxwell-Garnett theory. The case of E-wave
propagation through the NaCl/Si composite at about 60 μm
free-space wavelength also demonstrated such discrepancy,
while the criteria we established did ascertain that the structure
should behave as an effective medium in this wavelength.

One major advantage of establishing these angle test
criteria is to be able to determine whether EM parameter
retrieval processes42–44 yielding the medium’s constitutive
parameters are meaningful. In order to demonstrate this and to

FIG. 18. (Color online) Angle test for E-wave propagation at free-
space wavelength of 40 μm for the NaCl/Si PC with building block
with size a = 5 μm. The circles, x’s, and solid lines represent the
same quantities as in Figs. 15 and 17. The blocked region is a region
with very small r/t values (Ref. 27). We find the existence of two
respective branches for the L = 5a and L = 7a cases. We start seeing
an apparent difference between the values of the aforementioned
branches and an obvious small deviation from the sin2 θI function.
This alerts us that the quality of the effective medium picture has
degraded at these frequencies.

understand the observed deviations from the traditional EMTs
in certain cases, we will perform such retrieval process in
the NaCl/Si and LiF/NaCl PC composites. The standard EM
retrieval process involves the evaluation of the permittivity and
permeability of a metamaterial, with the use of the reflectivity
r and transmissivity t .42,43 Here we will follow an alternative
methodology for the retrieval of the constitutive parameters,
which is based on employing the ratio of reflectivity over
transmissivity r/t , which we obtain in the numerical transfer
matrix method.26 We keep the process general allowing for the
possibility of existence of magnetic behavior, i.e. permeability
different from 1. The detailed steps of the methodology we
apply are given in Appendix D.

In all cases where the structure demonstrates an effective
medium signature, we were able to recover constitutive para-
meters that are independent of the thickness of the structure.
It is not surprising to find that in the cases where we were
not able to find an effective medium signature with the
established tests (either sin2 angle test or flat-profile angle test),
it was not possible to retrieve length-independent constitutive
parameters. The retrieval was performed by employing the
numerical r/t TMM values for thicknesses L = 5a,7a, and
10a, where a represents the size of the building block.

Both types of 1-μm-sized building block structures
(NaCl/Si and LiF/NaCl) yielded magnetic permeability equal
to ∼1, and effective permittivity in most excellent agreement
with the predictions of field-averaging theory for the case of E
waves, and Maxwell-Garnett theory for the case of H waves.
The NaCl/Si with 5-μm-sized building blocks behaves as an
effective medium only up to 50 μm free-space wavelength
and E waves. For the latter cases, we performed the retrieval
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process and found also an effective magnetic behavior. We
show the retrieved constitutive EM parameters in Fig. 19,
with permittivity depicted in panel (a) and permeability in
panel (b). Solid lines with circles represent the real part of the
latter quantities, while solid lines with diamonds represent the
respective imaginary parts. Again we show for comparison
the field-averaging prediction for the permittivity, with dashed
(dotted) lines for the real (imaginary part). In panel (c) we
depict also the retrieved refractive index n represented with
solid lines with circles for the real part and solid lines with
diamonds for the imaginary part. We observe that it is different
from the effective medium prediction (dashed and dotted
lines, respectively) but in excellent agreement with the band
structure45,46 extracted index (light and dark empty squares).
Note that the effective medium parameters at the frequency
edge of effective medium validity for this structure yield an
effective wavelength within the material that is about 3.5 times
larger than the structural building block.

We note in Fig. 19 that the frequency region around
60 μm where magnetic behavior appears is where we also
find a larger discrepancy between retrieved permittivity and
field-averaging EMT permittivity. Remarkably, it was around
the same frequency region where the TMM reflection spectra
did not match the calculated result from field-averaging EMT
predictions. We proceeded in also retrieving the constitutive
parameters for the LiF/NaCl PC with 5-μm-sized building
blocks. Our observations are very similar to the case of E waves
through the NaCl/Si PC with 5-μm-sized building blocks. In
particular, we consistently find that the departure from the

FIG. 19. (Color online) Retrieved permittivity function [panel
(a)], permeability function [panel (b)], and refractive index [panel (c)]
for E waves through the NaCl/Si composite with 5-μm-sized building
block vs the free-space wavelength. The real (imaginary) part of the
retrieved parameters is shown as solid lines with circles (solid line
with diamonds). For comparison we show the predicted permittivity
response function from field-averaging theory. Real (imaginary) part
of the latter is shown with dashed (dotted) line. In panel (c) the band
structure extracted refractive index is also shown with light (dark)
empty squares for the real (imaginary) part.

