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Using detailed simulations we investigate the magnetic response of metamaterials consisting of pairs of
parallel slabs or combinations of slabs with wires �including the fishnet design� as the length scale of the
structures is reduced from millimeter to nanometer. We observe the expected saturation of the magnetic-
resonance frequency when the structure length scale goes to the submicron regime, as well as weakening of the
effective permeability resonance and reduction in the spectral width of the negative permeability region. All
these results are explained by using an equivalent resistor-inductor-capacitor circuit model, taking into account
the current-connected kinetic energy of the electrons inside the metallic parts through an equivalent inductance,
added to the magnetic field inductance in the unit cell. Using this model we derive simple optimization rules
for achieving optical negative permeability metamaterials with improved performance. Finally, we analyze the
magnetic response of the fishnet design and we explain its superior performance regarding the high attainable
magnetic-resonance frequency, as well as its poor performance regarding the width of the negative permeabil-
ity region.
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I. INTRODUCTION

Left-handed metamaterials �LHMs�, i.e., artificial com-
posite structures with overlapping negative permittivity and
permeability frequency bands giving rise to negative index
of refraction,1–4 have recently attracted an exponentially in-
creasing attention. The main reason behind this attention is
the peculiar physical phenomena associated with those ma-
terials �negative refraction, opposite phase and energy veloc-
ity, reversed Doppler effect, etc.�, which result in different
capabilities for the manipulation of electromagnetic waves.
One such important capability of LHMs is superlensing,5 i.e.,
the ability to offer subwavelength resolution imaging; this
can have important implications in many scientific, techno-
logical, and everyday life areas, such as imaging, micros-
copy, lithography, ultracompact data storage, etc.

Since the demonstration of the first LHM,6 in 2000, oper-
ating in the microwave regime, many LH structures have
been created,7–13 and important efforts for the better under-
standing and the optimization of those structures have taken
place. Among the various efforts within the LHM research, a
large part has been devoted to the extension of the frequency
of operation of LHMs from the microwaves to the optical
regime, where superlensing-based applications can find an
important ground for their manifestation. These efforts led to
metamaterials with negative permeability operating in the
few terahertz regime as early as 2004,14,15 which soon were
followed by the first structures of negative permeability
and/or negative index of refraction in the telecommunica-
tions regime16 and more recently in the lower visible
regime.17 �For reviews of the existing research efforts on
infrared �IR� and optical metamaterials see Refs. 18–20.�

While the first and most of the current microwave LHMs
are systems made of split-ring resonators21 �SRRs, i.e., inter-

rupted metallic rings, giving rise to resonant looplike cur-
rents and thus to a resonant permeability involving negative
permeability values� and continuous wires �leading to the
negative permittivity response22�, in most of today’s high-
frequency LHMs the SRRs have been replaced by pairs of
slabs �or stripes or wires�23–26—see Fig. 1�a�. Like the SRR,
the slab pair also behaves as a resonant magnetic-moment
element, where the magnetic moment is created by resonant
currents, antiparallel in the two slabs of the pair, forming a
looplike current. In most of the experimentally realized op-
tical slab-pair&wire structures the slabs are as wide as the
corresponding unit-cell side and are physically connected
with the wires, leading to a design known as fishnet27–31 �see
Fig. 1�d��. The fishnet design was able to give the highest in
frequency LHMs to date.17,32,33

The main reason behind the replacement of SRR by the
slab pair for the high-frequency metamaterials, apart from
the slab-pair simplicity in fabrication �which is also a crucial
parameter�, is its ability to exhibit a negative permeability
response for incidence normal to the plane of the pair; this
makes possible the demonstration of the negative permeabil-
ity response with just a monolayer of slab pairs. Indeed, up
to now most of the demonstrated “magnetic” metamaterials
�i.e., materials with resonant and negative permeability� and
LHMs are single layers while only a few multilayer samples
have been fabricated.15,34–36 �Note that in the optical regime
what is difficult to achieve is the negative permeability com-
ponent of a LHM, since the negative permittivity response
can be easily obtained using metals; that is why most of the
existing efforts to go to optical LHMs start from attempts to
achieve structures with only negative permeability.�

Since many of the existing attempts to create high-
frequency magnetic metamaterials and LHMs are based on
the scaling down of known microwave designs, there are
already efforts trying to determine the possibilities and the
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limitations of this scaling approach.37–40 �Note that the prop-
erties of the metals, which are involved in most of today’s
metamaterials, are drastically different in the optical regime
compared to microwaves—there, metals behave almost as
perfect conductors.� Most of those attempts concern SRR
systems and they have led to two important
conclusion:37,41,42

�a� By scaling down a SRR, the frequency of its resonant
magnetic response does not continuously increase but after
some length scale it saturates to a constant value. This value
was found to be dependent on the SRR geometry employed,
and with proper modifications of this geometry �e.g., adding
gaps in the SRR� it could go up to a small fraction �e.g.,
20%� of the plasma frequency, i.e., to the middle visible
range. The saturation response of the magnetic-resonance
frequency was explained by taking into account the contri-
bution of the kinetic energy of the electrons associated with
the current inside the SRR ring to the magnetic energy cre-
ated by the loop current �or, equivalently, taking into account
the dispersive response of the metal to the conductivity�.

�b� The magnetic permeability resonance becomes weaker
and weaker by going to smaller length-scale SRR systems

and below some length scale it ceases to reach negative val-
ues. This weakening of the permeability was attributed to the
kinetic energy of the electrons �giving rise to saturation� in
combination with the increased resistive losses in the metal
as one goes to higher frequencies; these losses are strength-
ened by the resonant response, implying long-time interac-
tion of the wave with the metallic structures.

Although the existing studies are very revealing concern-
ing the high-frequency response of magnetic metamaterials,
they examine the influence of the kinetic energy �or the dis-
persive response of the metals� only in the magnetic-
resonance frequency and not to other, equally important fea-
tures of the resonant magnetic response, such as resonance
shape and damping factor, total losses, and spectral width of
the negative permeability band; moreover, they did not
clarify the role of the ohmic losses in the saturation of the
magnetic-resonance frequency. Finally, the role of the vari-
ous geometrical parameters in the high-frequency response
of metamaterials still remains to be determined, so as to
identify the dominant parameters for this response and to
define optimization rules for high-frequency metamaterials.
�Note that today’s IR and optical negative index metamate-
rials suffer from very high losses, which make these struc-
tures nonfunctional. Structure optimization so as to minimize
the overlap of the field with the metallic components can be
proved to be a very efficient way for the reduction in the
total losses.�

In this paper we attempt to study all the above issues. We
will restrict ourselves to systems based on pairs of slabs,
alone, or in combination with continuous wires; this is
mainly due to the fact that slab-pair-based systems offer an
easy experimental demonstration of negative permeability or
negative index response and, moreover, have been proven up
to now the most promising systems for the achievement of
high-frequency negative permeability and negative index
metamaterials.18,19 The structures discussed here are shown
in Fig. 1. We will attempt to analyze the high-frequency
magnetic response of these structures, to compare their per-
formance, and to propose optimization rules for them. For
that we examine in detail the scaling behavior of the
magnetic-resonance frequency and the magnetic permeabil-
ity as the structures are scaled down from millimeter to nan-
ometer scale.

The basic idea that we will use to reproduce and under-
stand the small length-scale �high-frequency� behavior of our
structures is the consideration of the kinetic energy of the
current-carrying electrons.37 This kinetic energy, as being
proportional to the square of the velocity �and thus of the
frequency, just like the magnetic energy�, is added to the
magnetic energy of the structures and for small length scales
dominates the magnetic metamaterials response. The consid-
eration of this kinetic energy is done here through an equiva-
lent “kinetic” inductance37,43 �or electrons’ inductance�,
added to the magnetic field inductance in an effective
resistor-inductor-capacitor �RLC� description of the artificial
magnetic structures.

Specifically, the paper is organized as follows: in Sec. II
we present the “high-frequency” response of our structures,
as revealed by numerical simulations concerning the
magnetic-resonance frequency, the form of the magnetic per-

FIG. 1. �Color online� The unit cell of the four designs studied.
�a� Narrow-slab-pair system; �b� wide-slab-pair system; �c�
slabs&wires system; and �d� fishnet design. Panel �e� is a magnifi-
cation of panel �a� where the structure parameters appearing in the
structure simulations are shown. The parameters of the pair are
given as a function of the scale parameter a=ak �lattice constant
along propagation direction; equal to the system thickness�: lattice
constants aE=2.97ak, aH=2.19ak, slab length l=2.19ak, slab width
w=0.47ak, thickness of the metal tm=0.25ak, and thickness of the
substrate t=0.5ak. For the fishnet design �d� the width of the slabs is
equal to the corresponding unit-cell side �aH� while the width of the
“necks” �continuous metallic parts joining the slabs along E direc-
tion� is wn=0.469ak. The dielectric spacer separating the metallic
pairs has been considered as glass �with relative permittivity �b

=2.14� while for the metal plasma frequency and damping factor
the aluminum parameters have been employed.
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meability resonance, the bandwidth of the negative perme-
ability band, and the losses. The wave propagation charac-
teristics in these structures are analyzed and explained in
Sec. III, using an effective RLC description of the structures
and taking into account the dispersive behavior of the metals
through the kinetic metal inductance. Based on the results
and analysis of Secs. II and III, in Sec. IV we present basic
optimization rules for the achievement of high-frequency
magnetic metamaterials and left-handed materials with im-
proved performance. There we discuss also the fishnet de-
sign, which has been proven up to now to be the optimum
design for achievement of optical negative index materials.
Finally, in Sec. V we show that the simple RLC circuit
model does not only have qualitative power but it can also be
used to give quantitative results if plugged with accurate
relations for the capacitance and the inductance of the
system.

II. NUMERICAL SIMULATIONS

In this section we present calculation results concerning
the scaling of the magnetic-resonance frequency and the
magnetic permeability of the structures shown in Fig. 1. The
geometrical parameters used in the simulations are those
mentioned in Fig. 1; for the permittivity of the metal, the
Drude dispersion model has been employed, i.e., �=�0���0�

−�p
2 / ��2+ i��m��, with the parameters of the aluminum

�plasma frequency �p=22.43�1015 s−1 and collision fre-
quency �m=12.18�1013 s−1�, and ��0�=1. Using the Drude
dispersion model one takes automatically into account the
mass and any kinetic energy of the current-carrying electrons
inside the metal �the contribution of the bound electrons is
also taken into account through the constant ��0��.