FIG. 20. (Color online) Figure of merit averaged over all illumi-
nation angles ψ and φ (defined in Fig. 7) vs free-space wavelength. In
(a) the result for the NaCl/Si composite is shown. In (b) the result for
the LiF/NaCl composite is shown. The solid (dotted) lines represent
the figure of merit for the extraordinary (ordinary) wave. The shaded
region represents the frequency region with effective εH < 0, in each
composite.

standard EMTs is accompanied by a small-strength magnetic
behavior. Magnetic behavior has been reported to occur before
in polaritonic PCs22,47 and is attributed to the large permittivity
contrast between the constituents.48,49 Incidentally, negative
imaginary parts in the permeability function that we observe
here are physical and have been reported before.50

To recap, the combination of the sin2 and flat-profile
angle-test label efficiently effective metamaterial behavior in
2D composites, even in the presence of high losses. Thus, we
have obtained a most valuable criterion determining whether
the constitutive parameters obtained from retrieval processes
are meaningful. Manmade composites which behave as bulk
homogeneous media are particularly attractive metamedia.
Owing to their length and angle-independent optical prop-
erties, they are expected to give a consistent response, which
is of particular importance if they are to be used as components
in optical setups. We stress that for the particular case of
2D composites, the angle-test must be satisfied for both E
waves and H waves. Only under this condition, the composite
would behave as an effective bulk uniaxial metamaterial under
arbitrary illumination.

In the following, we focus on 2D polaritonic composites
that behave as effective media throughout the frequency
region of interest. We have chosen therefore the NaCl/Si and
LiF/NaCl composite with a meta-atom size of 1 μm.
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FIG. 21. (Color online) Transmission of an
incident wave with wavelength of 55 μm through
a 25-μm-thick NaCl/Si polaritonic composite.
The transmission is shown vs the angles of
incidence ψ and φ that are defined in Fig. 7.
Transmission is calculated for the homogenized
effective medium (results shown in the left col-
umn) and for the actual composite with the TMM
method (results shown in the right column).
Panels (a), (d) represent the transmission for
the S polarization to S polarization channel.
Likewise panels (b), (e) represents transmission
for the S polarization to P polarization channel,
and panels (c), (f) represent transmission for the
P polarization to P polarization channel.

IV. EXTRAORDINARY TRANSMISSIVE PROPERTIES
OF UNIAXIAL 2D POLARITONIC COMPOSITE

METAMATERIALS

In the NaCl/Si composite we have prohibited propagation
only through one of the constituents (NaCl), while for the
LiF/NaCl composite there exists a frequency region where
transmission is very low in both bulk LiF and NaCl. It would
be very interesting to see the angular behavior of transmission
in these composites which is of utmost importance in the
construction of optical components such as polarization filters
and converters, as well as beam diverters, splitters, lenses,
etc. The chosen composites with 1 μm meta-atom size satisfy
excellently the standard EMTs. We will calculate therefore
the transmission for chosen frequencies and an arbitrary
illumination of angle ψ and azimuth φ (defined in Fig. 7).
We employ for such calculation the 4 × 4 transfer matrix
method which applies to homogeneous anisotropic media (see
Appendix C).

For optical parameters we will use the field-averaging
permittivity for εE and the Maxwell-Garnett permittivity for
εH . Such effective εE and εH parameters define the complete

permittivity tensor [given by Eq. (3)] and are depicted in
Figs. 12 and 14 for the NaCl/Si and LiF/NaCl composites,
respectively. We let the angles ψ and φ vary between 0◦ and
90◦. We calculate the transmission for a slab thickness of
25 μm along the propagation direction, z (see Fig. 7). This
means that the structures are about half a wavelength thick
for the frequency region of interest. In each case, we will
also calculate the actual transmission for the composite via
the numerical transfer matrix method26 for comparison. With
both these methods, we will calculate the part of transmission
corresponding to the outgoing wave with the same polarization
as the incident wave and the part of transmission corresponding
to the outgoing wave with different polarization as the incident
wave. Cross-polarization does not occur under the illumination
condition of Fig. 1, but can in general occur for an incident
wave impinging at an arbitrary direction as seen in Fig. 7.
The cross-polarization transmission channel emanates from
the simultaneous coupling to both ordinary and extraordinary
waves inside the uniaxial material (see Appendix C).