The calculations presented here have been performed us-
ing the finite integration technique, employed through the
MICROWAVE STUDIO �MWS� commercial software package.
Using MWS, the transmission and reflection from a mono-
layer of the structure have been obtained; these data have
been used for the determination of the effective permittivity
and permeability of the structures through a standard re-
trieval procedure based on a homogeneous effective-medium
approach.44,45 This way we obtain the effective permeability,
�, and permittivity, �, valid for bulk metamaterials of many
unit cells �layers� along the propagation direction46 �rather
than � and � characterizing a single sheet of scatterers47�.
Although the use of the homogeneous effective-medium ap-
proach for such kinds of metamaterials has been proven not
to be fully adequate48–50 �since the influence of periodicity
and spatial dispersion effects are quite substantial�, we have
observed here that for normal incidence and specific wave
polarization we still can define and use such effective param-
eters, except in the frequency regimes very close to the reso-
nance frequencies �where the wavelength inside the struc-
ture, �in=�0 /ne, is comparable to the structure linear size; �0
is the free-space wavelength and ne the real part of the ef-
fective refractive index�. Values of effective parameters in
frequency regimes very close to resonances will not been
used throughout this paper. Note also that frequency regimes
very close to � resonance are regimes of very high losses

�since the Im��� gets its highest values there� and thus they
are not of interest for the achievement of left-handed mate-
rials.

In Fig. 2 we present the magnetic-resonance frequency for
the four structures of Fig. 1 as the structures are scaled down
from millimeter to nanometer scale; in Fig. 3 we show the
real and imaginary parts of the magnetic permeability as a
function of frequency, for wide-slab pairs �the structure in
Fig. 1�b�� of various length scales.

As can be seen in Fig. 2, in slab-pair systems we observe
the same behavior as the one reported earlier for SRR
structures:37,42 while for larger length scales the magnetic-
resonance frequency scales inversely proportional to the
structure linear size, at frequencies in the near IR toward
optical regime this linear scaling breaks down, and the
magnetic-resonance frequency saturates to a constant value.
This saturation value is different for the different designs
employed, with the larger one being that of the fishnet struc-
ture. Note that in the slabs&wires case �structure in Fig. 1�c��
the presence of wires does not affect the magnetic-resonance
frequency of the slabs while in the fishnet structure the pres-
ence of wires leads to a higher saturation value for the
magnetic-resonance frequency. This behavior of the fishnet
design will be discussed and explained in Sec. IV.

It is important to mention here that the saturation values
for the magnetic-resonance frequency of the slab-pair sys-
tems are in all cases larger than the saturation values ob-
tained for SRRs of a single gap51 �e.g., U-shaped SRRs;
single-gap SRRs are the only SRR-based system that has
been fabricated in the nanometer scale�, indicating once
more the suitability of the slab-pair-based systems for the
achievement of optical magnetic metamaterials.

Concerning the permeability results shown in Fig. 3, we
observe that, similarly to the SRRs,37,42 as the length scale of
the structure becomes smaller the permeability resonance be-
comes weaker, ceasing ultimately to reach negative values.
This weakening is revealed in both the real and imaginary

FIG. 2. �Color online� Scaling of the magnetic-resonance fre-
quency with the linear size of the unit cell along propagation direc-
tion �ak� for the four designs of Fig. 1: fishnet �black circles�, wide
slabs �red squares�, narrow slabs �green diamonds�, and
slabs&wires �blue triangles�. The solid symbols indicate the exis-
tence of negative permittivity values while the open symbols indi-
cate that the permeability resonance is weak and unable to reach
negative values for the Re���.
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parts of the permeability resonance, and it will be analyzed
in more detail and quantified in the following paragraphs.
�Note that the “truncation” of the resonances of Fig. 3, which
is observed in the larger scale structures, is an artifact com-
ing from the limited validity of the homogeneous effective-
medium approach in the frequency regimes close to the reso-
nances, due to periodicity influence and spatial dispersion
effects, as was mentioned earlier in this section. For smaller
scales this influence becomes smaller due to the deeper sub-
wavelength scale of the corresponding structures and the
weaker resonant response, which results in a smaller effec-
tive index and thus a larger wavelength inside the structures.�

One quantity which is of great interest in left-handed ma-
terials and is strongly affected by the weakening of the per-
meability resonance is the width of the negative permeability
regime, which roughly corresponds to the operational band-
width of a LHM. In Fig. 4 we present the relative bandwidth
�i.e., bandwidth divided by the lower frequency of the nega-
tive permeability band� for the four structures shown in Fig.
1. As can be seen in Fig. 4, the operational bandwidth, which
for larger scales is almost independent of the length scale, in
smaller scales is strongly reduced, ultimately going to zero
for all designs. This shows that the negative permeability is
ultimately killed in the nanometer scale structures. Among
our four structures the wide-slab-pair one is characterized by
the larger bandwidth. Finally, it is worth noticing the highly
reduced bandwidth of the fishnet design, compared to the

bandwidth of the slab-pair-only structure. This bandwidth
behavior will be discussed in the next section.

Since one of the main issues for the achievement of high-
frequency metamaterials of satisfactory performance is the
losses �due to the increased resistive losses in the metallic
components going to the optical regime�, we performed a
detailed analysis of the losses in high-frequency metamateri-
als, trying to estimate which aspects of the high-frequency
metamaterial response are mainly affected by the resistive
losses and, consequently, to seek ways to minimize the in-
fluence of those losses, using proper design modifications.

As a first step we calculate the losses as a function of
frequency for various length scales of our systems. In Fig. 5
we present these losses for the wide-slab-pair system of Fig.
1�b�. The losses, A, have been calculated through the relation
A=1−R−T, where R and T are the reflection and transmis-
sion coefficients, respectively, through one unit cell of the
structure along the propagation direction. As is expected, the
losses show a dramatic increase by going to smaller length
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scales and higher frequencies. This increase seems to have an
exponential dependence on the magnetic-resonance fre-
quency.