In both the structures, we found negligible transmission for
frequencies where both εE and εH are negative, or in cases
where either of the imaginary parts of εE and εH is high.
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FIG. 22. (Color online) Same as Fig. 21 but
for an incident wave with free-space wavelength
equal to 45 μm.

Therefore suitable operational frequencies would be those
at which at least one of εE and εH is positive and at the
same time both the respective imaginary parts are small. In
particular, the pertinent parameter for a good transmissive
behavior is the figure of merit (FOM),51–53 which is given
by the ratio |Re(k2z)|/Im(k2z).54 We can obtain the FOM
for the ordinary and extraordinary wave from Eqs. (B1) and
(B2), respectively. We show the FOM versus the free-space
wavelength in Figs. 20(a) and Figs. 20(b) for the NaCl/Si and
LiF/NaCl composites, respectively. The result for the ordinary
mode is shown with dotted lines, while the result for the
extraordinary mode is shown with solid lines. As we desire
unusual transmissive properties, we select to study further
certain characteristic cases, where the extraordinary wave is
characterized by a large FOM.

For the NaCl/Si composite we have εEεH < 0, and a high
figure of merit around 55 μm, for only the extraordinary
wave. We show the transmission as a function of the illu-
mination angles ψ and φ in Fig. 21. In panel (a) we show
the transmission channel from an S to S polarized wave.

Conversely, in panels (b) and (c) we show the S to P and
P to P polarization channels. We do not need to also show
the P to S polarization channel as it is the same as the
S to P channel because of reciprocity. The corresponding
transmissions for the actual composite calculated with the
numerical TMM26 are shown in panels (d), (e), and (f). We
observe a remarkably excellent agreement between the two
results for the actual and homogenized medium. We see in
Fig. 21 a significant transmission around 35% for both S to
S and P to P channels, and no possibility for polarization
conversion. What is interesting is that if for certain incident
angles φ, ψ the P to P channel has high transmission, then the
S to S channel has negligible transmission and vice versa. This
means that this structure can function as a polarization filter
yielding S or P polarized waves from an unpolarized source
just by changing the direction of incidence onto the structure.

If we move now to a little higher frequency we encounter
a region around 45 μm where both εE and εH are positive
with small imaginary parts, although NaCl has a negative
permittivity at such frequency. In this case both ordinary
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FIG. 23. (Color online) Same as Fig. 21 but
for an incident wave with free-space wavelength
equal to 45 μm through a 25-μm-thick LiF/NaCl
composite structure.

and extraordinary waves have high FOM. We show the
transmission as a function of the incident angles in Fig. 22 for
all the different transmission channels, which are designated
on the top of each respective panel. Also in this case, we
show the transmission results for the homogenized medium
in the left column and the transmission results for the actual
composite structure in the right column. Here too we observe
a remarkably excellent agreement between the two results. We
find in Fig. 22 transmission values as high as 80% for the S to S
and S to P polarization channels. Also, if we choose incidence
with ψ close to zero and azimuth φ around 45◦, the only
significant transmission channel with 40% transmissivity is
that of S to P or P to S polarization. In other words, the structure
acts as a very efficient polarization converter at such frequency.

Finally, it is worth looking at the transmission behavior
through the LiF/NaCl composite at 45 μm, where the ex-
traordinary wave has a high FOM. We depict the transmission
for the homogenized medium and actual composite for all
polarization channels in Fig. 23. We observe in Fig. 23 that
the qualitative behavior of the LiF/NaCl metamaterial at

45 μm is the same as the NaCl/Si metamaterial at 55 μm.
We emphasize that in such a case it is particularly impressive
to find a transmission as high as 20% through the composite
structure, when the transmission is next to zero for any angle
of incidence through a bulk 25-μm-thick NaCl or LiF slab at
such frequency.