From Figs. 2–5, one can see clearly the decreased perfor-
mance of our structures going to nanometer scales, inhibiting
their ability to give high quality optical left-handed metama-
terials. An interesting question arising here is the role of the
resistive losses on this decreased performance. To examine
this role, we repeated the above calculations using for the
metal a 2	�1000 times reduced collision frequency com-
pared to that of aluminum, i.e., �m=12.18�1010 /2	. The
results concerning the wide-slab-pair system are shown in
Fig. 6.

Specifically, Fig. 6�a� shows the saturation of the
magnetic-resonance frequency and Fig. 6�b� the real part of
the resonant permeability response for the smaller length
scales. Comparing the result of Fig. 6 with those for the
nonreduced value of �m, one can see that the saturation of the
magnetic-resonance frequency seems to be totally unaffected
by the value of the metal collision frequency. This indicates
that the loss factor of the metal employed is not able to affect
the highest achievable magnetic-resonance frequency of each
specific design. On the other hand, the metal loss factor can
affect the minimum length scale able to give a negative per-
meability response, as shown by comparing Fig. 6�b� with
Fig. 3�a�. Indeed, in the small �m cases the magnetic perme-
ability resonance is quite stronger, maintaining negative val-
ues down to smaller length scales. Although the strength of
the resonance �as measured, e.g., by the minimum value of
the Re���� seems to be strongly affected by the �m value,
calculating the width of the negative permeability regime �in
the cases that such a regime exists�, ��—not shown here—it
is observed that it is only slightly affected by the �m value; it
tends to zero for both high and low values of �m, indicating
that even in the absence of resistive losses one cannot go to
an arbitrarily high-frequency negative permeability response
over a practical bandwidth.

The results presented above raise many questions con-
cerning the high-frequency magnetic metamaterial response
and the main phenomena and factors determining this re-
sponse. Before attempting an interpretation of this response
we will summarize here the main effects observed so far and
the main questions that one needs to address so as to clarify
and to be able to predict the existence or performance of an
optical negative magnetic permeability response.

�a� The magnetic-resonance frequency of slab-pair-based
systems, while in millimeter scale structures, scales inversely
proportional to the structure length scale, in submicrometer
scale structures saturates to a constant value, depending
mainly on the geometry of the structure and independent of
the resistive losses in the component materials. Among the
structures that have been studied here the fishnet design leads
to the highest saturation frequency. Moreover, while in the
slabs&wires design the magnetic-resonance frequency is al-
most unaffected by the presence of the wires, it is not the
same in the fishnet design, where the saturation value is
much higher than the saturation value for the slabs only case.

�b� The magnetic permeability resonance in submicrome-
ter scale structures becomes more and more weak by reduc-
ing the structure length scale, and ultimately ceases to reach
negative values. The length scale at which �
0 stops to
exist depends on the structure geometry �design� and on the
resistive losses in the component materials, especially in the
metallic parts. Among the structures that we have examined,
negative permeability in smaller length scales is achieved in
the slab-pair structures, not associated though with higher
magnetic-resonance frequency. Negative permeability at
higher frequencies is achieved in the fishnet design.

�c� Concerning the relative spectral width of the negative
permeability regime, this width, while it is constant in milli-
meter scale structures, as one goes toward nanometer scales
it becomes smaller and smaller, down to almost vanishing.
This width depends on the structure geometry and seems
only slightly dependent on the resistive metallic losses.

III. ANALYTICAL MODEL AND INTERPRETATION
OF THE RESULTS

To understand and explain the results presented in the
previous section, we use the common approach of describing
the artificial magnetic structures �at the resonant magnetic
response regime� as equivalent effective RLC circuits �see
Fig. 7�. Using circuit theory and basic electromagnetic
considerations,3 one can easily obtain an expression for the
frequency dependence of the effective magnetic permeabil-
ity, ����, for a lattice of artificial magnetic elements.3

For the explanation of the high-frequency magnetic re-
sponse we follow the approach of Ref. 37, based on the
consideration of the kinetic energy of the electrons in the
metal, Ek, besides the magnetic energy of the resulting elec-
tromagnetic field. Thus, we replace the magnetic inductance
of the system in the effective RLC circuit description by the
total inductance resulting as a sum of the magnetic field in-
ductance, L, and the kinetic inductance, Le, where Le is de-
fined by Ek=Nemeve

2 /2=LeI
2 /2 �Ne is the total number of

electrons, me is the electron mass, and ve is the average elec-
tron velocity�.
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Assuming a slab-pair system like the one shown in Fig.
1�e�, of length l and slab separation t, excited by a magnetic
field of the form H=H0e−i�t and direction as shown in Fig.
1�e�, and applying the Kirchhoff voltage rule, one can obtain

�L + Le�Ï +
1

C
I + İR = − �̈ = �2�0ltH0e−i�t. �1�

� is the external magnetic flux, �=�0ltH, and R and C the
resistance �frequency independent, accounting for the ohmic
losses� and the capacitance of the system, respectively. The
obvious solution of Eq. �1� is I= I0e−i�t, with

I0 = −
�2��0lt/�L + Le��

�2 − 1/�L + Le�C + i�R/�L + Le�
H0. �2�

Having the current one can easily obtain the pair magnetic
dipole moment, m=area�current= ltI, and the magnetiza-
tion M = �NLC /V�ltI= �1 /Vuc�ltI, NLC is the number of “RLC”
circuits in the volume V, and Vuc=aEaHak is the volume per
unit cell, where aE, aH, and ak are the system lattice con-
stants along the E, H, and k directions, respectively
�aH�w ,aE
 l ,ak� t�—see Fig. 1�.