The results in this section manifest that mixing polar
material with other polar materials or dielectrics is a route of
constructing uniaxial metamaterials with completely different
transmission behavior from their constituents. The observed
anisotropy in the permittivity tensor can be extraordinarily
high and includes cases where the elements of the permittivity
tensor are of opposite sign (hyperbolic dispersion11). Thus
these type of composites can be a promising recipe for the
construction of optical components operable at the THz spec-
trum. As we see a distinctively different angular transmission
profile between the cases of Figs. 21 and 23 and the case of
Fig. 22, it would be particularly interesting to understand more
this exotic transmissive behavior of the polaritonic uniaxial
metamaterial composites.
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FIG. 24. (Color online) Transmission vs an-
gles of incidence φ and ψ (defined in Fig. 7)
through the NaCl/Si composite for an inci-
dent wave of 55 μm free-space wavelength
(homogenized medium result). In (a) and (b)
we show the P polarization to P polarization
transmission for a 15-μm- and 32-μm-thick
composite, respectively. Conversely, in (c) and
(d) we show the S polarization to S polarization
transmission for a 15-μm- and 32-μm-thick
composite, respectively.

V. UNDERSTANDING THE EXOTIC TRANSMISSIVE
PROFILE OF THE POLARITONIC UNIAXIAL

METAMATERIAL 2D COMPOSITES

We observe a very interesting transmission profile through
the polar composite metamaterial structures, which can be
exploited for optical component applications as we discussed
in Sec. IV. It is therefore particularly interesting to understand
the physical origin of the angular transmission map. Strikingly,
the angular transmission maps of the NaCl/Si composite at
55 μm wavelength are similar to the transmission maps of
the LiF/NaCl composite at 45 μm wavelength. Both are
distinctively different from the angular transmission maps of
the NaCl/Si composite at 45 μm wavelength.

To understand this further we calculate the angular trans-
mission maps for different thicknesses for the NaCl/Si
composite at 55 μm wavelength. We show such angular trans-
mission map in Fig. 24. In panels (a) and (b) we show the result
for the P to P polarization channel for thicknesses of 15 and
32 μm, respectively. Conversely, in panels (c) and (d) we show
the result for the S to S polarization channel for thicknesses of
15 and 32 μm. We compare these with the respective results in
Figs. 21(c) and 21(a) for a 25-μm-thick NaCl/Si composite.
We observe that while the actual magnitude of transmission
changes, the morphology of the angular transmission maps
is insensitive to the thickness of the structure. The same
holds true for the S to P polarization channel as well (not
shown here). We calculated the angular transmission maps
for various thicknesses also for the LiF/NaCl composite
at 45 μm wavelength. We also observed in such a case a
thickness-insensitive morphology of the angular transmission
maps for all polarization channels.

Now, we move to the NaCl/Si composite at 45 μm
wavelength. Here we find a completely different behavior. We
find angular transmission maps with morphology changing
drastically with the thickness of the structure for all polariza-
tion channels. Indicatively, we show the angular transmission
map for the P to P polarization channel in Fig. 25. Panel

(a) corresponds to a thickness of 15 μm and panel (b)
corresponds to a thickness of 32 μm. Note also the result
for a thickness of 25 μm that was depicted in Fig. 22(c). We
observe there a dramatic change in the morphology of the
angular transmission maps, when we increase the thickness
from 15 μm to 25 μm. We observe a smaller change in
the morphology when the structural thickness in increased
from 25 μm to 32 μm. The same observations hold for the
S to S polarization channel, while the S to P polarization
channel seems to show a smaller sensitivity on the structural
thickness.

The reason that we find the same qualitative behavior of the
transmission maps for the case of the NaCl/Si composite at
55 μm wavelength and the case of the LiF/NaCl composite at
45 μm wavelength, but different from the case of the NaCl/Si
composite at 45 μm wavelength is the following. The former
cases have Re(εE) > 0, Re(εH ) < 0, and a high FOM only for
the extraordinary mode. This means that for these cases, the
ordinary wave survives through the structure only for a finite
skin depth of the order of 1/Im(kO), with kO being the ordinary
wave vector along z, given by Eq. (B1). So essentially, we
have single-beam propagation after ∼2 μm, ∼3.5 μm for the
NaCl/Si composite at 55 μm and for the NaCl/LiF composite
at 45 μm, respectively. On the other hand, Re(εE) > 0 and
Re(εH ) > 0 for the NaCl/Si composite at 45 μm wavelength.
So in such case transmission is birefringent, with both ordinary
and extraordinary modes coexisting. The thickness depen-
dence of the angular morphology in the latter case emanates
from the thickness dependence of the relative acquired phase
between these two modes as they propagate through the
structure.