Finally, using M =�m���H , ���� /�0=1+�m���, with �m
the magnetic susceptibility, one obtains

���� = �0�1 −
�1/Vuc���0�lt�2/�L + Le���2

�2 − �LC
2 + i��

� �3�

with

�LC =
1

��L + Le�C
, � =

R

L + Le
. �4�

�LC is the magnetic-resonance frequency of the system and �
is the dumping factor, representing all the losses and the
scattering mechanisms.

The inductance Le can be easily calculated by calculating
the kinetic energy of the electrons, Ek=Nemeve

2 /2
=2Vwnemeve

2 /2, and expressing the velocity through the cur-
rent, I=ewtmneve �ne is the number density of free electrons,
e is the electron charge, and Vw=wtml is the volume of each
metallic slab of the pair—see Fig. 1�e��. In this way, one can
obtain Le=2lme /wtme2ne= �2l /wtm��1 /�p

2�0�, where �p

=�e2ne /me�0 is the plasma frequency of the bulk metal.
Note that exactly the same results as in Eq. �3� can be

obtained by considering, instead of the kinetic energy for the
derivation of Le, the dispersive behavior of the metal conduc-
tivity. Indeed, starting with the frequency-dependent Drude-
type conductivity

� = i�0
�p

2

� + i�m
, �5�

we obtain for the total resistance �for both slabs of the pair�

Rtot =
1

�

2l

S
= � �m

�0�p
2 − i

�

�0�p
2	2l

S
= R − i�Le. �6�

Using Rtot=R− i�Le in Eq. �1� in the place of R and only the
magnetic field inductance �in order to avoid counting twice
the kinetic inductance Le�, one can obtain the same current
solution as in Eq. �2�.

In the following, to simplify our discussion we will con-
sider the magnetic field inductance to be given by the induc-
tance of a solenoid of area lt and length w �see Fig. 1�, i.e.,
L=�0lt /w, and the total capacitance, C, by that of two
parallel-plate capacitors connected in series �see Fig. 7�, each
one of area wlC, plate separation t and dielectric core of
relative dielectric constant �b, i.e., C=C1 /2=�0�b�wlC� /2t.
C1 is the capacitance of each capacitor and lC the effective
length of the capacitor, proportional to the slab length, l, i.e.,
lC=c1l, with the constant c1 approximately equal to 0.4 �see
Sec. V�, as is revealed from the charge distribution at the
magnetic resonance. �Note that these formulas are appropri-
ate for the case of wide slabs; for the case of narrow slabs,
where edge effects become important, the capacitance and
the inductance get slightly higher values �the scaling depen-
dence though remains the same�; such more accurate values
can be reproduced by more complicated formulas for the
capacitance and inductance. Here, since we are interested
mainly in general trends and in providing a simple and uni-
form for all our structures physical picture and qualitative
explanation, we will not be extending to more complicated
inductance and capacitance formulas. Note also that in our
discussion we will not consider any interunit-cell
capacitance,26 which is important in the case of quite long
slabs, i.e., slabs that approach the unit-cell boundaries along
E direction.�

With the above considerations, Eq. �3� for the magnetic
permeability takes the form

� = �0
1 −
F��2

�2 − �LC
2 + i��

� �7�

with

F� = F
L

L + Le
, F =

ltw

Vuc
=

interpair volume

unit-cell volume
. �8�

Using the above formulas and their behavior going to
small length scales we will show in the following that one
can reproduce and explain all the high-frequency magnetic
response of artificial magnetic structures.

FIG. 7. �Color online� The equivalent RLC circuit used for the
description of our slab-pair systems �panel �a�� and for the fishnet
design �panel �b��. Figure 7 also shows the correspondence of the
RLC circuit parameters with our structures. The arrows show the
direction of the currents at the magnetic-resonance frequency. The
total capacitance of the circuits, C, is equal to C1 /2. For the fishnet
design Ls=Lslabs is the slab contribution to the inductance and Ln

=Lnecks is the contribution from the neck parts.
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For that, it is important to notice that by scaling down the
structures uniformly, i.e., all the lengths scale proportionally
to a basic length a �=ak here�, both the capacitance and the
magnetic inductance scale proportionally to a �this scaling
law is valid not only for our simple formulas but for all
possible capacitance and inductance formulas� while the ki-
netic inductance and the resistance scale proportionally to
1 /a, i.e.,

C =
c1

2
�0�b

wl

t
� a, L = �0

tl

w
� a ,

R =
�m

�p
2�0

2l

wtm
�

1

a
, and Le =

2l

wtm

1

�p
2�0

�
1

a
. �9�

The above formulas show the increasingly pronounced
role that kinetic inductance �also the resistance� plays in the
smaller scales. Specifically, one can see that the ratio L /Le is
on the order of 20ttm /�p

2, with the typical value of �p��p
=2	c /�p� being around 85 nm for Al and 130 for Ag.52

Thus, for �ttm smaller than 100 nm the kinetic inductance,
Le, becomes appreciable and may dominate as the length
scale becomes smaller and smaller.