In the following, we will try to understand the particular
morphology of the angular transmission maps that is common
for the case of the NaCl/Si composite at 55 μm wavelength
and the LiF/NaCl composite at 45 μm wavelength. Is the
observed similarity in the morphology of the transmission
maps coincidental, or should we expect to find it in any uniaxial
metamaterial with Re(εE) > 0 and Re(εH ) < 0?
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FIG. 25. (Color online) Transmission vs angles of incidence φ

and ψ (defined in Fig. 7) through the NaCl/Si composite for the P
polarization to P polarization channel for an incident wave of 45 μm
free-space wavelength (homogenized medium result). In (a) we show
the transmission through a 15-μm-thick composite while in (b) the
transmission though a 32-μm-thick composite.

The coupling efficiency of the incident wave with the
extraordinary mode is proportional to the alignment between
their respective polarization. This implies that

cSS
eff ∝ |p̂S · p̂EO |2 (16)

and

cPP
eff ∝ |p̂P · p̂EO |2, (17)

with cSS
eff and cPP

eff representing the coupling efficiencies for
the S to S and P to P polarization channels, respectively.
It is easy to show with the use of Eqs. (C7)–(C14), to-
gether with Eqs. (B3)–(B4), that cSS

eff has a cos2 φ angular
envelope, while cPP

eff has a sin2 φ angular envelope. This is
consistent with our observation in the angular transmission
maps, where we find the S to S polarization channel to
be dominant for small azimuth angles φ, and the P to
P polarization channel to be dominant for large azimuth
angles φ.

In addition, we observe a highly insensitive profile with the
angle ψ for the following reason. The cases of Figs. 21 and 23
have |εH |, |εE| quite larger in comparison to 1. In these cases,
the wave vector k2z of the extraordinary mode—obtained from
Eq. (B2)—is dominated by the nonangular terms. For other
frequencies, with also Re(εE) > 0 and Re(εH ) < 0, where
|εH |, |εE| are comparable or smaller than 1, we find a strong
angular dependence on k2z. In particular, we have large Im(kz)
values where both φ and ψ are large in such cases. This does
not influence much the angular map of the transmission for the
S to S polarization channel. However, for the P to P polarization

channel we find high transmission to be concentrated toward
small ψ angles.

VI. CONCLUSIONS

We have studied metamaterial behavior for 2D composites
composed of dielectric-polar or polar-polar material con-
stituents. The objective is to obtain composite metamaterials
that are highly suitable for the construction of THz optical
components. For this purpose, we have constructed a reliable
test that characterizes whether the composite behaves like a
bulk homogeneous uniaxial medium. We believe that such test
will aid the development of related criteria in 3D bulk meta-
materials which are in general bianisotropic.55 Based on the
developed test, we have analyzed different 2D composites and
selected certain structures behaving as a uniaxial homogeneous
medium.

We found that polar-media-based uniaxial metamaterials
with both Re(εH ) and Re(εE) positive have high FOM for both
ordinary and extraordinary modes. The angular transmission
map is thickness dependent, so the particular thickness must
be taken into account in optical device design. We have
found a particular case where the uniaxial metamaterial
composite functions as a polarization converter. On the other
hand, uniaxial metamaterials with Re(εE) positive and Re(εH )
negative, and respective magnitudes large in comparison with
1, have a characteristic angular transmission map that is
independent of the thickness of the metamaterial. In particular,
such cases have transmission that is high for many angles,
with either only the S to S or the P to P polarization
channel contributing. Therefore, these structures can operate
as efficient THz polarization filters.
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APPENDIX A: TRANSMISSION AND REFLECTION
THROUGH A HOMOGENEOUS UNIAXIAL SLAB: PLANE

OF INCIDENCE NORMAL TO THE OPTICAL AXIS

We consider the illumination conditions of Fig. 1, with
respect to the optical axis y (which corresponds to the rod
axis of the 2D homogenized composite). We have that the
transmission coefficient will be given by36

T E,H = 1
1
4

∣∣2 cos k
E,H
2z L − i

(
χE,H + 1

χE,H

)
sin k

E,H
2z L

∣∣2 , (A1)

the reflection coefficient by

RE,H =
1
4

∣∣(χE,H − 1
χE,H

)
sin k

E,H
2z L

∣∣2

1
4

∣∣2 cos k
E,H
2z − i

(
χE,H + 1

χE,H

)
sin k

E,H
2z L

∣∣2 , (A2)

and the complex reflectivity/transmissivity ratio by

( r

t

)E,H

L
= i

2

(
χE,H − 1

χE,H

)
sin k

E,H
2z L. (A3)
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The superscripts E and H refer to the cases of E waves and
H waves, respectively. k

E,H
2z is the wave vector along the

propagation direction z inside the material slab; i.e., we have

k
E,H
2z = ω

c

√
εE,H μE,H − sin2 θI , (A4)

where θI represents the angle of incidence depicted in Fig. 1.
For the parameter χ we have for the case of E waves and
θI �= 0,

χE = c

μEω

kE
2z√

1 − sin2 θI

, (A5)

while for H waves and θI �= 0,

χH = c

εH ω

kH
2z√

1 − sin2 θI

. (A6)

Note that for the simple case of normal incidence, i.e., θI = 0,
we have that

χE,H =
√

εE,H

μE,H
. (A7)

Note that we take μE,H = 1 for purely electric EM response.
Also all the above formulas are general and encompass cases
with lossy components.

APPENDIX B: DISPERSION RELATIONS FOR EM WAVE
PROPAGATION IN A HOMOGENIZED UNIAXIAL

METAMATERIAL: EXTRAORDINARY
AND ORDINARY WAVES

We assume we have a homogenized 2D composite metama-
terial, with purely electric response, following the permittivity
tensor given in Eq. (3). Solving Maxwell’s equations for such
a medium yields two distinct possibilities for the EM wave
dispersion relations ω(k):

εH ω2

c2
= k2

x + k2
y + k2

2z, (B1)

ω2

c2
= k2

x + k2
2z

εE
+ k2

y

εH
. (B2)

The first branch for the dispersion relation ω(k), given by
Eq. (B1), is normally referred to as the ordinary7 branch.
Conversely, the second branch given by Eq. (B2) is normally
referred to as the extraordinary7 branch. Note that kx and ky are
the wave vector components that are parallel to the interface,
and they are so conserved, i.e.,

kx = ω

c
sin ψ cos φ (B3)

and

ky = ω

c
sin ψ sin φ, (B4)

where the angles ψ and φ are defined in Fig. 7.
Ordinary waves have the wave vector, electric field vec-

tor, and magnetic field vector forming an orthonormal set
of vectors, while extraordinary7 waves have wave vector,
electric field vector, and magnetic field vector not mutually

perpendicular.7,34,35 These two branches were shown pictori-
ally for a general case in Fig. 8, as surfaces corresponding to
a certain frequency, ω.

APPENDIX C: TRANSMISSION THROUGH A
HOMOGENEOUS UNIAXIAL SLAB: GENERAL

ILLUMINATION CASE

Below we present how to calculate transmission through a
homogeneous slab of uniaxial material, with its optical axis
along the surface, for an illumination with azimuth φ �= 0
or 180◦. (Such cases were treated in Appendix A). The
formulas below apply for a uniaxial slab with electric response
only, i.e., μE = μH = 1, and encompass cases of lossy
materials.

1. Illumination with azimuth φ = π/2 or φ = 3π/2

In such case we have coupling only to the ordinary branch
for S-polarized incident waves or only to the extraordinary
branch for P-polarized waves. Then transmission is simply

T P,S = 1
1
4

∣∣2 cos k
P,S
2z L − i

(
χP,S + 1

χP,S

)
sin k

P,S
2z L

∣∣2 , (C1)

with χP = 1
εE

kP
2z

k1z
, for the case of P polarization, and χS = kS

2z

k1z

for the case of S polarization. As before k1z represents the
z component of the wave vector of the incoming EM, i.e.,
k1z = ω

c
cos ψ , with the angle ψ indicated in Fig. 7. We obtain

kP
2z from Eq. (B2) for P waves and kS

2z, from Eq. (B1) for S
waves. Note that kx and ky are the wave vector components
conserved parallel to the interface and are equal to 0 and
ω
c

sin ψ , respectively.