A. Magnetic-resonance frequency

Taking into account the expression for the magnetic-
resonance frequency in Eq. �4�, in combination with Eq. �9�,
it can be shown that the magnetic-resonance frequency of a
slab-pair system has the following scale dependence:

�LC =
1

��L + Le�C
�

1
�A1a2 + A2

�10�

with the A1 and A2 constants �depending on the geometrical
characteristics of the structure�. Equation �10� shows that as
the slabs length scale becomes smaller the magnetic-
resonance frequency does not continuously increase but be-
yond a length scale it saturates to a constant value. The satu-
ration of the magnetic-resonance frequency is exactly what is
observed in Fig. 2 and is exclusively due to the existence of
kinetic inductance �note that the resistance, R, representing
the ohmic losses, does not appear in the above formula �10��.
This inductance originates from the electron inertia and rep-
resents the “difficulty” of electrons to follow high-frequency
motions, i.e., their difficulty to respond to high-frequency
fields.

Note that without the consideration of Le the second term
in the square root of Eq. �10� would not exist, leading to a
linear dependence ��1 /a �as occurs in microwaves and
larger scales� making us unable to explain the saturation be-
havior observed in Fig. 2. Note also that the kinetic induc-
tance Le does not influence the response of the structure only
at the magnetic-resonance regime but at all high-frequency
regimes, including permittivity resonances.

Substituting Eq. �9� in Eq. �10� and defining normalized
�dimensionless� geometrical parameters, i.e., l�= l /a, t�= t /a,
and tm� = tm /a, one can obtain the dependence of �LC from the
geometrical characteristics of the structure, as well as an ex-
pression for the saturation value, �LC

sat ,

�LC =
1

�c1

2

�bl�2

c2 a2 +
c1�bl�2

t�tm� �p
2

→
a→0

�p

�t�tm�

l��c1�b

= �LC
sat .

�11�

A correction to the above formula �11� can be obtained if
one takes into account also the potential energy of the elec-
trons inside the metal slabs through an equivalent
capacitance,38 Ce=�0wtm / l �the capacitance of the capacitor
formed inside the metal�, added to the slabs capacitance, C1.
In this case the saturation value for the magnetic-resonance
frequency is found as

�LC
sat =

�p

�c1�bl�2

t�tm�
+ 1

, �12�

showing that the absolute upper limit for the saturation fre-
quency is not arbitrary high but it is restricted by the plasma
frequency of the bulk metal.

Since in the following we will consider systems with both
l� / t� and l� / tm� larger than unity, where the simplified Eq.
�11� is still valid, we will omit the electron potential energy
in the following discussion, keeping into account though that
this energy/capacitance sets a finite upper limit for the satu-
ration value of the magnetic-resonance frequency, which is
the plasma frequency of the bulk metal.

B. Magnetic permeability resonance

As has been shown in Sec. II, by reducing the length scale
of the artificial magnetic structures the magnetic permeabil-
ity resonance becomes more and more weak, and unable to
lead to negative � values beyond a certain length scale. This
weakening is revealed in both the real part of � �where
smaller absolute values of the Max�Re���� and Min�Re����
are observed� and the imaginary part �where smaller
Max�Im����, at �=�LC, is observed�—see Fig. 3.

A detailed examination of Eq. �7� reveals that the strength
of the resonance is determined from both factors � and F�.
On the other hand, the width of the negative permeability
regime, ��, seems to be much more sensitive to the factor
F� and almost unaffected by � �� has only small influence on
the lower limit of the negative permeability band while F�
strongly affects the upper limit of this band�. Note that in the
absence of losses, i.e., �=0, the upper limit of the negative
permeability band is �LC /�1−F�; the lower limit is simply
�LC, i.e.,

�� = �LC� 1
�1 − F�

− 1	 . �13�

Using Eqs. �4� and �8� in combination with Eq. �9�, one
can obtain the scaling dependence of both F� and �, as

F� = F
L

L + Le
� BFa2 �14�

�B constant� and
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� =
R

L + Le
�

1

D1a2 + D2
�15�

�D1 and D2 constants�. From Eq. �14� one can derive two
important conclusions: �a� the factor F�, which mainly deter-
mines the frequency width of the negative permeability re-
gime, is independent of the resistance, R, thus independent of
any loss mechanisms. �b� With the consideration of the ki-
netic inductance the factor F� from scale independent �if Le
is negligible� becomes scale dependent and tends to zero as
the size of the structure becomes smaller and smaller �a
→0�. This means that even in the absence of ohmic losses, it
would be impossible to get negative permeability values of
bandwidth substantially larger than �a2 /�p

2��LC for arbitrarily
small length scales.

The scaling behavior of F� also implies that the relative
bandwidth of the negative permeability regime while it is
almost constant before the starting of the saturation �see Fig.
4�, it becomes smaller and smaller deeper in the saturation
regime, indicating that working before the saturation regime
favors the widest bandwidth of each specific structure.

The geometrical dependence of the factor F� for the slab-
pair design can be easily obtained by substituting Eq. �9� to
Eq. �14�:

F� = F
1

1 + 2c2/��p
2tmt�

=
F

1 + �p
2/�2	2ttm�

. �16�

Concerning the loss factor �, from Eq. �15� one can see
that � increases as the length scale decreases, justifying the
higher losses for the smaller length scales. This increase
though does not continue up to the smallest scales but be-
yond a certain length scale it approaches a saturation value.
The geometrical dependence of � for the slab-pair design is
obtained analogously with that of F�, as

� =
�m

1 + ��p
2/2c2�tmt

=
�m

1 + 2	2tmt/�p
2 . �17�

Equation �17� shows that the saturation value of � is the
collision frequency of the bulk metal as considered in the
free-electron �Drude� description of the metal.53 The satura-
tion regime for � is approached simultaneously with that of
the magnetic-resonance frequency saturation, showing that
deep in the saturation regime the weakening of the resonance
is not mainly the result of the ohmic losses but it is rather the
result of the kinetic inductance �affecting through the factor
F��.