2. Illumination with arbitrary azimuth:
φ �= 0,π/2,π,3π/2,2π

For the case of arbitrary azimuth, the propagation inside
the uniaxial slab is quite complex. We have simultaneous
excitation of both ordinary and extraordinary waves and
polarization rotation inside the medium. Normally, such cases
were treated with the simple Jones method.37 However,
such method is crude as it neglect reflections from the
second interface, which can be particularly important for
cases with higher index of refraction. We adopt therefore
an exact method, developed by P. Yeh, the 4 × 4 transfer
matrix method.33 This method is a generalization of the
known 2 × 2 transfer matrix method suitable for homo-
geneous slabs or multilayers made from isotropic optical
media.36,37

We solve the system in a new coordinate system r
′ =

(x
′
,y

′
,z) where r

′ = R(φ)r, with R(φ) being the rotation
matrix38 for angle φ around axis z. Thus in this new coordinate
system we have k

′
x = ω

c
sin ψ and k

′
y = 0. We decompose the

electric field outside the slab into its S and P polarization
components. Note that in the r

′
coordinate system we would

have that the electric field for an incident S-polarized wave
is parallel to y

′
and the P-polarized wave lies in the x

′
z

plane. Inside the uniaxial slab the field is decomposed into
its normal modes (the ordinary and extraordinary wave). Then
continuity of the tangential components of the electric field
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E and magnetic field H enable us to relate the incident and
scattered S and P polarized fields as follows:⎡

⎢⎢⎣
AS

BS

AP

BP

⎤
⎥⎥⎦ = Muni

⎡
⎢⎢⎣

CS

0
CP

0

⎤
⎥⎥⎦ . (C2)

AS , BS , CS represent the incident, reflected, and transmitted S-
polarized components. Conversely, AP , BP , CP represent the
incident, reflected, and transmitted P-polarized components.
The 4 × 4 uniaxial medium transfer matrix Muni has the
following form:33

Muni = D−1
air Dslab P (L)D−1

slab Dair. (C3)

In Eq. (C3) Dair and Dslab are the dynamical matrices33,39 for air
and the uniaxial medium, and P (L) is the propagation matrix
through the uniaxial slab of thickness L. These are given by
the following expressions:

Dair =

⎡
⎢⎢⎢⎣

x̂
′ · p̂+

S x̂
′ · p̂−

S x̂
′ · p̂+

P x̂
′ · p̂−

P

ŷ
′ · q̂+

S ŷ
′ · q̂−

S ŷ
′ · q̂+

P ŷ
′ · q̂−

P

ŷ
′ · p̂+

S ŷ
′ · p̂−

S ŷ
′ · p̂+

P ŷ
′ · p̂−

P

x̂
′ · q̂+

S x̂
′ · q̂−

S x̂
′ · q̂+

P x̂
′ · q̂−

P

⎤
⎥⎥⎥⎦ , (C4)

Dslab =

⎡
⎢⎢⎢⎣

x̂
′ · p̂+

EO x̂
′ · p̂−

EO x̂
′ · p̂+

O x̂
′ · p̂−

O

ŷ
′ · q̂+

EO ŷ
′ · q̂−

EO ŷ
′ · q̂+

O ŷ
′ · q̂−

O

ŷ
′ · p̂+

EO ŷ
′ · p̂−

EO ŷ
′ · p̂+

O ŷ
′ · p̂−

O

x̂
′ · q̂+

EO x̂
′ · q̂−

EO x̂
′ · q̂+

O x̂
′ · q̂−

O

⎤
⎥⎥⎥⎦ , (C5)

P (L) =

⎡
⎢⎢⎢⎣

e−ikEO L 0 0 0
0 eikEO L 0 0
0 0 e−ikO L 0
0 0 0 eikO L

⎤
⎥⎥⎥⎦ . (C6)

In the above expressions p̂S , p̂P are normalized vectors indi-
cating the direction of the electric field for an S-polarized wave
and a P-polarized wave, respectively, in the air medium. On
the other hand, p̂EO , p̂O are normalized vectors representing
the direction of the electric field inside the uniaxial medium
for the extraordinary and the ordinary wave, respectively. p
vectors with the + superscript correspond to waves traveling
downward (see schematics of Fig. 7) while p vectors with the −
superscript correspond waves to traveling upward. Note that
x̂

′
, ŷ

′
are the unit vectors along the surface in the rotated x ′y ′z

system. Thus we have

p̂+
S = p̂−

S = ŷ
′
, (C7)

p̂+
P = − cos ψ x̂

′ + sin ψ ẑ, (C8)

p̂−
P = − cos ψ x̂

′ − sin ψ ẑ, (C9)

p̂+
EO = 1

NEO

(p+
EO,x ′ x̂

′ + p+
EO,y ′ ŷ

′ + ẑ), (C10)

p̂−
EO = 1

NEO

(−p+
EO,x ′ x̂

′ − p+
EO,y ′ ŷ

′ + ẑ), (C11)

where

p+
EO,x ′ = kx

kEO

cos φ − k2
x + k2

EO

kEOky

εH

εE
sin φ, (C12)

p+
EO,y ′ = − kx

kEO

sin φ − k2
x + k2

EO

kEOky

εH

εE
cos φ, (C13)

and

NEO =
√

|p+
EO,x ′ |2 + |p+

EO,y ′ |2 + 1. (C14)

Now for the direction of the electric field of the ordinary wave
we have

p̂+
O = 1

NO

(p+
O,x ′ x̂

′ + p+
O,y ′ ŷ

′ + ẑ) (C15)

and

p̂−
O = 1

NO

(−p+
O,x ′ x̂

′ − p+
O,y ′ ŷ

′ + ẑ), (C16)

where

p+
O,x ′ = −kO

kx

cos φ, (C17)

p+
O,y ′ = kO

kx

sin φ, (C18)

and

NO =
√

|p+
O,x ′ |2 + |p+

O,y ′ |2 + 1. (C19)

In Eqs. (C7) through (C18), the angles φ and ψ are defined
in Fig. 7, and kx , ky are the components of the incident wave
vector parallel to the interface that are conserved through the
entire structure, given by the expressions in Eqs. (B3) and
(B4), respectively. Now, kEO and kO are the wave vector
components along z, k2z corresponding to the extraordinary
and ordinary branch, respectively, as expressed in Eqs. (B2)
and (B1).

The q̂ give the directions of the respective magnetic fields;
i.e., (since all media are nonmagnetic)

q̂ =
(

sin ψ x̂
′ + ck2z

ω
ẑ

)
× p̂, (C20)

where we would substitute the respective p̂ vectors and k2z for
each case.
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Equations (C3) through (C20) together with Eqs. (B1)–
(B4) provide all the necessary information to calculate numer-
ically the 4 × 4 transfer matrix Muni. Then the transmission
for the case of S-polarized waves would be33

T = |tss |2 + |tsp|2 (C21)

and for the case of P polarization

T = |tpp|2 + |tps |2, (C22)

where,

tss = Muni,33

Muni,11Muni,33 − Muni,13Muni,31
, (C23)

tsp = −Muni,31

Muni,11Muni,33 − Muni,13Muni,31
, (C24)

tps = −Muni,13

Muni,11Muni,33 − Muni,13Muni,31
, (C25)

tpp = Muni,11

Muni,11Muni,33 − Muni,13Muni,31
. (C26)

Note that the factors tsp and tps represent cross-polarization
terms which are nonzero.

APPENDIX D: RETRIEVAL OF THE EM CONSTITUTIVE
PARAMETERS IN UNIAXIAL METAMATERIAL

COMPOSITES

The reflectivity over transmissivity through a homogeneous
uniaxial material slab is given from Eq. (A3). For the specific
case of normal incidence along the z direction (see Fig. 1), for
which we perform the retrieval process, and for the general
case with magnetic behavior present, the χ parameter for E
and H waves would be given by Eq. (A7), with k

E,H
2z given by

k
E,H
2z = nE,H ω

c
, (D1)

with

nE,H =
√

εE,H μE,H , (D2)

where the superscripts E, H apply for the case of E waves and
H waves, respectively.

We have assumed a uniaxial metamaterial with permittivity
and permeability tensors given by Eqs. (3) and (4), respec-
tively. Equation (A3) yields

nE,H = c

ωL

⎛
⎜⎝cos−1

( r

t

)
2L

2
( r

t

)
L

+ lπ

⎞
⎟⎠ . (D3)

In the above equation cos−1 represents the principal value of
the function and l the order of the branch. Since the solution
we obtain for the refractive index nE,H is multibranched,
we need to have data for a few thicknesses L to identify
which branch yields the correct solution. Once we have the
refractive index nE,H , we can obtain χE,H from the following
equation:

χE,H − 1

χE,H
=

(
r
t

)
L

i
2 sin(nE,H ωL

c
)
. (D4)

The above equation provides two solutions for χE,H , from
which we chose the one with Re(χE,H ) > 0, which is
appropriate for passive materials (Refs. 42,43). Now knowing
nE,H and χE,H , we can obtain the effective permittivities for
both E waves and H waves, εE and εH , and corresponding
effective permeabilities, μE and μH , from the following
equations:

εE,H = nE,H χE,H (D5)

and

μE,H = nE,H

χE,H
. (D6)
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