Finally, it is important to point out that both � and F�
depend not only on the “quality” �i.e., plasma frequency and
damping factor� of the metal used for the fabrication of
metamaterials but also on the geometrical parameters of the
structures �see Eqs. �16� and �17��. This reveals the possibil-
ity to modify these factors, and thus to enhance the perfor-
mance of high-frequency metamaterials, by modifying the
geometry.

IV. OPTIMIZED DESIGNS

From the analytical formulas and the discussion of the
previous section it becomes clear that for achievement of

optimized high-frequency �e.g., optical� magnetic metamate-
rials one should require: �a� highest possible saturation value
for the magnetic-resonance frequency; �b� larger possible pa-
rameter F�, determining the strength of the magnetic reso-
nance and the width of the negative permeability regime; and
�c� smallest possible loss factor �.

The general requirements for meeting the above condi-
tions can be easily concluded based on Eqs. �10�, �14�, and
�15�. They demand: structures of small capacitance, C; struc-
tures of small kinetic inductance Le, compared with magnetic
inductance, L; and structures of low resistance, R. On the
other hand, the role of the magnetic field inductance is more
puzzling: while low inductance facilitates the achievement of
high magnetic-resonance frequency, it results in a “lower-
quality” resonance, i.e., weaker resonance and higher losses
�compared to a higher inductance structure of the same
length scale�. Thus, the inductance optimization should be
based on the specific requirements for the designed metama-
terial.

To translate the above optimization conditions to specific
geometrical and material conditions for the slab-pair-based
systems we can use Eqs. �11�, �16�, and �17�. From these
equations it can be concluded that optimized slab-pair-based
systems are favored from structures of thick metal �high tm�
and thick separation layer between the slabs of the pair �i.e.,
high t—not as high though as to cancel the interaction be-
tween the slabs�; also structures of wide slabs �i.e., large
width w—to maximize the structure volume fraction F ap-
pearing in Eq. �16��. Moreover, high quality optical metama-
terials demand metals of the highest possible plasma fre-
quency and the lowest possible collision frequency.

The role of the slab length is not one way; while shorter
slabs �compared to the corresponding unit-cell side� facilitate
a high magnetic-resonance frequency they lead to a narrower
negative permeability regime �due to reduced F in Eq. �16��
and vice versa. Finally, we should emphasize here that for
enhanced metamaterial performance one should target opera-
tion below the saturation regime, so as to ensure a large
negative permeability width and lower losses.

Fishnet design

As was mentioned in the previous sections and can be
easily concluded from Eq. �10�, structures with reduced in-
ductance lead to higher magnetic-resonance frequencies. A
structure based on slab pairs which offers a considerable re-
duction in the inductance is the fishnet design—see Fig. 1�d�.
Studies of this design in microwaves29 have revealed that at
the magnetic-resonance loop currents exist not only at the
slab pair but also in the necks’ part of the metallic element.
This neck contribution can be taken into account in an effec-
tive LC circuit description of the structure by considering an
additional inductance, due to the necks, which is in parallel
with the inductance of the slabs �see Fig. 7�b��, resulting in a
reduced total inductance, Lfishnet, with

1

Lfishnet
=

1

Lslabs
+

1

Lnecks
. �18�

�Lslabs and Lnecks represent the inductance of the slab and the
neck parts, respectively; note that the Lslabs here is not ex-
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actly the same as that for the slab-pair-only system, due to
the difference in the charge and current distribution between
only-slab-pair systems and fishnet.� This reduced inductance
leads to a magnetic-resonance frequency

�LC,fishnet
2 =

1

LfishnetC

 �LC,slabs

2 �1 +
Lslabs

Lnecks
	 , �19�

i.e., higher than that of only the slabs.
By reducing the size of the structure down to submicron

and nanometer scales, the inductance of both the slab and the
neck parts gets a contribution from the kinetic �electrons�
inductance. This contribution though does not modify the
general relation �19�, indicating the higher magnetic-
resonance frequency of the fishnet design than that of the
component wide-slab-pair system even in the saturation re-
gime. This higher magnetic-resonance frequency makes the
fishnet design the preferred one for the achievement of opti-
cal metamaterials, something that has already been revealed
from many previous experimental and theoretical works con-
cerning optical metamaterials.18,19

Relation �19�, combined with Eq. �9�, can easily lead to a
relation for the geometrical dependence of the magnetic-
resonance frequency for the fishnet, i.e.,

�LC,fishnet
2 = �LC,slabs

2 �1 +
wn

w

l

aE − l
	 �20�

and thus for the saturation value of this magnetic-resonance
frequency. In Eq. �20� wn and w is the width of the neck and
slab parts, respectively �along H direction� and aE is the
lattice constant along the E direction �see Fig. 1�. Equation
�20� suggests that for the achievement of high magnetic-
resonance frequency saturation values for fishnet, apart from
the conditions for the optimization of the slab-pair compo-
nents one should pursue also wide neck parts; moreover, the
wider the neck parts the higher the saturation value of the
fishnet magnetic-resonance frequency is.

Concerning the magnetic permeability expression for the
fishnet, here the situation is more complicated compared to
only-slab systems due to the more complicated current pic-
ture at the magnetic resonance.29 Following the observations
and conclusions of Ref. 29, according to which the fishnet
unit cell can be approximated with an RLC circuit with in-
ductance of slabs and inductance of necks connected in par-
allel, the magnetic permeability for the fishnet can be calcu-
lated following the same steps as the ones presented in the
previous section for the slab case, with modifications in the
incident flux, the magnetic moment, and the total inductance
per unit cell:

Here the incident flux, �, can be written as �
=�0aEtH0e−i�t, and the modified magnetic moment as

m = Islabslt − Inecks�aE − l�t = ILfishnet
 lt

Lslabs
−

�aE − l�t
Lnecks

� ,

�21�

where I= Islabs+ Inecks and ILfishnet= IslabsLslabs= InecksLnecks.
The inductances Lslabs and Lnecks include both the mag-

netic field inductance and the electrons inductance for slabs
and necks.

From Eq. �21� one can see already that the presence of the
necks weakens the magnetic response of the structure since
the neck contribution in the magnetic moment opposes that
of the slabs.

With the above considerations, the magnetic permeability
for the fishnet design can be expressed as

���� = �0�1 −
�1/Vuc��0aEt�2�lt/Lslabs − �aE − l�t/Lnecks�

�2 − 1/LfishnetC + i�R/Lfishnet
� .

�22�

Comparing the above equation with Eq. �3�, one can ob-
serve that the factor multiplying the �2 in the numerator,
which is the main factor determining the spectral width of
the negative permeability regime, becomes smaller than that
of the slab only case �F��. This can explain the reduced
�compared to only slabs� spectral width of the fishnet nega-
tive � regime observed in Fig. 4.

V. OBTAINING QUANTITATIVE RESULTS

In the previous sections we presented a simple RLC cir-
cuit model for our slab-pair-based metamaterial structures.
This model allows for a simple physical and uniform de-
scription of all our structures, resulting in a simple physical
interpretation for the behavior of the structures, reproducing
the main features of their response, and leading to easy to
understand optimization rules. It is important to note though
that relations �3� and �4� do not only have a qualitative power
but they can be used also to obtain quantitative results, if
plugged with accurate expressions for the capacitances and
inductances involved.

Here we will demonstrate this quantitative power of rela-
tions �3� and �4� in the case of the wide-slab-pair system. For
wide-slab-pair systems �w=aH� and examining the fields and
currents at the magnetic-resonance frequency, one can use
for the capacitance C1 �see Fig. 7� the formula shown in Eq.
�9� with c1=0.4, i.e., C1=�0�b�w / t��0.4l�, and for the mag-
netic field inductance and electrons’ inductance the same re-
lations as in Eq. �9�. The calculated magnetic-resonance fre-
quency obtained this way is shown with the dotted-dashed
line in Fig. 6 and as can be seen there it is in excellent
agreement with the magnetic-resonance frequency obtained
through realistic numerical simulations.

Using the same equations for L and C for the case of
narrow slabs, one can observe that the quantitative agree-
ment with the corresponding numerical data is less satisfac-
tory; the reason is the increased importance of edge effects as
the slabs become narrower, which would lead to an enhance-
ment of L and C. Ways to take into account these effects are
either using an artificial, higher value of c1 in the capacitance
C1 or employing more complicated formulas for the capaci-
tance and inductance of the structure. In the limit w
 t such
formulas can be the formulas describing a system of two
parallel wires, i.e., L=�0l ln�t /w� /	 and C1
=�b�0	�lC� / ln�t /w�. Note that the employment of alternative
expressions for L and C1 does not change the general fea-
tures of the scaling response of the structure.

As a last statement we should mention here that to pro-
ceed to a detailed quantitative description of our structures,
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able to reproduce experimental data, besides the requirement
of accurate formulas for the capacitance and the inductance,
one should also employ an accurate dispersion model for the
metal dielectric function �note that for the majority of the
metals the Drude dispersion model is not valid in the whole
IR and visible regime52—due mainly to interband transi-
tions� and take into account that in the IR the skin depth of
the metal is smaller than the metal thickness.

VI. CONCLUSIONS

In this paper we examine the magnetic response of reso-
nant magnetic structures based on the slab-pair design, as the
structures are scaled down from millimeter to nanometer
scale. This response is examined using detailed numerical
simulations to obtain the frequency dependence of the mag-
netic permeability �including its resonant behavior� through
reflection and transmission data of realistic structures. It is
observed, as expected, that the magnetic-resonance fre-
quency of the structures while it scales inversely propor-
tional to the structure length scale in the millimeter scale, it
saturates to a constant value in the nanoregime. This behav-
ior depends on the design and it is independent of any ohmic
losses in the structure. Among our designs, a higher satura-
tion value is observed for the fishnet design.

The permeability resonance becomes weaker and weaker
as we go deeper into the submicrometer scale and ultimately
it does not reach negative values. The relative spectral width
of the negative permeability regime which in larger scales is

almost scale independent, in submicrometer scales it be-
comes smaller and smaller, approaching zero, and it has a
very slight dependence on the ohmic losses while it shows a
strong dependence on the design, being quite narrow for the
fishnet design.

All the above results are explained through a simple RLC
circuit model; in the inductance, L, the current-connected
kinetic energy of the electrons is also taken into account
besides the magnetic field energy. This model had the capa-
bility to determine the optimization conditions for our struc-
tures, so as to attain high magnetic-resonance frequencies,
maintaining strong resonant response with a negative perme-
ability region as wide as possible. The model explains also
the superior performance of the fishnet design regarding high
magnetic-resonance frequency and its reduced performance
regarding the width of the negative permeability region. Fi-
nally, we show that our simple RLC circuit model is capable
not only of predicting qualitatively the behavior of our struc-
tures but also to give quantitative results if it is accompanied
by accurate formulas for the capacitance and inductance of
the systems.
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